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AbstratThe main purpose of this thesis is to propose a new framework thatonnets Predition Error Identi�ation and Robust Control Theory.Predition error identi�ation using an unbiased model struture deliv-ers an estimated model for the true plant and a on�dene ellipsoid forits parameter vetor. This model information an be obtained eitherthrough diret identi�ation of the system or through the identi�a-tion of the model error, and the identi�ation itself an be performedeither in open loop or in losed loop. The ellipsoidal parametri uner-tainty region U ontains the parameters of the true system at a ertainprobability level that we an �x at, say, 95%; and de�nes an equivalentunertainty region D in the spae of transfer funtions. Suh unertaintydesription is di�erent from the lassial frequeny domain unertaintydesriptions used in robust ontrol analysis and design. However, ourresults onnet these two sets of tools in a oherent way. These resultsover two distint aspets.� The �rst aspet is \PE identi�ation for robust ontrol". Wepresent a measure for the size of the unertainty set D, result-ing from predition error identi�ation, that is diretly onnetedto the size of the set of model-based ontrollers that is guaranteedby the �-gap theory to stabilize all systems in this unertainty set.This allows us to establish that one unertainty set is better tunedfor robust ontrol design than another, leading to guidelines forthe design of the identi�ation experiment.� The seond aspet is \ontroller validation". We develop a nees-sary and suÆient ondition for a spei� ontroller to stabilize allsystems in D and we present an optimization problem that om-putes exatly the worst ase performane ahieved by a ontrollerover all systems in an unertainty set D delivered by preditionerror identi�ation. i



ii AbstratThis thesis presents also results (restrited to linearly parametrizedsystems) about the image of the unertainty set D in the Nyquist plane.The image in the Nyquist plane of suh a set of plants is made up ofellipses at eah frequeny. However, the onnetion between di�erentfrequenies makes the mapping nontrivial. We show that the probabil-ity level linked to this image in the Nyquist plane is larger than that ofthe on�dene region in the parameter spae. This is due to the fatthat the mapping between the parametri and frequeny domain spaesis not bijetive.In the last part of this thesis, we extend our framework to the aseof biased model strutures, provided that the model struture is linearlyparametrized. For this purpose, we use the stohasti embedding as-sumptions. First, we show that these assumptions allow one to onstruta frequeny domain unertainty region L ontaining the true system ata ertain probability level, as well for open-loop as for losed-loop iden-ti�ation. Then, we show that a neessary and suÆient ondition anbe found for the stabilization of all plants in L by a given ontrollerand a proedure an be found to ompute the worst ase performaneahieved by a ontroller over all plants in L.



PrefaeThis thesis is divided in ten hapters:Chapter 1: IntrodutionChapter 2: Unertainty region dedued from PE identi�a-tion with unbiased model struturesChapter 3: A measure of robust stability for the unertaintyregion DChapter 4: A neessary and suÆient robust stability on-dition for DChapter 5: Worst ase performane in DChapter 6: Pratial simulation examplesChapter 7: Frequeny domain image of a set of linearlyparametrized transfer funtionsChapter 8: Extension to biased model strutures usingstohasti embeddingChapter 9: Robustness analysis of LChapter 10: ConlusionsThe material presented in Chapter 3 is to be published inX. Bombois, M. Gevers, and G. Sorletti. A measure ofrobust stability for a set of parametrized transfer funtions.To appear in IEEE Transations on Automati Control, De-ember 2000. iii



iv PrefaeHowever, some results of this hapter (and of Chapter 2) an also befound in X. Bombois, M. Gevers, and G. Sorletti. Controller vali-dation based on an identi�ed model. In Pro. IEEE Con-ferene on Deision and Control, pages 2816{2821, Phoenix,Arizona, 1999.M. Gevers, X. Bombois, B. Codrons, F. De Bruyne, andG. Sorletti. The role of experimental onditions in modelvalidation for ontrol. In A. Garulli, A. Tesi, and A. Viino,editors, Robustness in Identi�ation and Control - Pro. ofSiena Workshop, July 1998, volume 245 of Leture Notes inControl and Information Sienes, pages 72{86. SpringerVerlag, 1999.The materials of Chapter 4 and Chapter 5 were (or are to be) publishedin X. Bombois, M. Gevers, G. Sorletti, and B.D.O. Anderson.Controller validation for stability and performane based onan unertainty region designed from an identi�ed model. InCD-ROM Pro. IFAC Symposium on System Identi�ation,paper WePM1-6, Santa Barbara, California, 2000.X. Bombois, M. Gevers, G. Sorletti, and B.D.O. Anderson.Robustness analysis tools for an unertainty set obtained bypredition error identi�ation. Revised version submittedto Automatia, April 2000.The material in Chapter 6 is an adaptation of the examples published inB. Codrons, X. Bombois, M. Gevers, and G. Sorletti. Apratial appliation of reent results in model and on-troller validation to a ferrosilion prodution proess. InCD-ROM Pro. 39th Conferene on Deision and Control,paper WeP07-6, Sydney, Australia, 2000.



Prefae vM. Gevers, X. Bombois, B. Codrons, G. Sorletti, andB.D.O. Anderson. Model validation for ontrol and on-troller validation: a predition error identi�ation approah.Submitted to Automatia.Note that this last paper summarizes Chapters 2 to 6. A preliminaryversion of this summary an be found inM. Gevers, X. Bombois, B. Codrons, F. De Bruyne, andG. Sorletti. Model validation for robust ontrol and on-troller validation in a predition framework. In CD-ROMPro. IFAC Symposium on System Identi�ation, paperWeAM1-1, Santa Barbara, California, 2000.The material of Chapter 7 an be found inX. Bombois, B.D.O. Anderson, M. Gevers. Frequeny do-main image of a set of linearly parametrized transfer fun-tions. Submitted to the European Control Conferene(ECC01), Porto, 2001.A preliminary version of several parts of Chapters 8 and 9 an be foundin X. Bombois, M. Gevers, and G. Sorletti. Controller vali-dation for stability and performane based on a frequenydomain unertainty region obtained by stohasti embed-ding. In CD-ROM Pro. 39th Conferene on Deision andControl, paper TuM06-5, Sydney, Australia, 2000.
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Chapter 1Introdution1.1 General objetiveSystem identi�ation is the sienti� exerie that onsists of determin-ing a mathematial model of an underlying real-life proess, the so-alledtrue system, based on observed data; and Predition Error (PE) identi�-ation is the method that is generally used to ompute this mathematialmodel. One of the major appliations of the identi�ed model is the de-sign of a ontrol law for the true system. During the last years, muhattention has been paid to tune identi�ation for ontrol design. Guide-lines have been established in order to design identi�ation experimentsdelivering a model that is aurate for ontrol design [38, 39, 75, 80, 2℄.Most often, these guidelines have led to the design of iteratives shemes[90, 3, 60, 69, 75, 80℄. A ommon feature of these shemes is that iter-ations are performed of model updates (by identi�ation with the mostreent ontroller applied to the true system) and of model-based on-troller updates (the ontroller design being based on the most reentmodel). However, during the iterative proedure, there is no guaranteethat the ontroller designed from the identi�ed model will form a stableloop and ahieve suÆient performane when this ontroller is appliedto the unknown true system.In order to derive this guarantee, the framework of Robustness The-ory, introdued in the early 80's in [89, 31℄, is an elegant solution. Thisframework onsists of onsidering an unertainty region (i.e. a set ofsystems) that ontains the true system, and to verify the stability andperformane properties over all systems in this unertainty region. The1



2 Introdutionintrodution of robustness priniples in identi�ation for ontrol has ledto robusti�ed iterative shemes (see [81, 24℄) where, at eah iteration,in addition to the design of a ontroller, a model and an unertaintyregion around this model is identi�ed. The robusti�ation requires thusa method to identify a model and an unertainty region, and robustnesstools to analyze this unertainty set. As a onsequene, we need frame-works that onnet PE identi�ation and robustness theory.In this thesis, we propose a new framework that onnets PE iden-ti�ation and Robustness Theory. This framework onsists in a newmethod to design an unertainty region using the tools of PE identi�a-tion, oupled with robustness tools that are adapted to this unertaintyregion. These robustness tools pertain both to the robusness analy-sis of a ontroller and the quality assessment of the unertainty region.Our framework is dedued for PE identi�ation with unbiased modelstruture. However, we show that our robustness analysis tools an beadapted to the ase of PE identi�ation with biased model struture.1.2 Historial frameworkThe history of the onsidered problem is already very long. Indeedthe estimation of the error between the identi�ed model and the truesystem that may be the root of unertainty region determination, isas old as PE identi�ation itself. A reputable engineer should neverdeliver a produt without a statement about its preision. However,the information about this error was lassially presented in the time-domain via the ross-orrelation between inputs and residuals. Thismodel error representation was thus a great distane from the lassialunertainty desriptions used in mainstream Robustness Theory, namelyfrequeny domain unertainty desriptions. As a onsequene, a hugegap appeared at the end of the 80's between Robustness Theory and PEidenti�ation as was evidened in the 1992 Santa Barbara Workshop [76℄.This huge gap drove the Control Community to develop new tehniques,di�erent from PE identi�ation, in order to obtain, from measured data,a nominal model for ontrol design and an unertainty region ontainingthe true system. Several diretions have been pursued:� In set membership identi�ation or the hard bound (or boundederror) framework, unertainty models have been derived under a



Introdution 3variety of hard bound assumptions on the measurement noise andon the impulse reponse of the true system: see e.g. [46, 45, 66℄.� A seond diretion, initiated by Smith and Doyle [77℄, onsistsof starting with an a priori unertainty set resulting from priorassumptions on the true system and on the noise, and of then usingobserved input-output data to invalidate (and thus delete fromthis prior set) those models that are found to be inonsistent withthese prior assumptions. Elaborations on this approah an befound in [70, 56, 19, 16℄. The onept of model invalidation, on thebasis of an observed inompatibility between a model (inluding itsunertainty desription and its assumed hard-bound on the noise)and data, was extended to ontroller invalidation in [74℄.These new tehniques aimed at produing one of the standard linearfrational frequeny domain unertainty regions that are generally usedin mainstream Robust Control Theory (suh as additive, oprime fatorunertainty regions). The drawbaks of these tehniques are neverthe-less the large amount of assumptions and, more fundamentally, the fatthat they are not based on the mainstream framework in System Iden-ti�ation i.e. PE identi�ation.Other approahes that are based on mainstream PE identi�ation,have also been investigated to design unertainty regions from measureddata. They are interesting for our purpose sine they are a �rst stepin the diretion of the reoniliation between PE identi�ation and Ro-bustness Theory. The �rst approah is the Model Error Model (MEM)approah proposed by L. Ljung in his plenary leture at CDC 1997 [61℄(see also [62℄). The stated goal of this approah was to replae thetime-domain information (i.e. the ross-orrelation funtion betweeninputs and residuals) on the model error by frequeny domain informa-tion, to suit the requirements of Robustness Theory. The key idea wasto estimate a model of the error between an a-priori given model andthe true system using a simple step of PE identi�ation with unbiasedmodel struture. By virtue of the unbiased model struture, the erroris a variane error only, and an ellipsoid ontaining the \true parametervetor" at a ertain probability level an be onstruted using the es-timated ovariane matrix of the parameters. In [61, 62℄, this ellipsoidin parameter spae was then transformed into ellipses at eah frequenyin the Nyquist plane, using a �rst order approximation of the mappingbetween the parameter spae and the Nyquist plane. These ellipses an



4 Introdutionbe olleted together to make up a frequeny domain unertainty regionmade up of ellipses at eah frequeny.Although the other approahes, Stohasti Embedding [48, 47℄ andthe methods presented in [49, 50, 87, 26℄, preeded the MEM approah,they an nevertheless be onsidered as the extension of the MEM ap-proah to the ase of (linearly parametrized) biased model strutures. InStohasti Embedding, the undermodeling is onsidered as the noise inlassial PE identi�ation i.e. as the realization of a zero mean stohastiproess. Consequently, just as in the MEM approah, the total error isa variane error only and ellipses at eah frequeny in the Nyquist planean be onstruted and olleted together to make up a frequeny do-main unertainty region. The �rst order approximation is here avoidedby only onsidering linearly parametrized model strutures. In the meth-ods presented in [49, 50℄ and in [87, 26℄, the error due to the noise isestimated in the same way as in the MEM and stohasti embeddingapproahes, but the error due to the undermodeling is estimated usingan assumption about the deay rate of the impulse response of the truesystem. These last two approahes an therefore be onsidered as mixedprobabilisti-deterministi approahes. The unertainty region obtainedwith these methods an also be represented as an unertainty regionmade up of ellipses at eah frequeny in the Nyquist plane.In all these approahes (MEM, stohasti embedding and mixedprobabilisti-deterministi approahes), we obtain thus frequeny do-main unertainty regions made up of ellipses at eah frequeny in theNyquist plane.1.3 Contribution of this thesisIn this thesis, we will develop a framework that elegantly and eÆientlyonnets Robustness Theory and PE identi�ation with unbiased modelstrutures, starting from the results in [61, 62℄. This framework willbe extended for some of its aspets to PE identi�ation with (linearlyparametrized) biased model strutures using the stohasti embeddingassumptions.The starting point for the framework developed in this thesis is twoobservations we made about the MEM approah in [12℄. The �rst obser-



Introdution 5vation is that the identi�ation of an unbiased model error model is notthe only way to onstrut unertainty regions using this paradigm: aneasier way is the diret identi�ation of an unbiased model for the truesystem, and this in open-loop or in losed-loop. The seond observation,whih is more fundamental, is that the �rst order approximation yield-ing the ellipses in the Nyquist plane is a real drawbak of the method,sine it introdues an error. In order to avoid this �rst order approxima-tion, we deided in [12℄ to onsider, as unertainty region, the set D ofparametrized transfer funtions orresponding to the ellipsoid in param-eter spae that is onstruted with the estimated ovariane matrix andthat ontains the true parameter vetor (at a ertain probability level).The �rst ontribution of our work is thus to present unertainty re-gions D onstruted with PE identi�ation with unbiased model stru-ture, without using any approximation or adding any further assump-tions. This unertainty region D ontains the true system at a ertainprobability level. We develop a proedure to ompute suh unertaintyset for open-loop identi�ation, di�erent types of losed-loop identia-tion methods, but also for the MEM approah, and we derive a generalexpression for this unertainty set valid for all these types of identi�a-tion. This general expression takes the form of a set of parametrizedtransfer funtions whose (real) parameter vetor is onstrained to lie inan ellipsoid. The enter of this unertainty region is the \identi�ed"open-loop model.The unertainty region D is a \parametri" unertainty region andis thus totally di�erent from the frequeny domain unertainty regionsthat are generally used in mainstream Robust Control Theory. Due tothe huge amount of researh aomplished in Robust Control Theory, alot of results have also been developed for parametri unertainty sets(see e.g. [34, 35, 53, 72, 7, 23, 4, 5℄). Some of these results will help us todevelop robustness tools adapted to the unertainty region D. However,manipulations of D and new results will be neessary to obtain theserobustness tools (for more details see Chapters 4 and 5).The seond ontribution of this thesis is therefore to furnish robust-ness tools that are adapted to the unertainty set D (i.e. without em-bedding it in a lassial unertainty set as we �rst made in [12℄). Wedevelop robust stability and robust performane analysis tools. The ro-



6 Introdutionbust stability analysis tool is a neessary and suÆient ondition for thestabilization of all plants in D by a given ontroller. This ondition hasbeen dedued from the result of [53, 72℄ that gives suh a ondition foran unertainty set de�ned by a real vetor and expressed in the generalLFT (Linear Frational Transformation) framework of robust analysis.Our ontribution is to reast the losed-loop onnetions of all systemsin D with the onsidered ontroller as an LFT. The neessary and suf-�ient robust stability ondition for D follows then from the result of[53, 72℄. The robust performane analysis tool is an LMI1-based opti-mization problem that we develop to ompute exatly the worst aseperformane ahieved by a given ontroller over all plants in the uner-tainty set D.A third ontribution is to develop preliminary steps in the dire-tion of \PE identi�ation for robust ontrol". This is a design problem,where our ontribution is to haraterize what quality an unertaintyregion D must possess for it to be tuned for robustly stable ontrol de-sign. We have indeed established a measure of size of the unertaintyregion D that is diretly onneted to the size of a set of model-basedontrollers that stabilize all systems in D. This measure of size is theworst ase �-gap between the nominal model and the plants in D and isan extention of the �-gap metri introdued in [84℄. We show that thisworst ase �-gap an be omputed frequeny-wise using an LMI-basedoptimization problem at eah frequeny. We also show that the smalleris the worst ase �-gap between the model Gmod and the unertainty setD, the larger is the set of Gmod-based ontrollers that are guaranteedto stabilize all systems in D. The worst ase �-gap is thus an indiatorof how well an unertainty set D is tuned for robustly stable ontrollerdesign based on Gmod and an therefore be used to assess the qualityof the unertainty set D obtained by a PE identi�ation experiment.Our result also gives a meaning to the onept of PE identi�ation forrobust ontrol: an identi�ation experiment is \tuned for robust ontroldesign" if the worst ase �-gap for the unertainty set delivered by thisexperiment is small, beause it implies that, for that unertainty set, theset of robustly stabilizing ontrollers is large. In that sense, although itis restrited to stability purposes, our result is thus a �rst step in the di-retion of the establishment of a link between identi�ation experimentdesign and ontroller robustness.1Linear Matrix Inequality



Introdution 7In our proess of understanding the properties of the parametriunertainty region D, the representation (i.e. the image) of this uner-tainty region in the Nyquist plane is an interesting feature. Sine theanalysis of the image of D for its general struture is quite ompliated,we limit our analysis to unertainty sets where the plants are linearlyparametrized. The image in the Nyquist plane of suh set of plants ismade up of ellipses at eah frequeny. However, the onnetion betweendi�erent frequenies makes the mapping nontrivial. We show that theimage in the Nyquist plane ontains more plants than the parametriunertainty set. This is due to the fat that the mapping between theparametri and frequeny domain spaes is not bijetive.The last part of this thesis onsists of extending our framework tothe ase of PE identi�ation with a biased model struture in the par-tiular ase where this model struture is linearly parametrized. Forthis purpose, we use the stohasti embedding assumptions [48, 47℄.The hoie of the stohasti embedding method instead of the mixedprobabilisti-deterministi approahes [50, 26℄ to extend our frameworkto biased model strutures is quite arbitrary. It is nevertheless impor-tant to note that the results we develop for the stohasti embeddingapproah also apply to the mixed probabilisti-deterministi approahessine the unertainty regions delivered by all these methods are similar.The unertainty set dedued from an open-loop PE identi�ationproedure with stohasti embedding assumptions delivers an ellipsoidalunertainty set in the Nyquist plane (see Setion 1.2). In this thesis, weextend the stohasti embedding tehnique to losed-loop identi�ationand we give a general expression of the unertainty region L (valid forboth the open-loop and losed-loop ases) that exposes the struturalsimilarities of the unertainty set L with the unertainty region D. Thelast ontribution of this thesis is to develop the same robust stability andperformane analysis tools for L as was developed for D i.e. a neessaryand suÆient ondition for the stabilization of all plants in L by a givenontroller and an LMI-proedure to ompute exatly the worst ase per-formane ahieved by a given ontroller over all plants in L. Both toolshave been derived from the strutural similarities between D and L.It is to be noted that a tehnial problem prevents us from omputing



8 Introdutionthe worst ase �-gap for the unertainty region L.1.4 The atorsBefore giving the general outline of the thesis, let us present the di�erent\ators" that will intervene in this thesis.The true system G0. The true system is the proess we want toontrol. It is assumed to be Single Input Single Output (SISO), LinearTime Invariant (LTI) and �nite dimensional.The unertainty region. The unertainty region is dedued from aPE identi�ation proedure on the true system. This is alled D if themodel struture is assumed unbiased and L if the model struture islinearly parametrized and possibly biased. The unertainty region is aset of systems that ontains the true system at a ertain probabilitylevel.The model Gmod. The model Gmod is the model hosen for ontroldesign. This model is generally the identi�ed model, enter of the un-ertainty region D (or L). However, this is not a requirement: Gmodmay be given.The ontroller C. The ontroller C is the ontroller designed fromGmod that we want to apply to the unknown true system. In orderto apply C to G0 with on�dene, we need to verify if the ontrollerC stabilizes and ahieves suÆient performane with all plants in theunertainty region D (or L) ontaining the true system G0.1.5 General outlineThis thesis is organized as follows:Chapter 2: Unertainty region dedued from PE identi�ationwith unbiased model strutures. This hapter realls the generalresults of PE identi�ation with unbiased model strutures and presentsthe proedure that allows one to design unertainty sets D using a PEidenti�ation proedure with an unbiased model struture.



