Partenaires

Ampère

Nos tutelles

CNRS Ecole Centrale de Lyon Université de Lyon Université Lyon 1 INSA de Lyon

Nos partenaires

Ingénierie@Lyon



Rechercher


Accueil > Thèses et HDR > Thèses en 2013

22/10/2013 : Kai ZHANG

par Laurent Krähenbühl - publié le , mis à jour le

Kai ZHANG soutient sa thèse le 22 octobre 2013 à 14h30 à l’ECL, Amphi 203.
Thèse de l’Ecole Doctorale MEGA (co-direction G. Scorletti)

Titre :
Mechatronic design under uncertainties : robust active vibration control of flexible structures.

Jury :
N.K. M’Sirdi, Professeur, LSIS Rapporteur
N. Bouhaddi, Professeur, FEMTO-ST Rapporteur
M. Massenzio, Professeur, LBMC Examinateur
M. Collet, Directeur de recherche, FEMTO-ST Examinateur
F. Demourant, Chercheur, CERT-ONERA Examinateur
M.N. Ichchou, Professeur, ECL Directeur de thèse
G. Scorletti, Professeur, ECL Co-directeur de thèse
F. Mieyeville, Maître de conférences, ECL Co-encadrant de thèse

Résumé :
Flexible structures are increasingly used in various applications such as aerospace, automotive and so on. Since they are lightly damped and susceptible to vibrations, active vibration control is desirable. In practice, in addition to achieving e-ective vibration reduction, we have also to consider the required control energy to avoid the energy insu-ciency, the control input to avoid control saturation and reduce the e-ects of measurement noises. On the other hand, as flexible structures have in-nite number of resonant modes and only the -rst few can be employed in the system modeling and the controller design, there always exist neglected high-frequency dynamics, which can induce the spillover instability. Furthermore, the parametric uncertainties on modal parameters can degrade the control performances and even destabilize the closed-loop system. In this context, a quantitative robust control methodology for active vibration control of exible structure is proposed in this thesis. Phase and gain control polices are -rst proposed to enforce frequency-dependent phase and gain requirements on the controller, which can be realized by the output feedback H1 control design. The phase and gain control polices based H1 control can make a trade-o- among the complete set of control objectives and o-er a qualitative robust controller. Especially, the LPV H1 control is used to reduce the required control energy for LPV systems. The generalized polynomial chaos (gPC) framework with -nite element analysis is employed for uncertainty quanti-cation. It allows us to investigate the e-ects of structural property uncertainties on natural frequencies and achieve their probabilistic information. Then, in the presence of parametric and dynamic uncertainties, -=- analysis and the random algorithm using Monte Carlo Method are used to quantitatively ensure the closed-loop stability and performance robustness properties both in deterministic and probabilistic senses. The proposed quantitative robust control methodology is thus developed by employing various techniques from automatic control and mechanical engineering, thus reducing the gap between them for robust vibration control of exible structures. Its e-ectiveness are veri-ed by numerical simulations and experimental validation on LTI and LPV non-collocated piezoelectric cantilever beams.

Voir en ligne : Texte complet