Introdution 9Chapter 3: A measure of robust stability for the unertaintyregion D. This hapter introdues the worst ase �-gap, gives an LMIproedure to ompute it and shows why this measure an be onsideredas a robust stability measure of D.Chapter 4: A neessary and suÆient robust stability onditionfor D. This hapter presents the neessary and suÆient ondition forthe stabilization of all plants in D by a given ontroller.Chapter 5: Worst ase performane in D. This hapter de�nesthe notion of worst ase performane ahieved by a given ontrollerover all the plants in the unertainty region D and gives the LMI-basedoptimization problem that omputes it exatly.Chapter 6: Pratial simulation examples. In this hapter, ourmethodology is applied to two realisti simulation examples: a exibletransmission system and a ferrosilion prodution proess.Chapter 7: Frequeny domain image of a set of linearly parametrizedtransfer funtions. In this hapter, we analyze the image of the un-ertainty region D in the Nyquist plane in the ase where the modelstruture is hosen linearly parametrized.Chapter 8: Extension to biased model strutures using stohas-ti embedding. This hapter presents the stohasti embedding as-sumptions and gives the proedure to design the unertainty region Lin open-loop and in losed-loop.Chapter 9: Robustness analysis of L. In this hapter, we givethe robust stability and robust performane analysis tools for the uner-tainty region L.Chapter 10: Conlusions. This hapter onludes this thesis andproposes some possible further researh topis.



10 Introdution



Chapter 2Unertainty region deduedfrom Predition ErrorIdenti�ation with unbiasedmodel strutureAs said in the previous hapter, this work presents a framework thatonnets Predition Error (PE) identi�ation and Robust Control The-ory. For this purpose, in this hapter, it is shown that PE identi�ationwith unbiased model struture allows one to design an unertainty re-gion ontaining the true system at a ertain probability level, withoutany further assumptions.Predition error identi�ation delivers an estimated model for thetrue plant G0. If the parametri struture for the model is suÆientlyomplex to represent the true system, then this model is asymptotiallyunbiased, and the ovariane matrix of the parameter estimates allowsone to onstrut a parametri unertainty region U ontaining the pa-rameters of the true system G0 at a ertain probability level that wean �x at, say, 95 %. The unertainty region U in the parameter spaede�nes an equivalent unertainty region D in the spae of transfer fun-tions with the identi�ed model as its enter. This unertainty region Dis thus de�ned as a set of parametrized transfer funtions, whose param-eter vetor is onstrained to lie in an ellipsoidal region in the parameterspae. 11



12 Unertainty region dedued from PE identi�ation...Chapter outline. In Setion 2.1, we �rst reall the notion of unbiasedmodel struture and the results of PE identi�ation with suh modelstruture. In Setion 2.2, we go through the di�erent types of identi�-ation (open-loop, losed-loop, Model Error Model approah, ...) andshow the proedure to design an unertainty region with eah of thesetypes. In Setion 2.3, the general struture of the unertainty regionsdelivered by PE identi�ation is presented.2.1 PE identi�ation with unbiased model stru-tureIn this setion, we present the results related to PE identi�ation withunbiased model struture. More details an be e.g. found in [63℄. Beforeproeeding to this, we �rst reall the lassial results of PE identi�ationwhatever model struture we hoose to perform this identi�ation.2.1.1 General results of PE identi�ationPE identi�ation onsists of seleting a parametrized model of an un-known system P0 in a ertain model struture using time-domain dataolleted on this system P0. The rule by whih this seletion is performedusing the data, is a predition error riterion i.e. the minimization ofthe errors between the outputs that are predited using the parametrizedmodel and the atual outputs olleted on the system.The system P0 we want to identify an e.g. be a real-life plant ora losed-loop transfer funtion desribing a loop ontaing the real-lifeplant. In the sequel, we will always onsider systems P0 having thefollowing properties.Assumption 2.1 The system P0 that we want to identify is stable,single input single output (SISO), �nite dimensional and linear time-invariant (LTI), with a disrete-time rational input-output transfer fun-tion P0(z): y(t) = P0(z)u(t) + v(t); (2.1)where u(t) is the input signal, y(t) the output signal and v(t) is an ad-ditive noise that is assumed to be generated by a white noise e(t) �lteredby a disrete-time rational transfer funtion �H0(z):v(t) = �H0(z)e(t):



Unertainty region dedued from PE identi�ation... 13The noise v(t) orrupting the output y(t) is thus assumed to be the real-ization of a zero mean stohasti proess.In order to �nd a model for the system P0, we need1. input and output signals olleted on the system P02. a model strutureM for P0 from whih we will selet a model forP0 using the predition error riterion and the olleted data.3. a model struture for �H0 from whih we will selet a model for �H0using the same predition error riterion and the same data.In order to ollet data on P0, we apply the following proedure:De�nition 2.1 (data olleted on P0) Let us onsider the system P0satisfying Assumption 2.1. We apply a known sequene UN = fu(t)jt =1:::Ng of N input data to P0. This input sequene is assumed persistentlyexiting (see [63℄). We ollet the orresponding noisy output sequeneYN = fy(t)jt = 1:::Ng generated by (2.1).A model struture is a set of parametrized transfer funtions. Let usde�ne the model struture for P0 as follows:M = fP (�) j � 2 Rk�1g; (2.2)The vetor � is alled the parameter vetor. As we will never use themodel of �H0, we will not de�ne the model struture for �H0 formally.However, we must always keep in mind that a PE identi�ation proe-dure pertains to the identi�ation of both a model for P0 and a modelof �H0. Let us now summarize the general results of PE identi�ation inthe following proposition.Proposition 2.1 ([63℄) Let us onsider the system P0 satisfying As-sumption 2.1 and the sequenes UN and YN olleted on P0 as shownin De�nition 2.1. Let us also onsider a model struture M for P0 asde�ned in (2.2). A PE identi�ation proedure with UN , YN and M de-livers an identi�ed parameter vetor �̂ de�ning a model P (�̂) 2M. Theidenti�ed parameter vetor �̂ is the parameter vetor that minimizes thesum of the square of the predited errors i.e. the di�erenes between the



14 Unertainty region dedued from PE identi�ation...predited outputs ŷ(t; �) 1 and the atual outputs y(t):�̂ �= arg min� NXt=1(ŷ(t; �)� y(t))2 (2.3)Moreover, �̂ is asymptotially a random vetor with gaussian distribu-tion, mean �� and ovariane C:�̂ � AsN (��; C) (2.4)where �� 2 Rk�1 is an unknown parameter vetor and C 2 Rk�k isan unknown symmetri positive de�nite matrix. Besides an identi�edparameter vetor �̂, the PE identi�ation proedure also delivers an es-timate P� of the ovariane matrix C of �̂.2.1.2 PE identi�ation with unbiased model struturePE identi�ation with unbiased model struture is the partiular ase ofPE identi�ation where the model struture for P0 is hosen unbiased.A model struture M is said unbiased if the system P0 lies inM:De�nition 2.2 (Unbiased model struture for P0) Let us onsidera system P0 satisfying Assumption 2.1 and a model struture for P0 asde�ned in (2.2). The model struture M is said unbiased for P0 if thereexists a parameter vetor �0 2 Rk�1 suh thatP0 = P (�0) 2MDe�nition 2.2 and Proposition 2.1 show that a PE identi�ation proe-dure with an unbiased model struture delivers a full order model of thetrue system.When an unbiased model struture is used, the only error you anobtain on the estimation of P0 is the ovariane error due to the (zeromean) noise v(t) orrupting the output of P0. The mean of the estimatedparameter vetor �̂ is onsequently the true parameter vetor �0. Thisis summarized in the following proposition.1If we de�ne the model struture for �H0 as M �H = f �H(�) j � 2 Rk�1g, then thepredited outputs ŷ(t; �) is equal to �H�1(�)P (�)u(t) + (1�H�1(�))y(t).



Unertainty region dedued from PE identi�ation... 15Proposition 2.2 ([63℄) Let us onsider that the PE identi�ation pro-edure desribed in Proposition 2.1 is performed with an unbiased modelstruture M for P0 = P (�0) as de�ned in De�nition 2.2 2. Then, theidenti�ed parameter vetor �̂ de�nes an unbiased model P (�̂) 2 M andhas the property of being asymptotially a random vetor with gaussiandistribution, mean �0 and ovariane C:�̂ � AsN (�0; C) (2.5)where C 2 Rk�k is an unknown symmetri positive de�nite matrix.As for general model strutures, the PE identi�ation proedure withunbiased model struture also delivers an estimate P� of the ovarianematrix C of �̂.Although the Gaussian distribution property of the identi�ed param-eter vetor is an asymptoti property (i.e. a property obtained whenN ! 1), we will use this property in the sequel for a �nite but suf-�iently large number N of data. This widespread approximation inStatistis Theory has been proved aurate in [63℄. Using this approx-imation, the results presented in Proposition 2.2 allows one to de�neon�dene ellipsoids entered at the identi�ed parameter vetor �̂ andontaining the unknown parameter vetor with a ertain probabilitylevel.Proposition 2.3 ([63℄) Let us onsider the system P0 = P (�0) satisfy-ing Assumption 2.1. Let us also onsider the identi�ed parameter vetor�̂ and the estimate P� of the ovariane matrix of �̂ as delivered by aPE identi�ation proedure performed on P0 using a suÆiently largenumber N of input-output data and an unbiased model struture M (seeProposition 2.2). We have then that the ellipsoid U of size � i.e.U = f� j (� � �̂)TP�1� (� � �̂) < �g (2.6)ontains the true parameter vetor �0 with a probability �(k; �):�(k; �) = Pr(�0 2 U) = Pr(�2(k) < �);where �2(k) is the hi-square probability density funtion with k degreesof freedom.2The model struture for �H0 is also assumed unbiased. However, it is not arequirement in the ase where the model strutures for P0 and H0 are independentlyparametrized and the signals u(t) and v(t) are not orrelated.



16 Unertainty region dedued from PE identi�ation...Proof. This proposition is a diret onsequene of the fat that N hasbeen hosen suÆiently large and of Proposition 2.2. �Remarks.� The use of the hi-square probability distribution with k degreesof freedom to de�ne the probability density linked to U is infat an approximation. Indeed, sine P� is only an estimate ofthe ovariane matrix C obtained with N experimental data, theprobability density funtion linked to U is a funtion of the F-distribution F (k;N � k) : the probability of the presene of �0 inU is Pr(F (k;N � k) < �=k). Nevertheless, sine N will generallybe large, we have that Pr(F (k;N � k) < �=k) � Pr(�2(k) < �).� The probability level �(k; �) an be hosen by the designer.� If you hoose a probability level �(k; �) = 0:95, it atually meansthat we have a probability of 95 % that the realisation of the noisev(t) in the onsidered experiment has generated a ovariane erroron the estimate �̂ suh that the true parameter vetor �0 lies inthe on�dene ellipsoid U .2.1.3 PE identi�ation with unbiased ARX model stru-turesIn the previous subsetion, we have briey presented the general resultsof PE identi�ation with unbiased model strutures. These results aresummarized in Proposition 2.2. In order to illustrate these results, wewill present, in this subsetion, the mathematial details of a PE iden-ti�ation proedure with unbiased model struture when the system P0has an ARX struture. A system P0 is said to have an ARX strutureif the relation between its input u(t) and its output y(t) is given byA(�1;0)y(t) = B(�2;0)u(t) + e(t): (2.7)The vetors �1;0 2 Rna�1 and �2;0 2 Rnb�1 are unknown parametervetors. The signal e(t) is a white noise of variane �2. B(�2;0) is apolynomial in z�1 with a ertain delay that is here assumed equal to 1:B(�2;0) = � z�1 z�2 ::: z�nb � �2;0;and A(�1;0) is a moni polynomial in z�1 given by



Unertainty region dedued from PE identi�ation... 17A(�1;0) = 1 + � z�1 z�2 ::: z�na � �1;0:In order to perform a PE identi�ation proedure with unbiasedmodel struture for the system P0 as de�ned in (2.7), let us measureN input data u(t) and the orresponding N output data y(t) generatedby (2.7) and let us de�ne an unbiased model struture as well for thesystem P0 = B(�2;0)=A(�1;0) as for the noise model �H0 = 1=A(�1;0):MARX = �P (�) = B(�2)A(�1) and �H(�) = 1A(�1) j � = � �1�2 � 2 R(na+nb)�1�(2.8)The identi�ation of a model fromMARX is equivalent to the iden-ti�ation of a parameter vetor �̂ using the riterion presented in (2.3).In order to proeed to the determination of �̂, let us �rst introduethe following notations about the atual outputs y(t) and the preditedoutputs ŷ(t; �) that are both used in (2.3):y(t) = �(t) �0z }| {� �1;0�2;0 �+e(t) (2.9)Yz }| {0BB� y(1)y(2):y(N) 1CCA = �z }| {0BB� �(1)�(2):�(N) 1CCA �0 + Ez }| {0BB� e(1)e(2):e(N) 1CCA; (2.10)where �(t) = � �y(t� 1) ::: �y(t� na) u(t� 1) ::: u(t� nb) � :The predited output ŷ(t; �) for a system inMARX is given by ŷ(t; �) =�(t)� [63℄. As for the atuals outputs, let us onstrut a vetor with theN predited outputs: Ŷ (�)z }| {0BB� ŷ(1; �)ŷ(2; �):ŷ(N; �) 1CCA = �� (2.11)



18 Unertainty region dedued from PE identi�ation...We are now able to �nd the estimate �̂ that minimizes the predi-tion error riterion presented in (2.3). Indeed, using expressions (2.10)and (2.11), we an rewrite that riterion as follows:�̂ = arg min� [(�� � Y )T (�� � Y )℄:It yields: �̂ = (�T�)�1�TY = QY (2.12)Let us now analyze the mean and the ovariane of the estimate �̂.The mathematial expetation E �̂ of �̂ an be omputed as follows:E �̂ = E [(�T�)�1�T Yz }| {(��0 +E)℄= �0 + (�T�)�1�TE(E)= �0 (2.13)We obtain the result of Proposition 2.2 that tells us that the mean ofthe estimate �̂ is equal to �0 in the ase of unbiased model strutures.Let us now ompute the ovariane matrix C of �̂:C = E [(�̂ � �0)(�̂ � �0)T ℄ = E [(QE)(QE)T ℄= �2QQT (2.14)The matrix C is unknown sine the variane �2 of the white noise e(t)is unknown. However, we an obtain an estimate �̂2 of �2 by using amaximum likelihood tehnique [63℄. As a onsequene, we also obtainan estimate P� of C: P� = �̂2QQT (2.15)Remark. In this subsetion, we have analyzed the ase of ARX modelstrutures. It is to be noted that, if the hosen model struture is notlinear in � (suh as in the ARX model struture), the determination of�̂ and of P� require numerial optimization routines (see e.g. [63℄).



Unertainty region dedued from PE identi�ation... 192.2 Design of unertainty regions using PE iden-ti�ationIn the previous setion, we have realled the important results relatedto PE identi�ation with unbiased model struture. In this setion, wewill show that we an design an unertainty region ontaining the real-life plant G0, the so-alled true system G0 using a PE identi�ationproedure with unbiased model struture, and this without adding anyfurther assumptions on the true system G0 than the lassial assump-tions required by PE identi�ation. We will onsider di�erent types ofPE identi�ation, namely:� open-loop identi�ation [63℄,� model error model identi�ation [62, 64, 43, 42℄,� diret losed-loop identi�ation [78℄,� indiret losed-loop identi�ation [78℄,� Dual-Youla losed-loop identi�ation [52, 51, 75, 27℄.Open-loop identi�ation is the lassial way to perform identi�ation.However, in many industrial appliations, due to unstable behaviour ofthe plant, experimental data an only be obtained in losed loop anda losed-loop identi�ation must be performed. Moreover, the reentresults on identi�ation for ontrol have promoted the use of losed-loopidenti�ation for produing models that are better suited for ontroldesign (see e.g. [38, 39℄). The properties of the di�erent types of losed-loop identi�ation are ompared in e.g. [28℄. The model error modelapproah has been introdued by L. Ljung in order to validate an a-priori given model Gmod and onsists in the identi�ation of a model forthe di�erene between the true system and the model Gmod. Open-loopand losed-loop identi�ation an be onsidered for this approah.We will show that all these types of identi�ation lead to unertaintyregions that have the same general struture. Before proeeding to this,we will �rst present the assumptions we made about the true systemG0. These assumptions are the lassial assumptions required by PEidenti�ation with unbiased model struture.



20 Unertainty region dedued from PE identi�ation...2.2.1 Assumptions on the true system G0In the sequel, we will assume that the true system G0 is SISO andLTI. Moreover, we assume that G0 an be desribed by a disrete-timerational transfer funtion G0(z) having the following general formG0(z) = G(z; �0) = z�d(b0 + b1z�1 + :::+ bmz�m)1 + a1z�1 + :::+ anz�n = Z2(z)�01 + Z1(z)�0 ;(2.16)where� d is the delay;� �T0 = [a1 ::: an b0 ::: bm℄ 2 Rq�1; q �= (n+m+ 1);� Z1(z) = [z�1 z�2 ::: z�n 0 ::: 0℄ is a row vetor of size q;� Z2(z) = z�d [0 ::: 0 1 z�1 z�2 ::: z�m℄ is a row vetor of size q.We will further assume that the input-output relation for G0 is given byy(t) = G0u(t) + v(t); (2.17)where v(t) is additive noise modelled by v(t) = H0(z)e(t). The transferfuntion H0(z) is a disrete-time rational transfer funtion and e(t) is awhite noise of variane �2.These assumptions are equivalent to the assumptions we made aboutthe system P0 in the previous setion. The only di�erene is that we donot require here that the true system G0 is stable. Indeed, this stabilityis not needed for the losed-loop identi�ation proedures. However, thestability of G0 is required in order to perform an open-loop identi�ationor an identi�ation using the model error model approah in open-loop.2.2.2 Open-loop PE identi�ationLet us onsider the true system G0 presented in Setion 2.2.1. Here, wefurther assume that G0 is stable. The true system G0 satis�es there-fore Assumptions 2.1, and we may therefore perform a PE identi�ationwith unbiased model struture with this true system. Using (2.16), anunbiased model struture for G0 is given byMol = �G(�) j G(�) = Z2�1 + Z1�� ; (2.18)



Unertainty region dedued from PE identi�ation... 21where � 2 Rq�1. If we know ollet N input data u(t) and outputdata y(t) on the true system G0, we have all the elements to performthe identi�ation. As stated in Proposition 2.2, this identi�ation yieldsa model G(�̂) 2 Mol and an estimate of the ovariane matrix P� of�̂. Using now Proposition 2.3, the true parameter vetor �0 lies withprobability �(q; �) in the ellipsoidal unertainty regionUol = f� j (� � �̂)TP�1� (� � �̂) < �g (2.19)This parametri unertainty region Uol de�nes a orresponding uner-tainty region in the spae of transfer funtions whih we denote Dol:Dol = �G(�) j G(�) = Z2�1 + Z1� and � 2 Uol� (2.20)Properties of Dol.G0 2 Dol with probability �(q; �)We have thus de�ned an unertainty region Dol entered at the iden-ti�ed model G(�̂) and ontaining the true sytem G0 with probability�(q; �) (e.g. � = 0:95).2.2.3 Model Error Model ApproahIn this setion, we will show that we an also obtain an unertainty re-gion ontaining the true system at a ertain probability level using theModel Error Model (MEM) approah. This approah was introduedby Lennart Ljung in [62℄ for the open-loop ase and was extended to thelosed-loop ase in [43℄. We will here only onsider the open-loop asein order to remain onise. However, we an also dedue an unertaintyregion from MEM in losed-loop as proved in [43, 42℄. In the MEMapproah, we onsider a stable true system G0 satisfying the assump-tions presented in Setion 2.2.1 and an a-priori given model Gmod forthis true system3. This approah onsists of identifying a model for theerror between the given model Gmod and the true system G0. A modelfor G0 is then dedued by adding Gmod to the identi�ed \error model".Just as for the open-loop identiation ase presented in the previoussubsetion, we ollet on the true system G0 two sequenes UN and YN3This model Gmod is typially the model we want to use for ontrol design.



22 Unertainty region dedued from PE identi�ation...ontaining N inputs u(t) and the orresponding outputs y(t), respe-tively. Using these data, we ompute the N residuals "(t):"(t) = y(t)�Gmodu(t): (2.21)We have then the following relation between the inputs u(t) and theresiduals "(t): "(t) = ÆG0z }| {(G0 �Gmod)u(t) +H0e(t) (2.22)As the system ÆG0 satis�es Assumptions 2.1, we an perform a PEidenti�ation with unbiased model struture for ÆG0. An unbiased modelstruture for ÆG0 is a funtion of the given model Gmod. Let us thereforedenote it in the following generi form:Mmem = � ~G(�) j ~G(�) = Z3�1 + Z4�� ; (2.23)where we have that � is a real vetor of size, say, l and that Z3(z)and Z4(z) are row vetors of size l onstruted in the same way as Z1and Z2 in (2.16) and therefore ontaining only delays and zeros. AsMmem is an unbiased model struture for ÆG0, there exists a vetor�0 suh that ÆG0 = ~G(�0) 2 Mmem. As stated in Proposition 2.2,a PE identi�ation proedure with UN , EN = f"(t)jt = 1:::Ng andMmem yields an unbiased model ~G(�̂) of ÆG0 and an estimate P� of theovariane matrix of �̂. Using now Proposition 2.3, the true parametervetor �0 lies with probability �(l; �) in the ellipsoidal unertainty regionUmem = f� j (� � �̂)TP�1� (� � �̂) < �g (2.24)From this set Umem, we an dedue the set of orresponding plants G(�)de�ned as:Dmem = nG(�) j G(�) = Gmod + ~G(�) and � 2 Umemo (2.25)The notation G(�) used in (2.25) denotes the rational transfer funtionmodel whose oeÆients are uniquely determined from � by the mappingG(�) = Gmod+ ~G(�). The nominal model for the true system G0 derivedfrom ~G(�̂) is G(�̂). It is important to note that, using the expressionof ~G(�) in (2.23), the unertainty region Dmem an also be rewritten asfollows:



Unertainty region dedued from PE identi�ation... 23Dmem = �G(�) j G(�) = Gmod + Z5�1 + Z6� and � 2 Umem� (2.26)with Z5 = Z3 + Z4Gmod and Z6 = Z4Properties of Umem and Dmem.�0 2 Umem with probability �(l; �)G0 = G(�0) 2 Dmem with probability �(l; �)Just as was done for open-loop identi�ation, we have thus de�ned anunertainty region Dmem that is entered at the modelG(�̂) derived fromthe identi�ed ~G(�̂) and that ontains the true system G0 at a ertainprobability level.2.2.4 Closed-loop identi�ationLet us onsider again the true system G0 presented in Setion 2.2.1. Inorder to perform the identi�ation in losed-loop, we onnet the truesystem with a stabilizing ontroller K as shown in Figure 2.1.
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Figure 2.1: Closed-loop onnetion of G0 and the ontroller KUsing Figure 2.1, we an write the following relations between thesignals present in the losed loop [K G0℄:� y(t)u(t) � = T (G0;K)z }| { G0K1+G0K G01+G0KK1+G0K 11+G0K !� r1(t)r2(t) �+� 11+G0K�K1+G0K � v(t) (2.27)



24 Unertainty region dedued from PE identi�ation...y(t) = G0u(t) + v(t) (2.28)Di�erent types of PE identi�ation an be performed using dataolleted on the losed loop [K G0℄. We will here distinguish diret,indiret and Dual-Youla losed-loop identi�ations and show that un-ertainty regions an be dedued from these three types of losed-loopidenti�ation.2.2.4.1 Diret losed-loop identi�ationThe objetive of diret losed-loop identi�ation is to identify a model ofthe true system using input signals u(t) and output signals y(t) olletedon the losed loop [K G0℄. We will therefore apply a sequene of Nsignals r1(t) (or r2(t)) to the losed-loop and ollet the orrespondingsequenes of data UN and YN :UN = fu(t)jt = 1:::Ng YN = fy(t)jt = 1:::NgThe proedure of identi�ation then follows the same proedure as foropen-loop identi�ation4. The unertainty region dedued from diretlosed-loop identi�ation has therefore the same form as the unertaintyregion Dol given in (2.20).2.2.4.2 Indiret losed-loop identi�ationThe objetive of indiret losed-loop identi�ation is to identify a modelof one of the four losed-loop transfer funtions desribing the loop[K G0℄. These four \true" losed-loop transfer funtions are the en-tries of the matrix T (G0;K) de�ned in (2.27) i.e.T 10 = G0K1+G0K T 20 = G01+G0K T 30 = K1+G0K T 40 = 11+G0K (2.29)The model for G0 is then omputed from the estimate of any one ofthese four transfer funtions by inversion of the mapping (2.29), usingknowledge of the ontroller K. The seletion of one of those trans-fer funtions for identi�ation is linked to the available signals and thestruture of the ontroller K. Indeed, it is proved in [21℄ that the pres-ene of unstable (or unit-irle) poles or zeros in K imposes restritions4It is nevertheless to be noted that an unbiased model struture for the noisemodel is here required.



Unertainty region dedued from PE identi�ation... 25on the subset of these transfer funtions that an be identi�ed.In the sequel, we show how we an onstrut an unertainty regionDil ontaining the true system in the ase where the �rst losed-looptransfer funtion T 10 is estimated. An unertainty region Dil an bederived similarly for the other ases (see e.g. [13℄ for the identi�ationof T 30 ).Let us therefore apply a sequene of N data r1(t) to the losed-loop[K G0℄ and ollet the orresponding sequene of data y(t). We havethe following relations between r1(t) and y(t):y(t) = T 10z }| {G0K1 +G0K r1(t) + 11 +G0Kv(t) (2.30)Sine the transfer funtion T 10 satis�es Assumptions 2.1, the N datar1(t) and y(t) an be used to identify a full-order model for T 10 . For thispurpose, we need to de�ne an unbiased model struture for T 10 . Sinethe struture of T 10 is a funtion of the ontroller K, let us de�ne it inthe following generi wayMil = �T (�) j T (�) = Z7�1 + Z8�� ; (2.31)where we have that � is a real vetor of size, say, f and that Z3(z)and Z4(z) are row vetors of size f onstruted in the same way asZ1 and Z2 in (2.16) and therefore ontaining only delays and zeros.As Mil is an unbiased model struture for T 10 , there exists a vetor�0 suh that T 10 = T (�0) 2 Mil. As stated in Proposition 2.2, a PEidenti�ation proedure with the N data r1(t), theN orresponding datay(t) and Mil yields an unbiased model T (�̂) of T 10 and an estimate P�of the ovariane matrix of �̂. Using now Proposition 2.3, we an de�nean ellipsoidal parametri unertainty region Uil that ontains the trueparameter vetor �0 at the probability level �(f; �):Uil = f� j (� � �̂)TP�1� (� � �̂) < �g (2.32)From this set Uil, we an dedue the set of orresponding open-loopplants G(�) de�ned as:



26 Unertainty region dedued from PE identi�ation...Dil = �G(�) j G(�) = T (�)K(1� T (�)) and � 2 Uil� (2.33)The notation G(�) used in (2.33) denotes the rational transfer funtionmodel whose oeÆients are uniquely determined from � by the mappingG(�) = T (�)K(1� T (�)) : (2.34)The nominal open-loop model derived from T (�̂) is G(�̂). It is importantto note that, using the expression of T (�) in (2.31), the unertaintyregion Dil an also be rewritten as follows:Dil = �G(�) j G(�) = Z9�1 + Z10� and � 2 Uil� (2.35)with Z9 = Z7=K and Z10 = Z8 � Z7Properties of Uil and Dil.�0 2 Uil with probability �(f; �)G0 = G(�0) 2 Dil with probability �(f; �)We have thus de�ned an unertainty region Dil that is entered at theopen-loop model G(�̂) derived from the identifed T (�̂) and that ontainsthe true system G0 at a ertain probability level.2.2.4.3 Dual-Youla losed-loop identi�ationThe so-alled Youla parametrization gives the parametrization of allontrollers stabilizing a plant (see [29℄). For identi�ation purpose, thisresult has been extended to the parametrization of all plants stabilizedby a ontroller [52, 51℄. This result is realled in Proposition 2.4, but be-forehand, we give the following de�nition that is used in Proposition 2.4.De�nition 2.3 ([83℄) Let us onsider a transfer funtion G. The pairfN;Dg is a oprime fatorization of G if



Unertainty region dedued from PE identi�ation... 27� N and D are stable tranfer funtions;� G = ND ;� there exists stable transfer funtions X and Y suh that XN +Y D = 1Proposition 2.4 ([83℄) Let us onsider a plant G having a oprimefatorization fNG;DGg and a ontroller C having a oprime fatoriza-tion fNC ;DCg. Let us also assume that C stabilizes G. Then, the setS of all (LTI and �nite dimensional) plants stabilized by C is given by:S = fGin j Gin = NG +DCRDG �NCR with R 2 RH1gThe parametrization presented in Proposition 2.4 an be appliedto the loop [K G0℄ presented in Figure 2.1. Indeed, onsider a giveninitial system Gx that is stabilized by K. Using Proposition 2.4, thetrue system G0 (also stabilized by K) an be represented in the Youlaparametrization for a stable transfer funtion R0:G0 = Nx +DKR0Dx �NKR0 ; (2.36)where fNx;Dxg and fNK ;DKg are oprime fators of Gx andK, respe-tively 5. The objetive in Dual-Youla losed-loop identi�ation [52, 51℄is to identify the Youla parameter R0 of the true system using data ol-leted on the losed-loop [K G0℄. A model for the true system is thendedued from the identi�ed Youla parameter.In order to perform this identi�ation, a sequene of N data r1(t) isapplied to [K G0℄ and the orresponding data u(t) and y(t) are olleted.Using the signals u(t) and y(t), we an ompute the following auxiliarysignals x(t) and z(t):x(t) = (Dx +KNx)�1(u(t) +Ky(t)) (2.37)z(t) = (DK +GxNK)�1(y(t)�Gxu(t)): (2.38)These auxiliary signals x(t) and z(t) are suh thatz(t) = R0x(t) +H0(DK(1 +KG0))�1v(t): (2.39)5It is to be noted that the transfer funtion R0 depends on the hoie of the pairsfNx; Dxg and fNK ; DKg.



28 Unertainty region dedued from PE identi�ation...Sine R0 satis�es Assumptions 2.1, the sequenes of N data x(t) and ofN data z(t) an therefore be used to identify a full order model of R0.For this purpose, we need to de�ne an unbiased model struture for R0.Sine the struture of R0 is a funtion of the ontroller K and of Gx, letus de�ne it in the following generi way:Mdy = �R(�) j R(�) = Z11�1 + Z12�� ; (2.40)where we have that � is a real vetor of size, say, p and that Z11(z) andZ12(z) are row vetors of size p onstruted in the same way as Z1 andZ2 in (2.16) and therefore ontaining only delays and zeros. As Mdy isan unbiased model struture for R0, there exists a vetor �0 suh thatR0 = R(�0) 2 Mdy. As stated in Proposition 2.2, a PE identi�ationproedure with the N data x(t), the N data z(t) and Mdy yields anunbiased model R(�̂) of R0 and an estimate P� of the ovariane matrixof �̂. Using now Proposition 2.3, we an de�ne an ellipsoidal parametriunertainty region Udy that ontains the true parameter vetor �0 at theprobability level �(p; �):Udy = f� j (� � �̂)TP�1� (� � �̂) < �g (2.41)From this set Udy, we an dedue the set of orresponding open loopplants G(�) de�ned as:Ddy = �G(�) j G(�) = Nx +DKR(�)Dx �NKR(�) and � 2 Udy� (2.42)The nominal open-loop model derived from R(�̂) is G(�̂). It is importantto note that, using the expression of R(�) in (2.40), the unertaintyregion Ddy an also be rewritten as follows:Ddy = �G(�) j G(�) = Gx + Z13�1 + Z14� and � 2 Udy� (2.43)with Z13 = GxZ12 + (DKZ11=Dx) and Z10 = Z12 � (NKZ11=Dx)Properties of Udy and Ddy.�0 2 Udy with probability �(p; �)



Unertainty region dedued from PE identi�ation... 29G0 = G(�0) 2 Ddy with probability �(p; �)We have thus de�ned an unertainty region Ddy that is entered at themodel G(�̂) derived from the identifed Youla parameter R(�̂) and thatontains the true system G0 at a ertain probability level.2.3 General struture of the unertainty regionsdedued from PE identi�ationIn the previous setion, unertainty regions ontaining the true systemhave been obtained as a result of open-loop identi�ation, the modelerror model identi�ation and diret, indiret and Dual-Youla losed-loop identi�ation. These unertainty regions take the form of a set ofparametrized open-loop transfer funtions where the parameter vetorlies in an ellipsoid U . This fat an be summarized in the followingproposition.Proposition 2.5 Consider G0 = G(z; Æ0), the true system presentedin Setion 2.2.1. The unertainty regions D resulting from preditionerror identi�ation, and whih ontain the true system G0 at a presribedprobability level, an all be desribed in the following generi form:D = �G(z; Æ) j G(z; Æ) = e+ ZNÆ1 + ZDÆ and Æ 2 U = fÆ j (Æ � Æ̂)TR(Æ � Æ̂) < 1g�(2.44)where� Æ 2 Rk�1 is a real parameter vetor;� Æ̂ is the parameter estimate resulting from the identi�ation step;� R is a symmetri positive de�nite matrix 2 Rk�k that is propor-tional to the inverse of the ovariane matrix of Æ̂;� ZN (z) and ZD(z) are row vetors of size k of known transfer fun-tions;� e(z) is a known transfer funtion.



30 Unertainty region dedued from PE identi�ation...Proof. This proposition is a diret onsequene of expressions (2.20),(2.26), (2.35), (2.43). �Proposition 2.5 de�nes the unertainty region D. Let us point out thefollowing harateristis of this unertainty region.� The unertainty region D is simply and diretly the result of a PEidenti�ation proedure with unbiased model struture performedon the true system. A PE identi�ation proedure with unbiasedmodel struture leading to an unertainty region will be alled avalidation experiment in the sequel.� The true system G0 lies in D at a ertain probability level that is�xed by the designer.� The unertainty region D is entered at G(z; Æ̂) whih is a model ofthe true system G0. This model is either the identi�ed model (inopen-loop identi�ation) or the model of the true system G0 thatis derived from the identi�ed transfer funtion (in the other asesof identi�ation). This model G(z; Æ̂) is generally hosen as modelfor ontrol design. However, it is of ourse not a requirement.� Di�erent identi�ation experiments (i.e. open-loop or losed-loopidenti�ation, di�erent measured data, ...) lead to di�erent identi-�ed parameter vetors, di�erent ovariane matries, and thereforealso di�erent sets of systems D(i).It has been noted in Chapter 1 that other tehniques (i.e. set mem-bership identi�ation and the model invalidation onept) have been de-veloped to estimate an unertainty region ontaining the true systemunder a variety of assumptions that are often a great distane from thelassial assumptions used in PE identi�ation. These tehniques generi-ally aim at produing lassial frequeny domain linear frational uner-tainty regions used in mainstream robust ontrol theory suh as additiveunertainty regions (see e.g. [70, 56, 66, 49℄) or oprime fator uner-tainty regions (see e.g. [16℄). The reason for produing suh lassialunertainty regions is that a large number of robustness tools have beendeveloped for these partiular types of unertainty regions [92, 91, 86℄.Our unertainty region D is quite di�erent from these standard uner-tainty regions. In order to establish these di�erenes, let us ompare theunertainty region D with e.g. the additive unertainty region de�nedbelow.



Unertainty region dedued from PE identi�ation... 31De�nition 2.4 (additive unertainty region) Let us onsider a sta-ble model Gmod and a stable transfer funtion �(z). An additive uner-tainty region of size � is then de�ned as follows:Ga = fGin(z) j Gin(z) = Gmod(z)+�(z) with k �(z) k1< �g: (2.45)By omparing (2.44) and (2.45), several di�erenes an be noted. How-ever, the major di�erene is that the unertainty part Æ in D is a realparameter vetor and not a transfer funtion as in the additive uner-tainty region. Our unertainty region D is indeed a parametri uner-tainty region and not a frequeny domain unertainty region.Due to the huge developments ahieved in robust ontrol theory inthe last years, a lot of new robustness results are now also available forunertainty sets with a parametri (i.e. real) unertainty part (see e.g.[34, 35, 53, 72, 7, 4, 5℄). Some of these results will help us to developrobustness tools adapted to the unertainty region D even though ma-nipulations of D and new results will also be required to obtain theserobustness tools.We have developed a robust stability analyzis tool (see Chapter 4)as well as a robust performane analysis tool (see Chapter 5) for D.The robust analysis tool is a neessary and suÆient ondition for thestabilization of all plants in D by a given ontroller. This onditionis therefore a ondition for the stabilization of the true system G0 bythis ontroller. The robust performane analysis tool is an LMI (LinearMatrix Inequality) proedure omputing exatly the worst ase perfor-mane ahieved by a given ontroller over all plants in D. This worstase performane is therefore a lower bound of the performane ahievedby the onsidered ontroller with the true system G0.We have also developed another type of result for the unertaintyregion D that no more pertains to the validation of one partiular on-troller, but pertains to determining what quality an unertainty regionD must possess for it to be tuned for robustly stable ontroller design.Indeed, in Chapter 3, we introdue a measure of size of the unertaintyset D, the worst ase �-gap, that is diretly onneted to the size of theset of model-based ontrollers that are guaranteed by the �-gap theory[84℄6 to stabilize all plants in D. More partiulary, the smaller is this6This ontroller set is not guaranteed to ontain all stabilizing ontrollers.



32 Unertainty region dedued from PE identi�ation...measure, the larger is the set of robustly stabilizing ontrollers. Thisrobust stability measure an thus be used as a tool to assess the qual-ity (with respet to robustly stable ontroller design) of an unertaintyregion D obtained by a validation experiment (i.e. a PE identi�ationexperiment). This robust stability measure also draws guidelines for thedesign of the validation experiment: a validation experiment should al-ways aim at produing an unertainty region D with a small worst ase�-gap sine it implies that the obtained unertainty region will have alarge set of robustly stabilizing ontrollers.2.4 ConlusionsIn this hapter, we have shown that a validation experiment (i.e. aPE identi�ation proedure with unbiased model struture) allows oneto design an unertainty region ontaining the true system at a er-tain probability level, and this without adding any further assumptions.This unertainty region takes the form of a set of parametrized transferfuntions whose parameter vetor is onstrained to lie in an ellipsoid.



Chapter 3A measure of robuststability for the unertaintyregion DIn the previous hapter, we have presented the design of an unertaintyregion using a PE identi�ation proedure performed on the true systemusing an unbiased model struture. We all this proedure a validationexperiment. The unertainty region D dedued from suh validation ex-periment takes the form of a set of transfer funtion parametrized by areal vetor whih is onstrained to lie in an ellipsoid. The unertaintyregion D has the property to ontain the true system G0 at a probabilitylevel that an be �xed by the designer. The general struture of D isgiven in (2.44). This expression of D does not inform us about the sizeof the set of ontrollers that robustly stabilize all plants in D. In otherwords, by observing D, we an not say if this ontroller set is large orsmall. As, in Chapter 4, we will dedue the stabilization of the truesystem by a given ontroller by the veri�ation of the stabilization ofall plants in D by the onsidered ontroller, this lak of information is areal drawbak. That is why, in this hapter, we introdue a measure ofrobust stability for the unertainty region D that is diretly onnetedto the size of a set of model-based ontrollers that are guaranteed torobustly stabilize D (i.e. that stabilize all plants in D).This robust stability measure for D is de�ned as the worst ase (i.e.the largest) �-gap [84, 85℄ between a model Gmod and the plants in D.Here Gmod is the model that will be used for ontrol design. This model33



34 A measure of robust stability for the unertainty region DGmod is generally the enter of the onsidered unertainty region D.However, it is not a requirement: this model an be also a redued ordermodel obtained from this enter or an a-priori given model.Our �rst ontribution is to show that the worst ase �-gap an beomputed frequeny-wise using an LMI-based optimization problem ateah frequeny. Our seond ontribution is to show that the smaller theworst ase �-gap between the model Gmod and all plants in some D, thelarger is the set of Gmod-based ontrollers 1 that are guaranteed by the�-gap theory to robustly stabilize D. The worst ase �-gap is thus anindiator of how well an unertainty set D is tuned for robustly stableontroller design based on the model Gmod (hosen for ontrol design).A too large indiator will therefore inite the designer to rejet the un-ertainty region and to perform a new validation experiment. We alsoshow that the worst ase �-gap an be used as a tool for the seletionof the unertainty region that is best tuned for robust ontrol design, inthe ase where di�erent validation experiments have delivered di�erentunertainty regions D(i). Finally, and it may be the most interestingresult, sine the worst ase �-gap haraterizes what quality an uner-tainty region D (and therefore also the validation experiment that yieldsthis unertainty set) must possess for it to be tuned for robust ontroldesign, our result leads to guidelines for the design of the validation ex-periment. This result may therefore be onsidered as the �rst step inthe diretion of PE identi�ation for robust ontrol.The �-gap metri is thus hosen to haraterize the amount of un-ertainty (i.e. the distane) between the model Gmod and the plants inan unertainty region D. Our approah is thus based on the embeddingof the parametri unertainty region D into a larger unertainty set de-�ned by the �-gap metri. This introdues a onservatism, but allowsus to use the �-gap theory to haraterize the size of the ontroller setthat is guaranteed (by this theory) to robustly stabilize D. It is obviousthat similar results ould have been dedued from the embedding of Dinto e.g. an additive or a multipliative unertainty region. However,the hoie of the �-gap metri is motivated by the fat that this metrigenerally leads to the least onservative robust stability results [86℄.1The Gmod-based ontrollers are the ontrollers designed from Gmod



A measure of robust stability for the unertainty region D 35Chapter outline. We �rst present, in Setion 3.1, the robust stabil-ity results linked to the �-gap metri. In Setion 3.2, we then de�nethe worst �-gap between a model and an unertainty region D and aproedure to ompute it exatly is given in Setion 3.3. In Setion 3.4,the worst ase �-gap is then related to the size of the set of model-basedontrollers that are guaranteed by the �-gap theory to robustly stabilizean unertainty region D. After having given di�erent possible uses ofthe worst ase �-gap , we �nish this hapter by presenting a simulationexample.3.1 The �-gap metri and its robust stabilitypropertiesAs said in the introdution of this hapter, the robust stability mea-sure for D is the worst-ase �-gap between the model Gmod and theunertainty set D. The worst-ase �-gap is an extension of the �-gap,introdued by Vinniombe [84℄, whih is a measure of distane betweentwo transfer funtions. For the sake of ompleteness, we �rst brieyreall the de�nition of the �-gap for salar transfer funtions.3.1.1 The Vinniombe �-gap between two plantsDe�nition 3.1 The gap metri between two transfer funtions G1 andG2, introdued by Vinniombe [84℄ and denoted Æ�, is de�ned asÆ�(G1; G2) = ( max! � �G1(ej!); G2(ej!)� if W (G1; G2) = 01 otherwise (3.1)where� �G1(ej!); G2(ej!)� , jG1(ej!)�G2(ej!)jp1 + jG1(ej!)j2p1 + jG2(ej!)j2 (3.2)and where W (G1; G2) = wno(1 +G�1G2) + �(G2)� ~�(G1).Here G�(ej!) = G(e�j!), �(G) (resp. ~�(G)) denotes the number ofpoles of G in the omplement of the losed (resp. open) unit dis, whilewno(G) denotes the winding number about the origin of G(z) as z fol-lows the unit irle indented into the exterior of the unit dis around



36 A measure of robust stability for the unertainty region Dany unit irle pole and zero of G(z).If the winding number ondition W (G1; G2) = 0 is satis�ed, thenthe �-gap between two plants has a simple frequeny domain interpreta-tion (in the SISO ase). Indeed, the quantity �(G1(ej!); G2(ej!)) is thehordal distane between the projetions of G1(ej!) and G2(ej!) ontothe Riemann sphere of unit diameter with South Pole at the origin ofthe omplex plane [84℄. The distane Æ�(G1; G2) between G1 and G2 istherefore, aording to (3.1), the supremum of these hordal distanesover all frequenies. Observe that 0 6 Æ�(G1; G2) 6 1:3.1.2 The generalized stability margin of a losed loopsystemConsider now a losed loop system made up of the feedbak interonne-tion of a system G and a ontroller C: see Figure 3.1. The losed looptransfer funtion matrix between [r1 r2℄T and [y u℄T an be written asT (G;C) = 0� T11 T12T21 T22 1A = 0� GC1+GC G1+GCC1+GC 11+GC 1A : (3.3)
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Figure 3.1: Closed-loop onnetion of a system G and a ontroller CDe�nition 3.2 The generalized stability margin of the losed loopsystem is de�ned asbGC = 8<: kT (G;C)k�11 if [C G℄ is stable0 otherwise (3.4)



A measure of robust stability for the unertainty region D 37It an be shown [84℄ that an alternative de�nition isbGC =8><>: min! ��G(ej!);� 1C(ej!)� if [C G℄ is stable0 otherwise (3.5)Thus, the generalized stability margin of a losed loop system [C G℄ ismeasured by the least hordal distane between the projetions on theRiemann sphere of G and of the inverse of �C. It is to be noted that,for a given plant G, the generalized stability margin has a maximumbopt(G) (see e.g. [91℄) given bybopt(G) = maxC bGC =q1� k � N M � k2H ; (3.6)where k A kH is the Hankel norm of the operator A (see e.g. [92℄) andfN;Mg is the normalized oprime fatorization of G i.e. the oprimefatorization (see De�nition 2.3) suh that N�N +M�M = 13.1.3 Robust stability and the �-gapThe main interest of the �-gap metri is its use in a range of robuststability results. One of this result relates the size of the set of robustlystabilizing ontrollers of a �-gap unertainty set (i.e. an unertainty setde�ned with the �-gap ) to the size of this unertainty set [84, 85℄.Proposition 3.1 ([84, 85℄) Let us onsider an �-gap unertainty setG� of size � and entered at a model Gmod:G� = fG j Æ�(Gmod; G) � �g:Then, a ontroller C stabilizing Gmod stabilizes all plants in the uner-tainty region G� if and only if it lies in the ontroller set:fC(z) j bGmodC > �gThe size � of a �-gap unertainty set G� is thus diretly onneted tothe size of the set of all ontrollers that robustly stabilize G� . Moreover,the smaller is this size �, the larger is the set of ontrollers that robustlystabilize the unertainty set G� . Let us now present a diret onsequeneof Proposition 3.1 whih relates the size of the set of ontrollers that areguaranteed to stabilize two plants G1 and G2 to Æ�(G1; G2) [84℄.



38 A measure of robust stability for the unertainty region DCorollary 3.1 ([84℄) Let us onsider a nominal plant G1 and a per-turbed plant G2 and denote Æ�(G1; G2) the �-gap between these twoplants. Then, a ontroller C stabilizing G1 also stabilizes G2 if thisontroller lies in the ontroller setf C j bG1;C > Æ�(G1; G2)g3.2 The worst ase �-gap between a model and DThe nie stability properties presented in the previous setion show thatthe Gmod-based ontroller set that is guaranteed (by Proposition 3.1) torobustly stabilize D will be large, if the largest �-gap between Gmod andany plant in D remains small. We all this \largest �-gap" the worstase �-gap ÆWC(Gmod;D) between Gmod and the set D.De�nition 3.3 Consider an unertainty region D having the struturegiven in (2.44) and a model Gmod. The worst ase Vinniombe distaneÆWC(Gmod;D) is given by2 :ÆWC(Gmod;D) = maxGin2D Æ�(Gmod; Gin) (3.7)Another important quantity is now de�ned: the worst ase hordaldistane. This quantity, whose omputation is the result of a onvex op-timization problem involving LMI onstraints as will be shown in Setion3.3, will allow us to give an alternative expression for ÆWC(Gmod;D).De�nition 3.4 At a partiular frequeny !, we de�ne �WC(Gmod(ej!);D)as the maximum hordal distane between Gmod(ej!) and the frequenyresponses of all plants in D at this frequeny:�WC(Gmod(ej!);D) = maxGin2D �(Gmod(ej!); Gin(ej!)) (3.8)This last quantity an now be used to give an alternative expressionof the worst ase Vinniombe distane. This is done in the followinglemma, whih is an extension of a property presented in [85, page 66℄.2Note that, with some abuse, even though it ould happen that the term \supre-mum" should be used instead of \maximum", we will always use the term \maximum"in the sequel.



A measure of robust stability for the unertainty region D 39Lemma 3.1 If W (Gmod; Gin) = 0 for one plant Gin 2 D, then theworst ase Vinniombe distane ÆWC(Gmod;D) de�ned in (3.7) an alsobe expressed in the following way using the worst ase hordal distane:ÆWC(Gmod;D) = max! �WC(Gmod(ej!);D) (3.9)where �WC(Gmod(ej!);D) is de�ned in (3.8).Proof. The winding number ondition may be omitted in (3.9). In-deed, assume there exists one G1 2 D for whih W (Gmod; G1) 6= 0,i.e. Æ�(Gmod; G1) = 1. Sine the ellipsoid U in the expression (2.44)of D is a onneted set, then there always exists a pieewize ontin-uous appliation � of [0 1℄ to plants in D suh that �(0) = Gin and�(1) = G1. As W (Gmod; Gin) = 0 and W (Gmod; G1) 6= 0, there existsa G2 = �(�) 2 D suh that (1 + G�mod(ej!0)G2(ej!0) = 0) and there-fore suh that �(Gmod(ej!0); G2(ej!0)) = 1 for some frequeny !0. So,ÆWC(Gmod;D) = 1 �Remark. If Gmod 2 D, we always have W (Gmod; Gmod) = 0 and there-fore (3.9) is always valid.3.3 Computation of the worst ase hordal dis-tane and worst ase �-gapIn the previous subsetion, we have de�ned the worst ase �-gap be-tween the model Gmod and all plants in an unertainty region D hav-ing the general struture (2.44). Now we give a proedure to omputethis worst ase �-gap ÆWC(Gmod;D). Aording to Lemma 3.1, this isequivalent to �nding a proedure to ompute the worst ase hordal dis-tane �WC(Gmod(ej!);D) de�ned in (3.8), sine ÆWC(Gmod;D) is themaximum over all frequenies of the worst ase hordal distane. Inthe following theorem, we show that the omputation of the worst asehordal distane �WC(Gmod(ej!);D) at a partiular frequeny ! an beformulated as a onvex optimization problem involving Linear MatrixInequality (LMI) onstraints [17℄. An LMI is a matrix inequality ofthe form F (�) �= F0 +Pqi=1 �iFi � 0; where � 2 Rq is the variable, andFi = F Ti 2 Rt�t, i = 0; : : : ; q are given. Several algorithms that havepratial eÆieny have been devised for solving these problems, see[82℄. The LMI problems an be solved using the free ware ode SP [82℄



40 A measure of robust stability for the unertainty region Dand its Matlab/Silab interfae LMITOOL [32℄ or the available ommerialMatlab Toolbox, LMI Control Toolbox [36℄.Theorem 3.1 Consider a model Gmod and an unertainty region Dgiven in (2.44). Then �WC(Gmod(ej!);D) = popt; where opt is theoptimal value of  in the following standard onvex optimization prob-lem involving LMI onstraints evaluated at !:minimize over ; �subjet to � � 0 and� Re(a11) Re(a12)Re(a�12) Re(a22) �� � � R �RÆ̂(�RÆ̂)T Æ̂TRÆ̂ � 1 � < 0 (3.10)where� a11 = (Z�NZN � Z�NxZD � Z�Dx�ZN + Z�Dx�xZD) � (Z�NQZN +Z�DQZD);� a12 = Z�Ne� Z�Nx� Z�Dex� + Z�Dxx� � (Z�NeQ+ Z�DQ);� a22 = ee� � e�x� ex� + xx� � (ee�Q+Q);� Q = 1 + x�x and x = Gmod(ej!):The worst ase �-gap is then obtained asÆWC(Gmod;D) = max! �WC(Gmod(ej!);D)Proof. We prove that the square root of the solution of the LMI opti-mization problem gives the worst ase hordal distane �WC(Gmod(ej!);D)at some frequeny !. The derivation of the worst ase �-gap is a diretonsequene of Lemma 3.1.If we denote the frequeny response of the model Gmod(ej!) by x,and that of any plant G(ej!; Æ) 2 D by y(Æ), then a onvenient way tostate the problem of omputing the worst ase hordal distane at somefrequeny ! is as follows:minimize  suh that �(x; y(Æ))2 <  for all y(Æ) 2 D



A measure of robust stability for the unertainty region D 41The expression �(x; y(Æ))2 <  has to be transformed into an LMIonstraint. This an easily be done as proved in the following expres-sions.  jx� y(Æ)jp1 + jxj2p1 + jy(Æ)j2!2 <  ()x�x+ y(Æ)�y(Æ) � y(Æ)�x� x�y(Æ) � (1 + x�x)(1 + y(Æ)�y(Æ)) < 0()� y(Æ)1 ��� 1� (1 + x�x) �x�x� x�x� (1 + x�x) �� y(Æ)1 � < 0(3.11)By pre-multiplying (3.11) by (1 + ZDÆ)� and post-multiplying thesame expression by (1 + ZDÆ), we obtain:� e+ ZNÆ1 + ZDÆ ��� 1� (1 + x�x) �x�x� x�x� (1 + x�x) �� e+ ZNÆ1 + ZDÆ � < 0(3.12)whih is equivalent with the following onstraint on Æ with variable :� Æ1 ��� a11 a12a�12 a22 �� Æ1 � < 0 (3.13)with a11, a12 and a22 as de�ned in the statement of Theorem (3.1). SineÆ is real, it an be shown that (3.13) is equivalent with (Æ)z }| {� Æ1 �T � Re(a11) Re(a12)Re(a�12) Re(a22) �� Æ1 � < 0 (3.14)This last expression is equivalent to stating that �(Gmod(ej!); G(ej!; Æ))2 < for a partiular Æ 2 U . However, this must be true for all Æ 2 U .Therefore, (3.14) must be true for all Æ suh that:�(Æ)z }| {� Æ1 �T � R �RÆ̂(�RÆ̂)T Æ̂TRÆ̂ � 1 �� Æ1 � < 0 (3.15)



42 A measure of robust stability for the unertainty region Dwhih is equivalent to the statement \Æ 2 U".Let us now reapitulate. Computing �WC(Gmod(ej!);D)2 is equiv-alent to �nding the smallest  suh that  (Æ) < 0 for all Æ for whih�(Æ) < 0. By the S proedure [55, 17℄, this problem is equivalent to �nd-ing the smallest  and a positive salar � suh that  (Æ) � ��(Æ) < 0,for all Æ 2 Rk�1 whih is preisely (3.10). To omplete this proof, notethat the worst ase hordal distane at ! is thus equal to popt whereopt is the optimal value of . �Remark. Our omputation of the worst ase �-gap requires thus theomputation of the worst ase hordal distane over a frequeny grid.3.4 A robust stability measure for DIn the previous setion, the notion of worst ase �-gap between a modelGmod and an unertainty region D has been introdued and a proedurehas been given to ompute this distane. This worst ase �-gap anbe onsidered as a robustness measure of D with respet to robustlystable ontroller design based on the model Gmod. We have indeed thefollowing result.Proposition 3.2 Consider an unertainty region D having the stru-ture given by (2.44) and a model Gmod. All ontrollers C that stabilizeGmod and that lie in the setC(Gmod;D) = fC j bGmod;C > ÆWC(Gmod;D)g (3.16)are guaranteed to stabilize all plants in the unertainty region D. It isto be noted that the stability margin bGmod;C ahievable by a ontrollerC with Gmod is bounded by bopt(Gmod) de�ned in (3.6).Proof. Using the de�nition of the worst ase �-gap given in (3.7), wesee that D is embedded in the unertainty region fGjÆ�(Gmod; G) �ÆWC(Gmod;D)g. This theorem is thus a diret onsequene of Proposi-tion 3.1. �Proposition 3.2 tells us that the worst ase �-gap between the modelGmod and an unertainty set D is a measure of size of the set D that is



A measure of robust stability for the unertainty region D 43diretly onneted to the size of the set C(Gmod;D) of Gmod-based on-trollers that are guaranteed to stabilize all plants in D. Proposition 3.2shows also that the smaller ÆWC(Gmod;D), the larger is this robustly sta-bilizing ontroller set. Thus, the worst ase �-gap is a nie and ompatmeasure of the ability of an unertainty set D to be robustly stabilizedby a large set of ontrollers designed from Gmod and therefore of howwell the unertainty region D is tuned for robustly stable ontroller de-sign based on Gmod.It is to be noted that there may be additional ontrollers outsidethe set C(Gmod;D) that stabilize all models in D. Indeed, aording toProposition 3.1, the set C(Gmod;D) ontains all ontrollers that stabi-lize all systems in the unertainty set fGjÆ�(Gmod; G) � ÆWC(Gmod;D)gthat embeds D. However, the advantage of this desription is that thesize of the set C(Gmod;D) (i.e. ÆWC(Gmod;D)) is only a funtion of Gmodand D. In Chapter 4, a neessary and suÆient ondition will be givenfor the stabilization of all plants in D by a given ontroller. However,this neessary and suÆient ondition may not be used as a measure ofrobust stability for D, as will be shown in the next hapter.3.4.1 Pratial uses of the worst ase �-gapAs said above, the worst ase �-gap is a nie and ompat measure ofhow well the unertainty region D is tuned for robust ontrol design withrespet to Gmod. In order to present pratial uses of this measure, letus onsider the two following situations:1. We have performed one validation experiment leading to one un-ertainty region D. No model is given for ontrol design.2. We have performed di�erent validation experiments leading to dif-ferent unertainty regions D(i) and somebody has given us a modelGmod for ontrol design.First situationIn the �rst situation, a model has to be hosen for ontrol design. Thismodel Gmod is typially hosen equal to the enter G(z; Æ̂) of the un-ertainty region D dedued from the validation experiment. The worstase �-gap ÆWC(G(z; Æ̂);D) an then be used as a tool to \validate the



44 A measure of robust stability for the unertainty region Dvalidation experiment". Indeed, if the worst ase �-gap is small withrespet to the optimal stability margin bopt(G(z; Æ̂)) (see (3.6)), then theset C(G(z; Æ̂);D) of G(z; Æ̂)-based ontrollers that are guaranteed to ro-bustly stabilize D is large and the designer will be therefore generallyinited to keep the unertainty region D: a ontroller an be designedfrom Gmod and the results of the next hapters an be used to validatethe ontroller for stability and performane with respet to the \vali-dated" unertainty region D. On the ontrary, if the worst ase �-gap islarge with respet to the optimal stability margin bopt(G(z; Æ̂)), then theset C(G(z; Æ̂);D) of G(z; Æ̂)-based ontrollers that are guaranteed to ro-bustly stabilize D is small. Therefore, even though the set C(G(z; Æ̂);D)is not guaranteed to ontain all robustly stabilizing ontrollers, the de-signer will be nevertheless generally inited to rejet the unertaintyregion D and to perform a new validation experiment in order to obtaina new unertainty region Dbis with a larger set of stabilizing ontrollers.For this purpose, the designer ould e.g. use the guidelines that will bepresented in Setion 3.4.2.Seond situationIn the seond situation, the worst ase �-gap an be used as a tool toselet one unertainty region among the di�erent unertainty regions ob-tained from the di�erent validation experiments, using a robust stabilityriterion. In order to ompare these unertainty regions, we have indeedthis �rst result:Theorem 3.2 Consider two unertainty regions D(1) and D(2) obtainedfrom two di�erent validation experiments. If we have thatÆWC(Gmod;D(1)) < ÆWC(Gmod;D(2)), then C(Gmod;D(2)) � C(Gmod;D(1)).Theorem 3.2, whih diretly results from Proposition 3.2, gives usguidelines to hoose the unertainty region that is best tuned to ro-bustly stable ontroller design with respet to Gmod. These guidelinesare summarized in the following proposition.Proposition 3.3 Consider t unertainty regions D(i) obtained from tdi�erent validation experiments and a model Gmod. Then the uner-tainty region D� that generates the largest set C(Gmod;D(i)) (i = 1:::t)of robustly stabilizing ontrollers is the unertainty region:D� = argminD(i) ÆWC(Gmod;D(i)) (3.17)



A measure of robust stability for the unertainty region D 45Remarks onerning the seond situation.� The hoie of the model Gmod for the ontrol design is an impor-tant feature. Indeed, we analyze the robustness properties of theunertainty regions D(i) with respet to ontrollers designed fromGmod (and stabilizing it). If the smallest worst ase �-gap betweenGmod and the di�erent D(i) remains \large", then the hosen modelGmod is not appropriate for a ontrol design proedure for G0 be-ause the atual Æ�(Gmod; G0) may be too large. A better modelGmod must then be hosen: for example, the enter of one of theunertainty regions D(i). This important matter will be furtherdisussed in Setion 3.4.3.� As already said earlier, the set C(Gmod;D(i)) ontains all on-trollers that stabilize all systems in the unertainty setfGjÆ�(Gmod; G) � ÆWC(Gmod;D(i))g that embeds D(i). Thus,there may be additional ontrollers outside the set C(Gmod;D(i))that stabilize all models in D(i), in that sense, our analysis isonservative. However, sine Gmod lies typially within all D(i),we essentially introdue the same onservatism for eah D(i) andtherefore our proedure remains valid for the seletion of the bestD(i).3.4.2 Consequenes for the design of the validation ex-perimentIn the previous subsetions, we have shown that the worst ase �-gapbetween the model Gmod and an unertainty region D dedued from anidenti�ation experiment is a good measure to determine if the uner-tainty region D is well tuned for robustly stable ontroller design basedon the model Gmod. Our result therefore gives a meaning to the oneptof identi�ation for robust ontrol: a validation experiment (i.e. an iden-ti�ation experiment) is \tuned for robust ontrol design" if the worstase �-gap for the unertainty set delivered by this validation experi-ment is small, beause it implies that, for that unertainty set, the setC(Gmod;D) of robustly stabilizing ontrollers is large.Our result gives us also guidelines to design the validation experi-ment: we should always aim to design a validation experiment leadingto an identi�ed model Gmod and an unertainty region D suh that theworst ase �-gap between Gmod and D is the smallest possible. In order



46 A measure of robust stability for the unertainty region Dto ahieve this, the unertainty distribution delivered by the validationexperiment has to be small in the frequeny range where the resolutionof the �-gap metri is the largest i.e. around the ut-o� frequeny [86℄.The validation experiment should therefore be designed suh that theinput signal has a large power spetrum around the ut-o� frequeny ofthe true system. Indeed, the unertainty distribution in the frequenyrange is asymptotially inversely proportional to the spetrum of theinput signal in open-loop identi�ation [63℄ and inversely proportionalto the spetrum of the input signal due to the referene signal in losed-loop identi�ation [44℄.It is to be noted that, in [24℄, suh an idea of minimizing a qualitymeasure of an unertainty region to �nd the best possible unertainty re-gion is also proposed in the framework of an iterative sheme. However,the measure presented in [24℄ is a funtion of the ontroller present in theloop and is therefore only a measure of quality of the unertainty regionwith respet to that partiular ontroller as opposed to our measure (theworst ase �-gap ) whih is ontroller-independent.3.4.3 Validation of an a-priori given model GmodAs already stated earlier, the worst-ase �-gap ÆWC(Gmod;D) is an in-diator of how well the unertainty set D is tuned for robustly stableontroller design with a model Gmod. Therefore, this worst ase �-gapgives not only information about D, but it gives also information aboutthe model Gmod. In fat, it is an indiator of the quality of the pairfGmod Dg for robust ontrol design. This has the following onsequenesfor the ase where the model Gmod that will be used for ontrol designis given.The model Gmod for ontrol design an indeed either be hosen equalto the identi�ed model G(z; Æ̂), enter of the onsidered unertainty re-gion D or be given. In the seond ase (i.e. the model Gmod is given),we have really no idea if that model is reliable or not for ontrol de-sign with respet to the true system G0. A validation experiment onG0 leading to a set D and the omputation of the orresponding worstase �-gap ÆWC(Gmod;D) will help us to assess the quality of Gmod for(robust) ontrol purpose. Indeed, if the obtained worst ase �-gap isrelatively small (with respet to bopt(Gmod)), we then know that theset C(Gmod;D) of Gmod-based ontrollers that robustly stabilize D (and



A measure of robust stability for the unertainty region D 47therefore also the true system G0) is relatively large. Suh result val-idates the model Gmod. We an see this result from an other point ofview : if ÆWC(Gmod;D) is small, then Æ�(Gmod; G0) is also small, sinewe have that Æ�(Gmod; G0) � ÆWC(Gmod;D):Using Corollary 3.1, we an therefore onlude that a small ÆWC(Gmod;D)implies a large set of ontrollers that stabilizes both Gmod and G0.3.5 A simulation exampleIn this setion, we give an example of the use of the worst ase �-gap as aseletion tool for unertainty regions delivered by validation experiments(see Setion 3.4.1, seond situation). For this purpose, let us onsiderthe following true system G0 and the following model Gmod of this truesystem. y = G0u+ e = 0:1047z�1 + 0:0872z�21� 1:5578z�1 + 0:5769z�2 u+ eGmod = 0:1060z�1 + 0:0928z�21� 1:5308z�1 + 0:5467z�2where e is a white noise of variane 0.1. The atual �-gap betweenG0 and Gmod is Æ�(G0; Gmod) = 0:0193. We perform one validationexperiment in open loop and one in losed loop (with the ontrollerK = (1:27 � 1:04z�1)=(1 � 0:6z�1) in the loop) leading to two dif-ferent unertainty regions, eah of whih ontains G0 with probability0.95. We all these two unertainty regions Dol and Dl, respetively.In order to deide whih of these unertainty regions is best tuned forrobustly stable ontrol design based on the model Gmod, we omputethe measure of robustness of these two unertainty regions with respetto Gmod, i.e. ÆWC(Gmod;Dol) and ÆWC(Gmod;Dl). For this purpose,we �rst ompute the worst ase hordal distanes at eah frequenyfor Dol and Dl using the LMI tools developed in Setion 3.3. Theworst ase hordal distanes at eah frequeny �WC(Gmod(ej!);Dol) and�WC(Gmod(ej!);Dl) are represented in Figure 3.2 where they are om-pared with the atual hordal distane �(Gmod(ej!); G0(ej!)) betweenGmod and G0. Aording to Lemma 3.1 and sine W (Gmod; Ĝol) =
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OmegaFigure 3.2: �WC(Gmod(ej!);Dol) (dashed), �WC(Gmod(ej!);Dl) (solid) and�(Gmod(ej!); G0(ej!)) (dashdot) at eah frequenyW (Gmod; Ĝl) = 0 (Ĝol and Ĝl are the enters of Dol and Dl, respe-tively), we an derive the worst ase Vinniombe distanes from theworst hordal distanes as follows:ÆWC(Gmod;Dol) = max! �WC(Gmod(ej!);Dol) = 0:2464ÆWC(Gmod;Dl) = max! �WC(Gmod(ej!);Dl) = 0:0384Therefore, by Proposition 3.3, the set C(Gmod;Dl) of ontrollers sta-bilizing Gmod that robustly stabilizes Dl is muh larger than the setC(Gmod;Dol) that robustly stabilizes Dol. To illustrate this statement,let us design two ontrollers from the model Gmod. These two ontrollersare given below with the ahieved generalized stability margins:C1 = 1:8464 � 1:3647z�11� 0:4545z�1 bGmod;C1 = 0:2861C2 = 3 bGmod;C2 = 0:0653We diretly see that the ontroller C1 is guaranteed to stabilize theplants in the two unertainty regions sine it belongs to both guaranteed



A measure of robust stability for the unertainty region D 49sets of stabilizing ontrollers C(Gmod;Dol) and C(Gmod;Dl) de�ned inProposition 3.2. Indeed:bGmod;C1 > ÆWC(Gmod;Dol) > ÆWC(Gmod;Dl):However, the ontroller C2 belongs to C(Gmod;Dl) only : C2 thereforestabilizes all the plants in Dl. As C2 62 C(Gmod;Dol), it is not guaran-teed, by Proposition 3.2, to stabilize all plants in Dol. Proposition 3.2only gives a suÆient ondition. To hek whether C2 atually stabilizesall plants in Dol, we use the \neessary and suÆient" test that willbe developed in Chapter 4. This test fails, and therefore C2 does notstabilize all plants in Dol whereas it does stabilize all plants in Dl byProposition 3.2.3.6 ConlusionsWe have proposed a measure of robust stability for the unertainty re-gion D as delivered by predition error identi�ation. This measureis the largest �-gap between the nominal model and all plants in theunertainty region. We have shown that this measure is omputablefrequeny-wise using an LMI based optimization problem at eah fre-queny. We have also shown that the smaller the worst ase �-gapbetween the model and an unertainty region, the larger is the set ofmodel-based ontrollers that are guaranteed by the �-gap theory to ro-bustly stabilize all plants in the unertainty region. This measure isthus an indiator of how well the unertainty region is tuned for robustontrol design with the hosen model. This measure therefore also givesus guidelines to selet the unertainty region that is best tuned for ro-bust stability analysis among all available ones. To illustrate the impatof our results in terms of the onnetion between identi�ation and ro-bust ontrol, we return to the example above. With our robust stabilitymeasure for unertainty sets, we were able to onlude that the Gmod-based ontroller set that is guaranteed to robustly stabilize Dl is muhlarger than the set that is guaranteed to robustly stabilize Dol. Hene,the losed-loop identi�ation design that led to the unertainty set Dlis a muh better experiment design than the open-loop design that ledto Dol. The results of this hapter have thus allowed us to establish aonnetion between identi�ation design and stability robustness of theontrollers resulting from suh design. We have therefore paved the wayto a new researh �eld i.e. PE identi�ation for robust ontrol.
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Chapter 4A neessary and suÆientrobust stability onditionfor DIn the previous hapters, it has been shown that a PE identi�ationproedure allows one to design an unertainty region D ontaining thetrue system at a ertain probability level. This unertainty region takesthe form of a set of parametrized transfer funtions where the param-eter vetor is onstrained to lie in an ellipsoid. We have introdued ameasure of this unertainty region that is onneted to the size of themodel-based ontrollers that are guaranteed (by the �-gap theory) tostabilize all plants in D. This measure has been proved to be an india-tor of how well the unertainty set D is tuned for robust ontrol designwith respet to Gmod.In this hapter, we onsider that the tools presented in the previoushapter has allowed us to selet an unertainty region D and a modelGmod and that a ontroller C for the true system has been designed fromthe model Gmod. The problem solved in this hapter is the problem of�nding a neessary and suÆient ondition for the stabilization of allplants in the unertainty region D by the ontroller C. If the ontrollerC stabilizes all plants in D, we will say that this ontroller is validatedfor stability. The result of this hapter pertains thus to the validationof one spei� ontroller. It is also important to note that this robuststability ondition is also a ondition guaranteeing the stabilization ofthe true system G0 by the ontroller C.51



52 A neessary and suÆient robust stability ondition for DRobust stability theory developed in e.g. [34, 31, 92, 68, 53℄ pro-vides some neessary and suÆient onditions for the stabilization, by agiven ontroller C, of all plants in an unertainty region, provided thisunertainty region is de�ned in the general LFT (linear frational trans-formation) framework for robust stability analysis. Our ontributionin the proposed stability validation proedure is to show that one anrewrite the losed-loop onnetion of the ontroller C and all plants inthe unertainty region D obtained from a validation experiment into apartiular LFT that takes into aount the parametri desription of D(i.e. the unertainty part of the obtained LFT is a real vetor) and whose(real) stability radius is exatly omputable, using the result presentedin [53, 72℄. The proposed approah has the omplementary advantageof being easily extensible to the design of a ontroller that is assured tostabilize all plants in D using the result in [73℄ extended in [6℄. Indeed,[73℄ and [6℄ show that several robust synthesis problems for rank-onesLFT's (that is the type of LFT's we here obtain) an be stated in termsof onvex or quasi-onvex optimization. It is also to be noted that, sinethe unertainty region has been rewitten as an LFT, �-synthesis (seee.g. [92℄) may also be onsidered in order to design a ontroller that isguaranteed to ahieve a ertain level of performane with all plants inD. However, the drawbak of this tehnique is that it is not guaranteedto onverge.In the previous hapter, we have already given a ondition for thestabilization of all plants in D by a ontroller. Indeed, we presentedthere a set C(Gmod;D) of Gmod-based ontrollers that are guaranteed tostabilize all plants in D. If the ontroller C designed from Gmod lies inC(Gmod;D), then, it stabilizes all plants in D. However, as already saidin Chapter 3, the set C(Gmod;D) is not assured to ontain all ontrollersthat robustly stabilize D. Indeed, this ontroller set only ontains allontrollers robustly stabilizing all plants in a larger set 1 that embedsD. The advantage in the present approah is that the obtained robuststability ondition is neessary and suÆient. This is a onsequene ofthe fat that our new stability results apply diretly to the parametrizedset D resulting from the identi�ation step, thereby avoiding the on-servativeness resulting from the overbounding of D by a larger �-gapunertainty set.1i.e. fGjÆ�(Gmod; G) � ÆWC(Gmod;D)g



A neessary and suÆient robust stability ondition for D 53In [72, 57℄, the authors onsider a similar but muh simpler stru-ture than D and show that this simpler struture an be expressed asan LFT. In this paper, we give a general formulation of this LFT forgeneral expression of the unertainty region D.Other authors have takled the robust stability problem in the pres-ene of an unertainty region de�ned by a real (parameter) vetor fromanother point of view (see e.g. [7, 23, 4, 5℄ and referenes therein). Inthis literature, the stability of an unertain polynomial is analyzed. Forontrol purposes, the analyzed polynomial is the denominator of thelosed-loop transfer funtion. In this approah, the parameters of theopen-loop system are generally assumed to vary in a hyperube (i.e. eahparameter varies in an interval) and not in an ellipsoid like in D. How-ever, in [7℄, the treated problem is loser to our problem: the authorspresent a proedure that gives, for a given ontroller, the largest ellip-soid in the spae of the system parameters for whih the stabilization ofthe losed-loop transfer funtion denominator is guaranteed. Their ap-proah uses Eulidean spae geometry to projet the parameters of theopen-loop system into those of the ommon denominator of the losed-loop transfer funtions and onversely. This result ould have been usedin order to �nd a proedure to validate a ontroller for stability. Ourhoie for the proedure based on the omputation of the stability radiusis motivated by the fat that this proedure uses the general frameworkof the robustness theory whih allows one to easily extend our robustanalysis approah to robust synthesis using �-synthesis or the results of[73℄.
Chapter outline. In Setion 4.1, we present a robust stability the-orem for a real vetor unertainty. In Setion 4.2, we design the LFTframework of all losed-loop onnetions made up of a plant in an uner-tainty set D and a ontroller. In Setion 4.3, using this LFT frameworkand the robust stability theorem, we dedue a neessary and suÆientondition for the robust stabilization of all plants in D by the ontrollerC. We �nish this hapter by an example (Setion 4.4) and some onlu-sions (Setion 4.5).



54 A neessary and suÆient robust stability ondition for D4.1 Robust stability for a real vetor unertaintyAs said in the introdution, the aim of this hapter is to �nd a neessaryand suÆient ondition for the stabilization of all plants in an uner-tainty region D by a given ontroller. Robust stability theory providessuh neessary and suÆient onditions [34, 31, 92, 68, 53℄. But for theappliation of robust stability results, it is required that the losed looponnetions of this ontroller to all plants in the unertainty region berewritten as a set of loops that onnet a known �xed dynami matrixM(z) to an unertainty part �(z) of known struture that belongs to apresribed unertainty domain. In this setion, we reall an importantresult of robust stability analysis [72, 53℄ in the ase when the uner-tainty part �(z) is assumed to be a real vetor.Let us onsider a set of loops [M(z) �℄ that obey the following systemof equations (see Figure 4.1).� p = �qq =M(z)p (4.1)In this set of loops, it is assumed that M(z) 2 RH1 is a known �xedrow vetor of size b and that the unertainty part � is a real vetor2 Rb�1 that varies in the following unertainty domain: j�j2 < 1. j�j2represents the 2-norm of the vetor � i.e. j�j2 =p�T�.
M

qp

β

Figure 4.1: set of loops [M(z) �℄The robust stability theorem linked to the set of loops [M(z) �℄ is



A neessary and suÆient robust stability ondition for D 55now summarized in the following proposition.Proposition 4.1 IfM(z) 2 RH1 and � 2 Rb�1, then the loops [M(z) �℄given in (4.1) are internally stable for all � 2 Rb�1 suh that j�j2 < 1if and only if max! �(M(ej!)) � 1 (4.2)The value �(M(ej!)) is alled the stability radius of the loop [M(z) �℄at the frequeny ! and is de�ned below.De�nition 4.1 (stability radius [72, 53℄) ForM(ej!) a known om-plex matrix 2 C1�b and � 2 Rb�1, the stability radius �(M(ej!)) isde�ned as follows if Im(M(ej!)) 6= 0:�(M(ej!)) =sjRe(M)j22 � (Re(M)Im(M)T )2jIm(M)j22 (4.3)and �(M(ej!)) = jM j2, if Im(M) = 0. The stability radius is in fatthe strutured singular value linked to the loop [M(z) �℄: �(M(ej!)) isthe inverse of the smallest value of j�j2 suh that 1�M(ej!)� = 0.Remarks. In [72℄, the stability radius at a given frequeny is de�nedfor a real unertainty that is a row vetor. The ase of a olumn vetoris similar and yields De�nition 4.1. Note also that the stability radiusis disontinuous only at the frequenies where M is real [71℄.4.2 LFT framework for the unertainty regionD and a ontroller CIn order to apply Proposition 4.1 to hek the stabilization of all plantsin the unertainty region D desribed in Proposition 2.5 by some model-based ontroller C, the �rst step is to �nd the partiular set of loops[M(z) �℄ that orrespond to the losed-loop onnetions of all plants inD with C. This �rst step an be ahieved using the following theorem.Theorem 4.1 (LFT framework for D) Consider an unertainty re-gion D of plant transfer funtions given by (2.44) and a ontroller C(z)whose numerator and denominator are denoted X(z) and Y (z), re-spetively (C(z) = X(z)=Y (z)). The set of losed-loop onnetions



56 A neessary and suÆient robust stability ondition for D[G(z; Æ) C℄ for all G(z; Æ) 2 D an be rewritten into the set of loops[MD �℄ whih obey the following system of equations� p = �qq =MD(z)pwhere the unertainty part � is a real olumn vetor of size k that variesin the unertainty domain: j�j2 < 1, and where the part MD(z) is a rowvetor of size k de�ned as :MD(z) = �(ZD + X(ZN�eZD)Y+eX )T�11 + (ZD + X(ZN�eZD)Y+eX )Æ̂ ; (4.4)with T a square root of the matrix R de�ning U in (2.44) : R = T TT:Proof. The losed-loop onnetion of C and a partiular plantG(z; Æ) =(e+ ZNÆ)=(1 + ZDÆ) in D (see (2.44)) is given by� y = e+ZNÆ1+ZDÆuu = �Cy (4.5)Let us rewrite (4.5) in a onvenient way for the LFT formulation:( y = (e+ (ZN�eZD)Æ1+ZDÆ )uu = �Cy (4.6)By introduing two new signals q and p1, we an restate (4.6) as8>>>>><>>>>>: � qy � = H(z)z }| {� �ZD 1ZN � eZD e �� p1u �p1 = Æqu = �Cy (4.7)By doing so, we have isolated the unertainty vetor Æ from the knowntransfer matrix H(z) and the ontroller C(z), as is shown in Figure 4.2.The variables y and u are now eliminated from (4.7), yielding the fol-lowing system of equations representing a loop whih is of the type (4.1)required by Proposition 4.1.
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Figure 4.2: Equivalent loop for [G(z; Æ) C℄8>><>>: p1 = Æqq = M1(z)z }| {(�ZD � C(ZN � eZD)1 + eC ) p1 (4.8)The system (4.8) is equivalent to the losed-loop onnetion of apartiular G(z; Æ) in D with the ontroller C. In order to onsider thelosed-loop onnetions for all plants in D, we have to onsider all Æ 2Rk�1 lying in the ellipsoid U given by:U = fÆ j (Æ � Æ̂)TR(Æ � Æ̂) < 1g: (4.9)This last expression is the unertainty domain of the real unertaintyvetor Æ. This unertainty domain is not quite standard. Therefore, theset of loops [M1(z) Æ℄ with Æ 2 U an not be immediatly used in thisform in Proposition 4.1. A last step is then to normalize the unertaintydomain using a method presented e.g. in [72, 57℄ . Using R = T TT , wenow de�ne the real vetor � 2 Rk�1 as follows:



58 A neessary and suÆient robust stability ondition for D� �= T (Æ � Æ̂): (4.10)Using now (4.9) and (4.10), we haveÆ 2 U , �T� < 1() j�j2 < 1 (4.11)� is therefore an unertainty vetor with same struture as Æ (i.e. � 2Rk�1) but with an unertainty domain as required by Proposition 4.1.The unertainty vetor Æ is therefore replaed by � in (4.8). For thispurpose, we �rst denote p �= �q. Sine Æ = Æ̂ + T�1�, we have� p1 = Æqq =M1(z)p1 , 8>>>><>>>>: p = �qq = M1T�11�M1Æ̂ p = MD(z)z }| {�(ZD + X(ZN�eZD)Y+eX )T�11 + (ZD + X(ZN�eZD)Y+eX )Æ̂ p(4.12)The set of loops [MD(z) �℄ for � 2 Rk�1 and j�j2 < 1 is thereforeequivalent to the set of losed-loop onnetions [G(z; Æ) C℄ for all plantsG(z; Æ) in D. This ompletes the proof. �4.3 Robust stability ondition for the uner-tainty region DTheorem 4.1 allows us to \transform" our problem of testing if the on-troller C stabilizes all the plants in the unertainty region D into theequivalent problem of testing if the set of loops [MD �℄ are stable forall real vetor � 2 Rk�1 suh that j�j2 < 1. This equivalent problemis the one whih is treated by Proposition 4.1. Therefore, using Propo-sition 4.1 and Theorem 4.1, we an now formulate our main stabilitytheorem.Theorem 4.2 (robust stability ondition) Consider an unertaintyregion D of plant transfer funtions having the general form given in (2.44)and let C be a ontroller that stabilizes the enter G(z; Æ̂) of D. All theplants in the unertainty region D are stabilized by the ontroller C ifand only if max! �(MD(ej!)) � 1 (4.13)



A neessary and suÆient robust stability ondition for D 59where the stability radius � and MD(z) are de�ned in De�nition 4.1 andin (4.4), respetively.Proof. MD(z) lies in RH1 sine its denominator is the denominatorof the sensitivity funtion of the losed loop [G(z; Æ̂) C℄ whih is sta-ble by assumption. Therefore, this theorem is a diret onsequene ofProposition 4.1 and Theorem 4.1. �This theorem gives a neessary and suÆient ondition for the sta-bilization of all plants in D by a ontroller that has been designed fromthe hosen model Gmod. This neessary and suÆient ondition involvesthe omputation at eah frequeny of the stability radius �(MD(ej!)).This omputation is ahieved using De�nition 4.1.Important remark. We now disuss why this neessary and suÆi-ient robust stability result is not used to ompute a robust stabilitymeasure for the set D and why we have used the worst ase �-gap forthis purpose (see Chapter 3). Let us de�ne the following quantity:�min(D) = minC stabilizing G(z;Æ̂)�max! �(MD(ej!))� (4.14)Reall that MD(z) is a funtion of C and of D. Using the de�nition of�min(D) and Theorem 4.2, we an state that all ontrollers stabilizingG(z; Æ̂) that lie infC j �min(D) � max! �(MD(ej!)) � 1g; (4.15)stabilize all plants in D. Moreover the set (4.15) is the set that on-tains all these robustly stabilizing ontrollers. As a onsequene, thequantity �min(D) is thus an indiator of how well the unertainty regionD is tuned for robustly stable ontroller design. Indeed, the smaller is�min(D), the larger is the set of robustly stabilizing ontrollers. More-over, it is a better indiator than the worst ase �-gap sine the set (4.15)ontains all robustly stabilizing ontrollers as opposed to the set (3.16).However, to our knowledge, this indiator �min(D) has not been provedomputable in polynomial time in the ase of an unertainty region likeD. That is why we have opted for the worst ase �-gap as measure ofrobust stability for the set D. It is nevertheless to be noted that oururrent researh aims at applying the results of [73℄ to ompute �min(D).



60 A neessary and suÆient robust stability ondition for D4.4 Simulation ExampleTo illustrate our results, we present an example of ontroller validationfor a model identi�ed in losed-loop. Let us onsider the following truesystem G0 with an Output Error struture:y = G0z }| {0:1047z�1 + 0:0872z�21� 1:5578z�1 + 0:5769z�2 u+ e(t);where e(t) is a unit-variane white noise. The sampling time is 0.05seond.Validation experiment. Let us perform a validation experiment inlosed-loop using the indiret approah (see Setion 2.2.4). Let us thusidentify an unbiased model T (�̂) of the true losed-loop transfer funtionT 10 (de�ned in (2.29)) by olleting 1000 referene data r1(t) and outputdata y(t) on the losed loop made up of G0 and the ontroller K = 3 :u = 3(r � y). This ontroller stabilizes G0. It yields:T (�̂) = 0:3179z�1 + 0:2783z�21� 1:2129z�1 + 0:8251z�2The open-loop model G(�̂) orresponding to T (�̂) is equal toG(�̂) = 1K � T (�̂)1� T (�̂) = 0:1060z�1 + 0:0928z�21� 1:5308z�1 + 0:5467z�2Following the proedure presented in Setion 2.2.4.2, we an designan unertainty region Dil from the estimated ovariane matrix P� ofthe parameters of the losed-loop model T (�̂). The region ontainingthe true system G0 with probability 0.98 is given byDil = fG(�) j G(�) = T (�)K(1� T (�)) and � 2 Uilgwhere Uil = f� j (� � �̂)TP�1� (� � �̂) < 12:6g. It has been shown inChapter 2 that Dil an be expressed in the general struture (2.44) ofthe unertainty regions delivered by PE identi�ation.The worst ase �-gap ÆWC(G(�̂);Dil) between the identi�ed modelG(�̂) and the set Dil is here equal to 0.1015 whih is relatively small



A neessary and suÆient robust stability ondition for D 61with respet to the optimal stability margin bopt(G(�̂)) = 0:5719. Theset C(G(�̂);Dil) of G(�̂)-based ontrollers that are guaranteed to ro-bustly stabilize Dil is thus large and we therefore deide to use G(�̂) asmodel for ontrol design and Dil for the validation of the ontroller Cthat will be designed from G(�̂).Control design. The model G(�̂) dedued from the identi�ed losed-loop transfer funtion is used to design a ontroller with a lead-lag �lter:C(z) = 1:8464 � 1:3647z�11� 0:4545z�1With this ontroller, the designed losed-loop [G(�̂) C℄ has a stabilitymargin of 57 degrees and a gain margin of 10dB. The ut-o� frequeny! is equal to 0.5 whih orresponds to a real frequeny of 11 rad=s.Before applying this ontroller C(z) to the true system, we verifywhether it stabilizes all plants in the unertainty region Dil deduedfrom the validation experiment, using the results presented in this hap-ter.Validation of C for stability. For this purpose, we onstrut therow vetor MDil(z) de�ned in Theorem 4.1 and we ompute the orre-sponding stability radius �(MDil(ej!)) at all frequenies. Aording toDe�nition 4.1, we know that �(MDil(ej!)) has a di�erent expression atthe frequenies where MDil(ej!) is real. It ours here at ! = 0 and! = �. The stability radii at these two frequenies are:�(MDil(ej0)) = 0:0962 and �(MDil(ej�)) = 0:0340The stability radii at the other frequenies (i.e. in (0 �)) are plotted inFigure 4.3.The maximum over all frequenies in [0 �℄ is 0.1313. Sine thismaximum is smaller than 1, we onlude that C(z) stabilizes all plants inDil and therefore also the true system G0. In other words, the ontrollerC(z) is validated for stability.4.5 ConlusionsIn the previous hapter, an unertainty region D has been dedued froma validation experiment (i.e. a PE identi�ation proedure with unbi-
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Figure 4.3: �(MDil(ej!)) in (0 �)ased model struture). In this hapter, we have developed a tool forthe robust stability analysis for the unertainty region D. This tool isa neessary and suÆient ondition for the validation of a ontroller forstability that is to say a neessary and suÆient ondition for the sta-bilization of all plants in D by this ontroller. This tool gives thereforea ondition for the stabilisation of the true system G0 by this ontroller(modulo the hosen probability level for the presene of G0 in D).The neessary and suÆient ondition has been dedued by reastingthe general struture of the unertainty region D in an LFT frameworktaking into aount the parametri desription of D and for whih thestability radius is exatly omputable.



Chapter 5Worst ase performanein DIn the previous hapter, we have developed a robust stability analysistool for the unertainty region D as delivered by a validation experi-ment. This tool takes the form of a neessary and suÆient onditionfor the stabilization of all plants in D by a given ontroller. In thishapter, we will develop a robust performane analysis tool. For thispurpose, we will again onsider an unertainty region D and a modelGmod from whih we have designed a ontroller C and we will proposean LMI-based optimization problem that omputes exatly the worstase performane ahieved by the onsidered ontroller C over all plantsin the unertainty region D. The ontroller C is then said validated forperformane if the worst ase performane is better than some thresholdvalue. As in the previous hapter, the result presented in this hapterpertains to the validation of one spei� ontroller. It is also importantto note that the worst ase performane is of ourse a lower bound ofthe performane ahieved by C over the true system G0, sine G0 liesin D.Our robust performane analysis tool is thus based on the ompu-tation of the worst ase performane of a losed-loop made up of theonsidered ontroller and a system in the unertainty region D. Theperformane of a partiular loop made up of the ontroller C and aplant in D is here de�ned as the largest singular value of a weightedversion of the matrix ontaining the four losed-loop transfer funtionsof this loop. Our de�nition of the worst ase performane is thus very63



64 Worst ase performane in Dgeneral and, by an appropriate hoie of the weights, allows one to de-rive most of the ommonly used worst ase performane measures suhas e.g. the largest modulus of the sensitivity funtion. Our ontributionis to show that the omputation of the worst ase performane an beformulated as an LMI-based optimization problem. The LMI formula-tion of the problem uses the fat that the unertainty part (i.e. the realparameter vetor) of the unertainty region D appears linearly in theexpression of both the numerator and the denominator of the systemsin the unertainty region D and, as a onsequene, also appears linearlyin the expression of the di�erent losed-loop transfer funtions.Our approah to ompute the worst ase performane di�ers signi�-antly from the usual approah proposed in e.g. [33, 35℄. In these papers,the omputation of the worst ase performane in an unertainty regiondesribed by an LFT is performed using the omputation of a quantity�. The quantity � is an extension of the strutured singular value �.However, [33℄ and [35℄ only give a way to ompute this quantity � fora limited amount of parametri unertainties. The ase of an uner-tainty given by a real vetor (suh as in our unertainty region D) isnot takled. This ase is nevertheless takled in e.g. [5, page 402℄. In[5℄, the authors give a proedure to ompute the worst ase performanein unertainty regions de�ned by a real vetor that is onstrained to liein a hyperube. Their proedure, whih is an extension of a theorempresented in [18℄, is based on the fat that the diÆult omputation ofthe worst ase performane in suh unertainty region an be ahievedwith a �xed number of simple optimization problems with one parame-ter. However, this proedure an not be used for the omputation of theworst ase performane in D sine the real vetor in D is onstrainedto lie in an ellipsoid and not in a hyperube. The ontribution of ourapproah is therefore to give a solution for the omputation of the worstase performane in the ase of an unertainty region de�ned by a realvetor that is onstrained to lie in an ellipsoid (and that appears lin-early both in the numerator and the denominator of the systems in theunertainty region).Chapter outline. In Setion 5.1, we present the general riterion mea-suring the worst ase performane ahieved by a ontroller over all plantsin an unertainty region D. In Setion 5.2, we show that more parti-ular worst ase performane levels an be dedued from this general



Worst ase performane in D 65riterion. In Setion 5.3, the LMI-based optimization problem allowingone to ompute the worst ase performane is presented. We �nish bya simulation example (Setion 5.4) and some onlusions (Setion 5.5).5.1 The general riterion measuring the worstase performaneAs said in the introdution, the aim of this hapter is to �nd a proedureto ompute the worst ase performane ahieved by a given ontroller Cover all plants in an unertainty region D having the general struturegiven in (2.44). In this setion, we will de�ne the riterion measuringthe worst ase performane. In order to de�ne this riterion, let us �rstde�ne the performane of a loop [C G℄.There is no unique way of de�ning the performane of a losed-loopsystem. However, most ommonly used performane riteria an bederived from some norm of a frequeny weighted version of the matrixT (G;C) of the losed-loop system [C G℄ made up of G in feedbak withthe ontroller C.De�nition 5.1 Given a plant G(z) and a stabilizing ontroller C(z),the performane of a losed-loop system [C G℄ is de�ned as the followingfrequeny funtionJ(G;C;Wl;Wr; !) = �1 �WlT (G(ej!); C(ej!))Wr� (5.1)whereWl(z) = diag(Wl1;Wl2) andWr(z) = diag(Wr1;Wr2) are diagonalweights, �1(A) denotes the largest singular value of A, and T (G;C) isthe transfer matrix of the losed-loop system de�ned in (3.3).The worst ase performane riterion over all plants in an unertaintyregion D is then de�ned as follows.De�nition 5.2 Consider an unertainty region D of systems G(z; Æ)with Æ 2 U whose general struture is given in (2.44). Consider also aontroller C(z). The worst ase performane ahieved by this ontrollerat a frequeny ! over all systems in D is de�ned as:JWC(D; C;Wl;Wr; !) = maxG(z;Æ)2D �1 �WlT (G(ej!; Æ); C(ej!))Wr� : (5.2)Note that JWC is a frequeny funtion : it de�nes a template. JWC hasthus to be omputed at eah frequeny.



66 Worst ase performane in D5.2 More spei� worst ase performane levelsderived from the general riterionIn the previous setion, we have de�ned the performane of a losedloop and the worst ase performane ahieved by a ontroller C over allplants in D in a very general way. In this setion, we will show that theriterion (5.2) allows one to de�ne more spei� worst ase performanelevels.In [25℄, the performane of a loop [C G℄ is de�ned as k WlT (G;C)Wr k1.In this framework, the nominal performane of the designed loop [C Gmod℄1is therefore k WlT (Gmod; C)Wr k1 and the worst ase performane foran unertainty region D is the maximum over all frequenies of the gen-eral riterion JWC(D; C;Wl;Wr; !).A more fundamental way of de�ning the performane of a losed loop[C G℄ is that proposed for the �rst time in [89℄. The performane anbe \measured" by the shape of the modulus of the frequeny responseof the di�erent losed-loop transfer funtions (i.e. T11(G;C), T12(G;C),T21(G;C) and T22(G;C) de�ned in (3.3)). Let us take the example ofthe sensitivity funtion T22(G;C) to motivate this hoie. The modu-lus of the frequeny response of T22(G;C) at a partiular frequeny !gives the rejetion rate of an output disturbane at the frequeny !.Furthermore, the bandwidth of this frequeny response gives an idea ofthe rejetion time for onstant disturbane rejetion. The importaneof the resonane peak is also an indiation of the overshoot in onstantdisturbane rejetion.If the performane is de�ned as the modulus of the frequeny re-sponse of one of the transfer funtions Tij (i; j=1,2), the worst aseperformane in the unertainty region D is de�ned as the largest mod-ulus, over all G(z; Æ) 2 D, of the orresponding losed-loop transferfuntion Tij . Let us now de�ne this worst ase performane related toTij (i; j=1,2) more formally.De�nition 5.3 (The worst ase performane for Tij) Consider anunertainty region D given by (2.44) and ontaining all systems G(z; Æ)with Æ 2 U . Consider also a ontroller C(z) and the losed-loop transfer1Reall that Gmod is the model from whih we have designed C.



Worst ase performane in D 67funtion Tij (i; j=1,2) de�ned in (3.3). The worst ase performane forTij is the following frequeny funtion :tD(!; Tij) = maxG(z;Æ)2D ��Tij(ej!; Æ)�� ; (5.3)where Tij(z; Æ) �= Tij(G(z; Æ); C(z)) and jAj denotes the modulus of A.For instane, if we hoose the sensitivity funtion T22, tD(!; T22)provides the lowest rejetion rate of a perodi output disturbane at !,the minimal bandwidth and the maximal resonane peak over the setof losed-loop systems omposed of the ontroller C and all plants inD. These worst ase values must be ompared with the stati error,the bandwidth and the resonane peak of the sensitivity funtion of thedesigned losed loop [C Gmod℄.The worst ase performane for Tij an be derived from the ompu-tation of the general riterion de�ned in (5.2). This property is summa-rized in the following proposition whose proof is trivial.Proposition 5.1 The worst ase performane for the losed-loop trans-fer funtion Tij i.e. tD(!; Tij) is equal to the general riterion JWC whenthe following weights are used.Wl = � f(i) 00 1� f(i) � Wr = � f(j) 00 1� f(j) � (5.4)where f(x) = 1 if x = 1 and f(x) = 0 if x = 2.5.3 Computation of the general riterionThe general riterion measuring the worst ase performane level hasbeen de�ned in Setion 5.1. In Setion 5.2, more spei� worst aseperformane levels have been shown to be derivable from this generalriterion by appropriately hoosing the diagonal weights Wr and Wl.We now present a proedure for the omputation of the general riterionJWC(D; C;Wl;Wr; !) at a given frequeny !. This omputation boilsdown to an optimization problem involving Linear Matrix Inequality(LMI) onstraints [17℄, as shown in the following theorem.



68 Worst ase performane in DTheorem 5.1 Consider an unertainty region D de�ned in (2.44) anda ontroller C(z) = X(z)=Y (z) 2. Then, at frequeny !, the riterionfuntion JWC(D; C;Wl;Wr; !) is obtained asJWC(D; C;Wl;Wr; !) = popt; (5.5)where opt is the optimal value of  for the following standard onvexoptimization problem involving LMI onstraints evaluated at !:minimize over ; �subjet to � � 0 and� Re(a11) Re(a12)Re(a�12) Re(a22) �� � � R �RÆ̂(�RÆ̂)T Æ̂TRÆ̂ � 1 � < 0 (5.6)where� a11 = (Z�NW �l1Wl1ZN + Z�DW �l2Wl2ZD)� (QZ�1Z1)� a12 = Z�NW �l1Wl1e+W �l2Wl2Z�D � (QZ�1 (Y + eX))� a22 = e�W �l1Wl1e+W �l2Wl2 � (Q(Y + eX)�(Y + eX))� Q = 1=(X�W �r1Wr1X + Y �W �r2Wr2Y )� Z1 = XZN + Y ZD:Proof. In order to ease the establishment of the proof, we rewrite theweighted matrix Tw(z; Æ) �= WlT (G(z; Æ); C(z))Wr , using the de�nitionof the losed-loop transfer matrix T in (3.3) and the expression of G(z; Æ)in (2.44):Tw(z; Æ) = � Wl1X(e+ ZNÆ)Wr1 Wl1Y (e+ ZNÆ)Wr2Wl2X(1 + ZDÆ)Wr1 Wl2Y (1 + ZDÆ)Wr2 �Y + eX + (XZN + Y ZD)Æ (5.7)It is important to note that Tw(z; Æ) is of rank one. As a result (5.7) anbe written as follows:2X(z) and Y (z) are the polynomials orresponding to the numerator and to thedenominator of C(z), respetively



Worst ase performane in D 69Tw(z; Æ) =  Wl1(e+ZNÆ)Y+eX+Z1ÆWl2(1+ZDÆ)Y+eX+Z1Æ !� XWr1 YWr2 � (5.8)with Z1 = XZN + Y ZD. Using the above introdued notations, we annow state that proving Theorem 5.1 is equivalent to proving that thesolution opt of the LMI problem (5.6), evaluated at !, is suh that:popt = maxÆ2U �1(Tw(ej!; Æ))() opt = maxÆ2U �1(Tw(ej!; Æ)�Tw(ej!; Æ))where U = fÆ j (Æ�Æ̂)TR(Æ�Æ̂) < 1g, and where �1(A) and �1(A) denotethe largest singular value and the largest eigenvalue of A, respetively.An equivalent and onvenient way of restating the problem of om-puting maxÆ2U �1(Tw(ej!; Æ)�Tw(ej!; Æ)) is as follows:minimize  suh that �1(Tw(ej!; Æ)�Tw(ej!; Æ)) �  < 0 8Æ 2 U:Sine Tw(ej!; Æ) has rank one, we have:�1(Tw(ej!; Æ)�Tw(ej!; Æ)) �  < 0() Wl1(e+ZNÆ)Y+eX+Z1ÆWl2(1+ZDÆ)Y+eX+Z1Æ !� Wl1(e+ZN Æ)Y+eX+Z1ÆWl2(1+ZDÆ)Y+eX+Z1Æ ! (X�W �r1Wr1X+Y �W �r2Wr2Y )� < 0()0B� Wl1(e+ZNÆ)Y+eX+Z1ÆWl2(1+ZDÆ)Y+eX+Z1Æ1 1CA�� I2 00 �Q �0B� Wl1(e+ZNÆ)Y+eX+Z1ÆWl2(1+ZDÆ)Y+eX+Z1Æ1 1CA < 0 (5.9)where Q = 1=(X�W �r1Wr1X + Y �W �r2Wr2Y ). By pre-multiplying (5.9)by (Y + eX + Z1Æ)� and post-multiplying the same expression by (Y +eX + Z1Æ), we obtain:0� Wl1(e+ ZNÆ)Wl2(1 + ZDÆ)Y + eX + Z1Æ 1A�� I2 00 �Q �0� Wl1(e+ ZNÆ)Wl2(1 + ZDÆ)Y + eX + Z1Æ 1A < 0; (5.10)whih is equivalent to the following onstraint on Æ with variable  :



70 Worst ase performane in D� Æ1 ��� a11 a12a�12 a22 �� Æ1 � < 0; (5.11)where a11 = (Z�NW �l1Wl1ZN + Z�DW �l2Wl2ZD)� (QZ�1Z1)a12 = Z�NW �l1Wl1e+W �l2Wl2Z�D � (QZ�1 (Y + eX))a22 = e�W �l1Wl1e+W �l2Wl2 � (Q(Y + eX)�(Y + eX)):Sine Æ is real, it an be shown that (5.11) is equivalent with (Æ)z }| {� Æ1 �T � Re(a11) Re(a12)Re(a�12) Re(a22) �� Æ1 � < 0 (5.12)This last expression is equivalent to stating that �1(Tw(ej!; Æ)�Tw(ej!; Æ))� < 0 for a partiular Æ in U . However, this must be true for all Æ 2 U .Therefore (5.12) must be true for all Æ suh that�(Æ)z }| {� Æ1 �T � R �RÆ̂(�RÆ̂)T Æ̂TRÆ̂ � 1 �� Æ1 � < 0 (5.13)whih is equivalent to the statement \Æ 2 U".Let us now reapitulate. Computing maxÆ2U �1(Tw(ej!; Æ)�Tw(ej!; Æ))is equivalent to �nding the smallest  suh that  (Æ) < 0 for all Æfor whih �(Æ) < 0. By the S proedure [55, 17℄, this problem isequivalent to �nding the smallest  and a positive salar � suh that (Æ)� ��(Æ) < 0, for all Æ 2 Rk�1, whih is preisely (5.6). To ompletethis proof, note that sine �1(Tw(ej!; Æ)�Tw(ej!; Æ)) = �21(Tw(ej!; Æ)),the value maxÆ2U �1(Tw(ej!; Æ)) at ! is equal to popt, where opt is theoptimal value of . �5.4 Simulation exampleIn order to illustrate the results of this hapter, let us reonsider theexample presented in Setion 4.4 of the previous hapter. Reall thatthe ontroller C designed from the identi�ed model G(�̂) has alreadybeen validated for stability. Indeed, we have heked that it stabilizes



Worst ase performane in D 71all systems in the unertainty region Dil dedued from the validationexperiment. Let us now validate this ontroller C for performane. Sta-bilization does indeed not imply good performane with all plants inDil (inluding the true system).In order to verify that C gives satisfatory performane with allplants in Dil, we hoose the sensitivity funtion T22 as performane in-diator and we ompute the worst ase performane level tDil(!; T22) forT22 at eah frequeny. This an be done by omputing JWC(Dil; C;Wl;Wr; !) using Theorem 5.1 with the partiular weights Wl = Wr =diag(0; 1). The worst ase modulus of all sensitivity funtions overDil is represented in Figure 5.1. In this �gure, the worst ase per-formane level tDil(!; T22) is ompared with the sensitivity funtionsof the designed losed loop [C G(�̂)℄ and of the ahieved losed loop[C G0℄. From tDil(!; T22), we an �nd that the worst ase stati error(=tDil(0; T22)) resulting from a onstant disturbane of unit amplitudeis equal to 0.1692, whereas this stati error is 0.0834 in the designedlosed-loop. The ahieved stati error is 0.1017. Using tDil(!; T22), wean also see that the bandwidth of ! = 0:5 in the designed losed-loopis preserved for all losed loops with a plant in Dil sine tDil(!; T22) isequal to 1 at ! ' 0:5. The di�erene between the resonane peak ofthe designed sensitivity funtion ( i.e. max! k T22(G(�̂); C) k= 1:6184)and the worst ase reasonane peak ahieved by a plant in Dil ( i.e.max! tDil(!; T22) = 1:7075) also remains small. Note that the atuallyahieved resonane peak ( i.e. max! k T22(G0; C) k) is equal to 1.6229.We may therefore onlude that the ontroller C is validated forperformane sine the di�erene between the nominal and worst aseperformane level remains very small at every frequeny. Sine the on-troller C has now been validated for stability and for performane, onewould on�dently apply the ontroller to the true system G0, assumingthat the nominal performane is judged to be satisfatory.5.5 ConlusionsIn this hapter, we have developed a robust performane analysis tool forthe unertainty region D as delivered by a PE identi�ation proedure.Our tool is based on the omputation of the worst ase performane



72 Worst ase performane in D

10
−2

10
−1

10
0

10
−1

10
0

OmegaFigure 5.1: tDil(!; T22) (solid) and modulus of the designed sensitivityfuntion T22(G(�̂); C) (dashed) and atually ahieved sensitivity funtionT22(G0; C) (dashdot)ahieved by a given ontroller over all plants in suh unertainty region.We have de�ned this worst ase performane in a very general way andhave shown that its omputation at eah frequeny boils down to anLMI-based optimization problem.This worst ase performane is a lower bound for the performaneahieved by the onsidered ontroller over the true system G0 (modulothe hosen probability level for the presene of G0 in D).



Chapter 6Pratial simulationexamplesLet us summarize what we have ahieved until now. In Chapter 2, wehave dedued an unertainty set D ontaining the true system at a er-tain probability level from a validation experiment i.e. a lassial PEidenti�ation proedure. In Chapter 3, we have introdued a robuststability measure of that unertainty set. This measure is onneted tothe size of the ontroller set that is guaranteed by the �-gap theory torobustly stabilize D and is therefore an indiator of how well the un-ertainty region D is tuned for robust ontrol design. In Chapter 4 andChapter 5, we have presented a proedure to validate a ontroller forstability and for performane with respet to suh unertainty regionD. We have indeed given a neessary and suÆient ondition for thestabilization of all plants in D by a given ontroller and we have estab-lished an optimization problem in order to ompute exatly the worstase performane ahieved by this ontroller over all plants in D.In this hapter, we present two illustrations of the pratial use thatould be made of our results. As opposed to the examples presented inthe previous hapters, these are more realisti in the sense that they rep-resent real-life systems and the methodology is applied to these systems\from the beginning to the end". The �rst illustration is performed onthe widely publiized Landau benhmark transmission system [59℄. Thisbenhmark represents only one faet of a ontrol appliation, namely atraking problem with a step disturbane rejetion objetive in an essen-tially noise-free environment. To make our presentation omplete, we73



74 Pratial simulation exampleshave also applied our methodology to a typial industrial proess on-trol appliation, in whih the main objetive is stohasti disturbanerejetion. In the �rst illustration , we hoose the identi�ed model asmodel Gmod for ontrol design. In the seond illustration, the model forontrol design is given a-priori.6.1 Flexible transmission system6.1.1 Problem settingWe onsider as unknown true system the half-load model of the exi-ble transmission system used as a benhmark in a speial issue of theEuropean Journal of Control: see [59℄.G0(z) = z�3 0:10276 + 0:18123z�11� 1:99185z�1 + 2:20265z�2 � 1:84083z�3 + 0:89413z�4, z�3B0(z)A0(z) :The sampling period is 0:05s. The output of the system is subjet tostep disturbanes �ltered through H0(z) = 1A0(z) . This means that theplant an be seen as a nonstandard ARX system desribed byA0(z)y(t) = z�3B0(z)u(t) + p(t) (6.1)where u(t) is the input of the plant, y(t) its output and p(t) a sequeneof step disturbanes with zero mean and variane �2p. From a stohastipoint of view, p(t) is equivalent, up to seond order moments, with1�(z)e(t) where �(z) = 1� z�1 and e(t) is a sequene of Gaussian whitenoise with zero mean and appropriate variane. Hene, a standard ARXdesription of the plant is given byA0(z)�(z)y(t) = z�3B0(z)�(z)u(t) + e(t); (6.2)and the standard predition error identi�ation algorithm for ARX mod-els an be used to identify the system, provided the data are pre�lteredby �(z).Objetive. Our objetive is to apply our methodology to the trueexible transmission system G0 in order to verify that a ontroller C,satisfying a number of spei�ations with an identi�ed model, satis�esalso these spei�ations with the unknown G0. These requirements are:



Pratial simulation examples 75� stability of the loop [C G0℄� a maximum value of less than 6 dB for the sensitivity funtionT22(G0; C) = 1=(1 +G0C).� rejetion of the step output disturbanes p(t) �ltered by 1=A0within 1.2s (for 90% rejetion of the measured peak values).These spei�ations are some of the spei�ations of the benhmark [59℄.6.1.2 Validation experimentSine the true system is unknown, a �rst step in our methodology isto perform a validation experiment on the true system G0 in order toidentify a model Gmod for the true system G0 and in order to onstrutan unertainty region ontaining the true system G0 at a ertain prob-ability level, say 95%. We will here perform the validation experimentin losed loop using a diret approah (see Setion 2.2.4.1).In order to perform a validation in losed loop, we need to on-net a ontroller K in feedbak with G0. The ontroller K is herehosen as the one obtained by Landau et al. using a ombined poleplaement/sensitivity funtion shaping method [58℄. Its feedbak partis desribed byK(z) = 0:401602 � 1:079378z�1 + 0:284895z�2 + 1:358224z�31� 1:031142z�1 � 0:995182z�2 + 0:752086z�3�0:986549z�4 � 0:271961z�5 + 0:306937z�6+0:710744z�4 � 0:242297z�5 � 0:194209z�6 � (6.3)It also has a feedforward part that we shall not onsider here (sine wewill exite the losed-loop system with the signal r2(t) in Figure 2.1).The losed-loop system [K G0℄ is exited by means of a referenesignal r2(t) injeted at the input of G0 (see Figure 2.1). The signalr2(t) is hosen as a PRBS with variane �2r2 = 0:5541, while the outputstep disturbanes p(t) are simulated as a random binary sequene withvariane �2p = 0:01 and ut-o� frequeny at ! = 0:1� (normalized fre-queny). A realization of r2(t) and p(t) are shown in Figure 6.1. Thedisturbane p(t) is �ltered by 1=A0(z) and added to the output of thesystem. 256 data samples y(t) and u(t) (t = 1:::256) are measured, and
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data samplesFigure 6.1: A realization of r2(t) (dashed) and p(t) (solid)a model G(z; Æ̂) with the same ARX(4,2,3) struture as G0 is identi�edafter pre�ltering these data by �(z):Gmod = G(z; Æ̂) = z�3 0:1016 + 0:1782z�11� 1:986z�1 + 2:187z�2 � 1:824z�3 + 0:8897z�4 :(6.4)This identi�ed model Gmod will be used in the sequel as nominal modelin order to �nd a ontroller C that satis�es the spei�ations presentedat the end of Setion 6.1.1 when C is applied to Gmod.The estimated ovariane matrix of the parameter vetorÆ̂ = � �1:986 2:187 �1:824 0:8897 0:1016 0:1782 �T is given by:
PÆ = 10�3�0BBBBBB� 0:0840 �0:1166 0:1024 �0:0532 �0:0062 �0:0027�0:1166 0:2145 �0:1966 0:1009 0:0057 0:00080:1024 �0:1966 0:2184 �0:1197 �0:0074 �0:0041�0:0532 0:1009 �0:1197 0:0853 0:0063 0:0037�0:0062 0:0057 �0:0074 0:0063 0:0064 0:0021�0:0027 0:0008 �0:0041 0:0037 0:0021 0:0061

1CCCCCCA :(6.5)The 95% unertainty region Dl around Gmod = G(z; Æ̂) an be ex-



Pratial simulation examples 77pressed as follows:Dl = fG(z; Æ) j G(z; Æ) = ZNÆ1 + ZDÆ with Æ 2 Ulg (6.6)Ul = fÆ 2 R6�1 j (Æ � Æ̂)TP�1Æ (Æ � Æ̂) < 12:6g; (6.7)where ZN (z) = � 0 0 0 0 z�3 z�4 �ZD(z) = � z�1 z�2 z�3 z�4 0 0 � :The size � of the ellipsoid Ul is here equal to 12.6 sine Pr(�2(6) <12:6) = 0:95. This unertainty region Dl ontains the true system1sine we have that�Æ0 � Æ̂�T P�1Æ �Æ0 � Æ̂� = 4:7050 < 12:6where Æ0 = � �1:99185 2:20265 �1:84083 0:89413 0:10276 0:18123 �Tdenotes the parameter vetor of the true system:G0 = ZNÆ01 + ZDÆ0 : (6.8)6.1.3 Robust stability measure of DlThe results of Chapter 3 are now used in order to verify if Dl isstabilized by a large set of ontrollers stabilizing the identi�ed modelGmod = G(z; Æ̂). This an be ahieved by omputing the worst ase �-gap ÆWC(Gmod;Dl) between the identi�ed model Gmod and the plantsin the set Dl. For this purpose, we �rst ompute the worst ase hordaldistanes �WC(Gmod(ej!);Dl) at eah frequeny using the LMI toolsdeveloped in Setion 3.3. The worst ase hordal distanes are repre-sented in Figure 6.2 where they are ompared with the atual hordaldistanes �(Gmod(ej!); G0(ej!)) between the identi�ed model Gmod andthe true system G0.Aording to Lemma 3.1, sine Gmod is the enter of Dl, we anderive the worst ase �-gap ÆWC(Gmod;Dl) from the worst hordal dis-tanes as follows:ÆWC(Gmod;Dl) = max! �WC(Gmod(ej!);Dl) = 0:1085:1In pratie, G0 is unknown.
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OmegaFigure 6.2: �WC(Gmod(ej!);Dl) (solid) and �(Gmod(ej!); G0(ej!))(dashdot) at eah frequenyThe optimal stability margin bopt(Gmod) an also be omputed using (3.6)and is here equal to 0.4650. We may therefore onlude that the setC(Gmod;Dl) of Gmod-based ontrollers that are guaranteed by the �-gap theory to robustly stabilize Dl, is relatively large. We are thereforeinited to keep the pair fGmod Dlg in order to make the design of theontroller C and to validate this ontroller for stability and for perfor-mane.6.1.4 Control design based on GmodWe will now use the identi�ed model Gmod in order to �nd a ontrollerC that satis�es the spei�ations presented at the end of Setion 6.1.1when C is applied to Gmod. For this purpose, we an e.g. use therobust ontroller for exible transmission systems obtained by Nordinand Gutman using QFT design [67℄:C(z) = 0:0355 + 0:0181z�11� z�1 � 18:8379 � 43:4538z�1 + 26:4126z�21 + 0:6489z�1 + 0:1478z�2�0:5626 � 0:7492z�1 + 0:3248z�21� 1:4998z�1 + 0:6379z�2 � 1:0461 + 0:5633z�21 + 0:4564z�1 + 0:1530z�2�1:3571 � 1:0741z�1 + 0:4702z�21� 0:6308z�1 + 0:3840z�2 :



Pratial simulation examples 79The ontroller C has thus not really been designed from the identi�edmodel Gmod, but this ontroller satis�es nevertheless all spei�ationswith the model Gmod.We will now verify whether this ontroller satis�es these spei�a-tions with all plants inDl (and therefore also with the true system G0)2.Let us begin by the validation of C for stability.
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OmegaFigure 6.3: �(MDl(ej!)) at eah frequeny6.1.5 Controller validation for stabilityFollowing the proedure of Chapter 4, we build the dynami vetorMDl �ej!� orresponding to the andidate ontroller C, and we om-pute its stability radius at eah frequeny aording to Theorem 4.2.These stability radii are represented in Figure 6.3. The maximum valueof the stability radius ismax! �(MDl(ej!)) = 0:23842Sine we have hosen a ontroller C that satis�es the spei�ation of the benh-mark [59℄, we know that the spei�ations will be satis�ed with G0. However, thisfat does not imply that C will satisfy these spei�ations with all plants in Dl, andour objetive in this illustration is not to design a robust ontroller from Gmod, butto show that our methodology allows one to verify the spei�ations about the loop[C G0℄ using ontroller validation proedures based on the unertainty set Dl.



80 Pratial simulation examplesSine this maximum value is smaller than one, we may onlude thatthe ontroller C stabilizes all plants in the unertainty set Dl. Con-sequently, we an also guarantee that the \to-be-validated" ontrollerC(z) stabilizes the true exible transmission system G0. The �rst re-quirement presented at the end of Setion 6.1.1 (i.e. the stability of theahieved loop [C G0℄) is thus satis�ed.6.1.6 Controller validation for performaneThe seond requirement presented at the end of Setion 6.1.1 was thatthe designed ontroller should ensure a maximum value of less than 6 dBfor the sensitivity funtion. The third requirement was that the step dis-turbanes p(t) should be removed within 1.2s. The third requirement isthus a time-domain spei�ation. In order to may verify this last spe-i�ation within our frequeny domain framework, let us translate thetime-domain spei�ation into a frequeny domain spei�ation. Us-ing the approximation of the seond order system, we an assume thatthe rejetion time of a step disturbane is inversely proportional to theut-o� frequeny of the transfer funtion between the onsidered distur-bane and the output of the system. In this ase, this transfer funtionTpy(G0; C) is given by:Tpy(G0; C) = 1A0 � 11 +G0C = 11 + (ZD + ZNC)Æ0where we have used the fat that G0 = B0=A0 = (ZNÆ0)=(1 + ZDÆ0)(see (6.8)). Sine we know that the nominal transfer funtion Tpy(Gmod; C)satis�es the spei�ation of a rejetion time of 1.2s, the third require-ment an be stated as follows: the ut-o� frequeny of Tpy(G0; C) mustbe lose to the ut-o� frequeny of Tpy(Gmod; C).Sine the true system is unknown, we will verify whether the on-troller C ahieves these requirements with all systems in Dl. For thispurpose, we hoose two di�erent worst ase performane riteria. The�rst one is the largest modulus of the sensitivity funtion T22 de�nedin (5.3) i.e. tDl(!; T22). This worst ase performane riterion an beomputed using the LMI proedure presented in Theorem 5.1. The se-ond worst ase performane riterion tDl(!; Tpy) is the largest modulusof the transfer funtion Tpy:tDl(!; Tpy) = maxG(ej! ;Æ)2D ���� 11 + (ZD(ej!) + ZN (ej!)C(ej!))Æ ����



Pratial simulation examples 81This quantity an not be omputed by the LMI proedure of Theo-rem 5.1. However, it is easy to develop a similar LMI proedure in orderto ompute tDl(!; Tpy) exatly. Using these worst ase performaneriteria, the ontroller C is termed validated for performane if� max! tDl(!; T22) < 6 dB� the minimal ut-o� frequeny of Tpy(G(z; Æ); C) for a plant G(z; Æ)in Dl that an be dedued from tDl(!; Tpy), is lose to the ut-o�frequeny of Tpy(Gmod; C).Let us now ompute these riteria. Figure 6.4 presents tDl(!; T22),and ompares it with the nominal sensitivity jT22(Gmod; C)j and theahieved sensitivity jT22(G0; C)j. Figure 6.5 does the same for the trans-fer funtion Tpy. In Figure 6.4, we observe thatmax! tDl(!; T22) = 5 dB < 6 dB:In Figure 6.5, we observe that the minimal ut-o� frequeny of Tpy(G(z; Æ);C) for a plant G(z; Æ) in Dl is equal to 0.014 (tDl(!; Tpy) = 0 dB in! = 0:014) and that the ut-o� frequeny of Tpy(Gmod; C) is equal to0.0153. The minimal ut-o� frequeny is thus very lose to the ut-o�frequeny of Tpy(Gmod; C). The ontroller C is thus validated for per-formane. In other words, the ontroller C satis�es both performanespei�ations with all plants in Dl. As a onsequene, the ontroller Cis also guaranteed to ahieve these performane requirements with thetrue exible transmission system G0.With the ontroller validation proedures for stability and for per-formane, we have thus been able to prove that the ontroller C \de-signed from Gmod", ahieves the spei�ations presented at the end ofSetion 6.1.1 with the true system G0. Our objetive is thus reahed.6.1.7 ConlusionsLet us summarize what we have ahieved in this setion. Our objetivewas to apply our methodology to the true exible transmission systemG0 in order to verify that a ontroller C, satisfying a number of spei�-ations with the identi�ed model, satis�es also these spei�ations withthe unknown G0. For this purpose, we have performed a validation ex-periment on the true system yielding a model Gmod and an unertainty
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Figure 6.4: tDl(!; T22) (solid), jT22(G0; C)j (dashed), jT22(Gmod; C)j(dashdot) at eah frequenyregion Dl ontaining the true system (with a probability of 95%). Therelatively small worst ase �-gap between the model and the plants inDl has inited us to keep the pair fGmod Dlg in order to design aontroller and to validate this ontroller for stability and performane.Then, a robust ontroller C that satis�es the performane spei�ationswith the model Gmod, has been hosen. Using our ontroller validationproedures, we have been able to prove that the hosen ontroller C alsoahieves the desired level of performane with all plants in the uner-tainty set Dl. As a onsequene, the ontroller C an be applied to thetrue exible transmission system sine we are assured that the ahievedperformane will be satisfatory (modulo the probability level of 95%for the presene of G0 in Dl).6.2 Ferrosilion prodution proessThe �rst illustration was representative of a mehanial engineering on-trol problem, in whih there was no stohasti noise, and where the on-trol objetive was one of traking and rejetion of step disturbanes. Inorder to illustrate the generality of our validation theory, we now presentan appliation that is representative of industrial proess ontrol appli-ations, in whih the ontrol objetive is one of rejetion of stohasti
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Figure 6.5: tDl(!; Tpy) (solid), jTpy(G0; C)j (dashed), jTpy(Gmod; C)j(dashdot) at eah frequenydisturbanes. In this seond illustration, we will assume that the modelGmod for ontrol design has been given a-priori.6.2.1 Problem settingThe plant model and the ontrollers used in this simulation example aretaken from a paper by Ingason and Jonsson [54℄. Ferrosilion is a two-phase mixture of the hemial ompound FeSi2 and the element silion.The balane between silion and iron is regulated around 76% of thetotal weight in silion, 22% in iron and 2% in aluminium by adjustingthe input of raw materials to the furnae. Those are harged bathwizeto the top of the furnae, eah bath onsisting of a �xed amount ofquartz (SiO2) and a variable quantity of oal/oke (C) and iron oxyde(Fe2O3). The quantity of oal/oke whih is burned in the furnae doesnot inuene the silion ratio in the mixture, hene the ontrol input isthe amount of iron oxyde.The authors of [54℄ have obtained the following ARX model for theproess: y(t) + ay(t� 1) = bu(t� 1) + d+ e(t) (6.9)where the sampling period is one day, y(t) is the perentage of silionin the mixture that must be regulated around 76%, u(t) is the quantity



84 Pratial simulation examplesof iron oxyde in the raw materials (expressed in kilogrammes), d is aonstant and e(t) is a stohasti disturbane. The nominal values of theparameters and their standard deviations are:a = �0:44; b = �0:0028; d = 46:1;�a = 0:07; �b = 0:001; �d = 5:6: (6.10)Here, for the sake of illustrating our theory, we make the assumptionthat the true system isG0(z) = b0z�11 + a0z�1 = �0:0032z�11� 0:34z�1 ;H0(z) = 11 + a0z�1 = 11� 0:34z�1 ; d0 = 44:The nominal model hosen for ontrol design is the one obtained byIngason and Jonsson [54℄:Gmod(z) = bz�11 + az�1 = �0:0028z�11� 0:44z�1 ;Hmod(z) = 11 + az�1 = 11� 0:44z�1 ; d = 46:1;This model Gmod was used by the authors of [54℄ to ompute a GPController. The ontrol law that minimizes the ost funtionJu = E 24 2Xj=1 (y(t+ j)� r(t+ j))2 + 2Xj=1 � (�u(t+ j � 1))235where �(z) = 1� z�1, is given byu(t) = � 1 0 � �HTH + F T�F ��1 �HT (w(t)� v(t)) � F T�g(t)�(6.11)where H = � b 0�ab b � ;F = � 1 0�1 1 � ;v(t) = � �ay(t) + da2y(t)� ad+ d � ;w(t) = � r(t) r(t) �T ;g(t) = � �u(t� 1) 0 �T ;� = �I:



Pratial simulation examples 85� is a tuning parameter. The resulting ontroller is a ontroller C�(z)made up of three parts:u(t) = C�(z)0� r(t)�y(t)1 1A = � Cr�(z) Cy�(z) Cd�(z) �0� r(t)�y(t)1 1A(6.12)whereCr�(z) = b3 + 2b�� ab�(b4 + 3b2�+ a2b2�+ �2 � 2ab2�)� (b2�+ �2)z�1 ;Cy�(z) = � ab3 + ab�� a2b�+ a3b�(b4 + 3b2�+ a2b2�+ �2 � 2ab2�)� (b2�+ �2)z�1 ;Cd�(z) = � b3 + b�+ b�(1� a)2(b4 + 3b2�+ a2b2�+ �2 � 2ab2�)� (b2�+ �2)z�1 dThe part Cd�(z) is the part of the ontroller whose objetive is to rejetthe onstant perturbation d0 and the part Cy�(z) is the only part whihis important for stability analysis. The referene signal r(t) is generallyonstant and given by r(t) = 76.Objetive. Our objetive is to analyze the robustness properties ofthe GPC ontroller C�(z) with � = 0:0007 in order to may apply thisontroller to the true system G0 with on�dene that is to say with theassurane that the behaviour of the loop [C�=0:0007 G0℄ will be satisfa-tory with respet to the following requirements i.e.� stability of the loop [C�=0:0007 G0℄� rejetion of the stohasti noise v(t) = H0e(t).The ontroller C ahieves of ourse these spei�ations with the modelGmod.6.2.2 Validation experimentsSine the true system G0 is unknown, we need to perform a validationexperiment in order to design an unertainty region ontaining the truesystem. In fat, we will here perform two validation experiments: onein open-loop and the other one using diret losed-loop identi�ation.



86 Pratial simulation examplesOpen-loop validation experimentThe \true plant" model (G0; H0) was exited with u(t) hosen as aPRBS with variane �2uol = 20, whih is the maximum input varianeadmissible for this proess [54℄. The noise e(t) was hosen as a Gaussianwhite noise sequene with variane �2e = 0:078, whih orresponds tothe noise ating on the real proess as shown by experiments made bythe authors of [54℄. The variane of the output was then �2yol = 0:0884.Reall that the validation experiment, i.e. the onstrution of an uner-tainty set Dol, onsists of performing a PE identi�ation using an un-biased model struture. Therefore, 300 input-output data samples wereolleted, orresponding approximately to one year of measurements.These data were used to identify an ARX model with exat strutureG(z; Æol) = Æ2z�11 + Æ1z�1 ; H(z; Æol) = 11 + Æ1z�1 : (6.13)We foundÆ̂ol = � Æ̂1̂Æ2 � = � �0:3763�0:0073 � ; PÆol = � 2:8131 � 10�3 �1:2784 � 10�5�1:2784 � 10�5 1:4887 � 10�5 � ;(6.14)We then design the 95% unertainty region Dol around G(z; Æ̂ol) follow-ing the proedure of Setion 2.2.2:Dol = fG(z; Æ) j G(z; Æ) = ZNÆ1 + ZDÆ with Æ 2 UolgUol = fÆ 2 R2�1 j (Æ � Æ̂ol)TP�1Æol (Æ � Æ̂ol) < 5:99g;where ZN (z) = � 0 z�1 � and ZD(z) = � z�1 0 � :The size � of the ellipsoid Uol is here equal to 5.99 sine Pr(�2(2) <5:99) = 0:95. The obtained unertainty region Dol ontains as well thein pratie unknown true system G0 as the hosen model Gmod.Closed-loop validation experimentThe losed-loop validation was performed with a sub-optimal GPC on-troller obtained by setting � = 0:001 in (6.12). We added a PRBS signalto the onstant referene r(t) = 76 suh that we obtained �2ul = 20.



Pratial simulation examples 87The variane of r(t) was then �2r = 0:014, the noise e(t) having the sameproperties as in open-loop validation. With these settings, the outputvariane was �2yl = 0:0880. Observe that the input variane is the sameas in open loop, and that the output variane is very lose to that ofthe open-loop experiment. Again, 300 input-output data samples wereolleted and used to identify an ARX model with the same struture asin open-loop validation (6.13), using a diret predition error method.We foundÆ̂l = � Æ̂1̂Æ2 � = � �0:3575�0:0067 � ; PÆl = � 2:8323 � 10�3 �8:7845 � 10�6�8:7845 � 10�6 6:2416 � 10�6 � :(6.15)We then design the 95% unertainty region Dl around G(z; Æ̂l) follow-ing the proedure for diret losed-loop identi�ation of Setion 2.2.4.1:Dl = fG(z; Æ) j G(z; Æ) = ZNÆ1 + ZDÆ with Æ 2 UlgUl = fÆ 2 R2�1 j (Æ � Æ̂l)TP�1Æl (Æ � Æ̂l) < 5:99g;whith the same ZN and ZD as in Dol. As Dol, this unertainty region Dlontains as well the in pratie unknown true system G0 as the modelGmod.6.2.3 Comparison of Dol and DlThe worst ase �-gap is now used to ompare the two unertainty setsdedued from the two validation experiments. For this purpose, we�rst ompute the worst ase hordal distanes at eah frequeny for Doland Dl using the LMI tools developed in Setion 3.3. Aording toLemma 3.1 and sine Gmod lies in both unertainty sets, we an derivethe worst ase Vinniombe distanes from the worst hordal distanesas follows:ÆWC(Gmod;Dol) = max! �WC(Gmod(ej!);Dol) = 0:0225ÆWC(Gmod;Dl) = max! �WC(Gmod(ej!);Dl) = 0:0156Sine the optimal stability margin bopt(Gmod) is equal to 0.99, the setsC(Gmod;Dol) and C(Gmod;Dl) of ontrollers stabilizing Gmod that areguaranteed to robustly stabilize Dol and Dl, respetively, are relatively



88 Pratial simulation exampleslarge. Indeed, the worst ase �-gaps ÆWC(Gmod;Dol) and ÆWC(Gmod;Dl)are very small with respet to bopt(Gmod). Consequently, both uner-tainty sets are relatively well tuned for robustly stable ontroller designbased on Gmod. We therefore deide to keep and to apply the ontrollervalidation proedures to both unertainty sets.6.2.4 Controller validation for stabilitySuÆient testIn this illustration, we also onsider the suÆient robust stability on-dition that an be dedued from the worst ase �-gap in order to showthat this ondition an be onservative with respet to the neessaryand suÆient ondition developed in Chapter 4.The ontroller C�=0:0007 ahieves a very small stability margin bGmodCy�=0:0007withGmod equal to 0.0169. The ontroller C�=0:0007 lies thus in C(Gmod;Dl)but not in C(Gmod;Dol) sine we have thatÆWC (Gmod; Dol) > bGmod C�=0:0007 = 0:0169 > ÆWC (Gmod; Dl) : (6.16)Therefore, from this suÆient test, we an onlude that C�=0:0007 sta-bilizes all plants in the set Dl. To make an undoubted statement aboutthe set Dol, we will need to use the neessary and suÆient test devel-oped in Chapter 4.Neessary and suÆient testWe �rst verify if C�=0:0007 stabilizes the enters of Dol and Dl. Sine itis the ase, we build the dynami vetorsMDol �ej!� andMDl �ej!� or-responding to the andidate ontroller C�=0:0007, and we ompute theirstability radii aording to Theorem 4.2. Their respetive maximumvalues are max! � �MDol �ej!�� = 0:6572 < 1; (6.17)max! � �MDl �ej!�� = 0:2111 < 1; (6.18)Sine these two values are smaller than one, Theorem 4.2 on�rms thatC�=0:0007 stabilizes all systems in the unertainty set Dl, but also showsthat C�=0:0007 also stabilizes all systems in Dol. Suh quantitative result



Pratial simulation examples 89for a ontroller with a so small stability margin as C�=0:0007 on�rms our�rst qualitative observation that was that both unertainty sets are welltuned for robustly stable ontroller design based on Gmod (and this eventhough that qualitative observation is based on a suÆient onditionthat would have invalidated the partiular ontroller C�=0:0007 when Dolis onsidered (see (6.16))).Beside these onsiderations, the main onlusion we an derive fromthese stability tests is that the \to-be-validated" ontroller C�=0:0007is guaranteed to stabilize the true ferrosilion prodution proess G0.Therefore, the �rst of the requirements presented at the end of Se-tion 6.2.1 (i.e. the stability of the ahieved loop [C�=0:0007 G0℄) is satis-�ed.6.2.5 Controller validation for performaneThe seond requirement presented at the end of Setion 6.2.1 was torejet the noise v(t) = H0(z)e(t), whih is essentially loated at lowfrequenies (H0(ej!) is a �rst order low-pass �lter; see Figure 6.6). Aperformane spei�ation in the frequeny domain is therefore that thesensitivity funtion T22(G0; Cy�=0:0007(z)) = 1=(1 + G0Cy�=0:0007(z)) below at low frequenies in order to attenuate v(t). We thus de�ne theworst-ase performane riterion as the largest modulus of the sensitivityfuntion T22 de�ned in (5.3) i.e. tD(!; T22). This worst ase performaneriterion an be omputed using the LMI proedure presented in Theo-rem 5.1. We will all the ontroller C�=0:0007(z) validated if tD(!; T22)is high-pass with max! tD(!; T22) reasonably small. The Bode diagramsof the worst-ase and ahieved sensitivity funtions are depited in Fig-ure 6.6.Clearly, the ontroller is validated by the losed-loop validation ex-periment yielding Dl but not by the open-loop experiment yielding Dol.The main onlusion we an derive from this performane test is thatthe ontroller C�=0:0007 will suÆiently derease the output varianewhen it will be applied to G0. We have indeed proved that, for one ofthe two unertainty sets ontaining G0 (i.e. Dl), the worst ase modulusof the sensitivity funtion is a high pass �lter with a reasonably smallreasonane peak allowing rejetion of the noise v(t).
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Figure 6.6: Open-loop and losed-loop ontroller validation for perfor-mane: tDol(!; T22) (��), tDl(!; T22) (|), jT22(G0; C�=0:0007)j (��),jT22(Gmod; C�=0:0007)j (� � �) and jH0j (�)Remark. Even if Dol is a \good" unertainty region with respet torobustly stable ontroller design with Gmod (i.e. it has a large set of sta-bilizing ontrollers), it appears that the worst ase performane ahievedby C�=0:0007 with the plants in Dol is really bad. This is a onsequene ofthe fat that the worst ase �-gap is only an indiator of robust stabilityand not an indiator of robust performane.6.2.6 ConlusionsLet us summarize what we have ahieved in this seond illustration. Wehave applied our methodology to the ase of a hemial proess wherethe ontrol objetive is the rejetion of stohasti disturbanes. Wehave hosen a model Gmod for the true ferrosilion prodution proessG0. From the model Gmod, a GPC ontroller has been designed. Wehave performed validation experiments on the true system leading totwo unertainty sets ontaining the true system (with a probability of95%). The results of Chapter 3 have then shown that both unertaintysets have a large robustly stabilizing ontroller set. After that, usingour ontroller validation proedures, we have been able to prove thatthe onsidered ontroller stabilizes and ahieves suÆient performanewith all plants in one of the unertainty set. As a onsequene, the



Pratial simulation examples 91ontroller an be applied to the true system sine we are assured thatthe ahieved performane will be satisfatory (modulo the probabilitylevel of 95% for the presene of G0 in the unertainty set).
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Chapter 7Frequeny domain image ofa set of linearlyparametrized transferfuntionsIn the previous hapters, we have analyzed the set D of parametrizedtransfer funtions ontaining the true system at a ertain probabilitylevel and we have given some robustness tools for suh a set. In thishapter, we will do something rather di�erent : we will analyze the im-age of suh a set in the Nyquist plane. The desription of the image ofD in its general struture is quite ompliated. Therefore, we will limitus to unertainty sets D where the plants are linearly parametrized. Itis to be noted that suh struture will be used in the next hapter inorder to extend our result to the ase of biased model strutures.For model strutures that are linear in the parameter vetor �, weshow that the image in the Nyquist plane of a parametri on�dene re-gion D de�ned by an ellipsoid U� in the parameter spae is a frequenydomain on�dene region L made up of ellipses U(!) at eah frequenyin the Nyquist plane. The properties of the inverse image of this fre-queny domain on�dene region in parameter spae are also analyzed.We establish that the inverse image C�(U(!)) of eah ellipse U(!) in theparameter spae is a muh larger volume than the initial ellipsoid U�,sine the mapping between the parametri and frequeny domains is notbijetive. We also show that this inverse image C�(U(!)) is di�erent at93



94 Frequeny domain image of a set of linearly parametrized...eah frequeny. Consequently, the inverse image of the whole frequenydomain on�dene region L is the intersetion of these di�erent volumesC�(U(!)) over the whole frequeny range. We show by an examplethat this intersetion may be a strit subset of the initial ellipsoid U�in parameter spae. The on�dene region L in the Nyquist plane isthus generally the image of more parameter vetors � than those in U�.Consequently, the probability level linked to the on�dene region L islarger than the probability level linked to the on�dene region U� inparameter spae.Our de�nition of the image of the parametri on�dene region D inthe Nyquist plane is very lose to the onept of value set of a familyof parametrized polynomials (see e.g. [4℄ and referenes therein). Thesevalue sets have been analyzed for a large amount of onstraints on theparameters (e.g. polytope, sphere, ...). The general use of these valuesets is to verify whether a family of polynomials is di�erent from zeroat eah frequeny and is therefore stable. The results presented in thishapter are nevertheless broader than those in [4℄. Indeed, our resultsdetermine not only the image L of D in the Nyquist plane, but also de-termine the inverse image of L in the parameter spae. Moreover, sinewe onsider here a probabilisti framework as opposed to the determin-isti framework in [4℄, our results give in addition the probability levellinked to the image L of the on�dene region D in the Nyquist plane.Chapter outline. In Setion 7.1, we present, in a very general way,the linearly parametrized systems we will onsider and we de�ne a set Dthat ontains the linearly parametrized systems whose parameter vetoris onstrained to lie in an ellipsoid. We show in Setion 7.2 that thisgeneral problem applies to the ase of unertainty sets dedued frompredition error identi�ation. In Setion 7.3, we present two theoremsthat desribe the image of an ellipsoid by a nonbijetive mapping, as wellas the inverse image de�ned by suh mapping. In Setion 7.4, we presentthe frequeny domain set L, image of the set D in the Nyquist plane. InSetion 7.5, we analyze the inverse image of the set L. In Setion 7.6,we de�ne the probability level linked to L and give the value of thisprobability level. In the last setions, we give some omments aboutthe ase of model strutures that are not linearly parametrized and we�nish by an illustration and some onlusions.



Frequeny domain image of a set of linearly parametrized... 957.1 Problem statementAs stated in the introdution, we onsider linearly parametrized transferfuntions. The ase of nonlinearly parametrized transfer funtions willbe briey disussed in Setion 7.8. Let us thus onsider the followingsystem desription: G(z; �) = �G(z) + �(z)� (7.1)with � 2 Rk�1 the parameter vetor, �G(z) a known transfer funtion and�(z) a known row vetor of transfer funtions. Let us further assumethat � has a Gaussian probability density funtion with zero mean andovariane P� 2 Rk�k i.e. � � N (0; P�) (7.2)We have therefore: �TP�1� � � �2(k) (7.3)where �2(k) is the hi-square probability density funtion with k degreesof freedom.Let us now write the frequeny response g(ej!; �) of G(z; �) at thefrequeny ! in the following form:g(ej!; �) �= � Re(G(ej!; �))Im(G(ej!; �)) �= �g(ej!)z }| {� Re( �G(ej!))Im( �G(ej!)) �+ T (ej!)z }| {� Re(�(ej!))Im(�(ej!)) � � (7.4)The frequeny response vetor g(ej!; �) has thus a Gaussian proba-bility density funtion with mean �g(ej!) and ovariane Pg(!) =ov((g(ej! ; �)��g(ej!))(g(ej! ; �)��g(ej!))T ) = T (ej!)P�T (ej!)T 2 R2�2.We have thus g(ej!; �) � N (�g(ej!); Pg(!))(g(ej! ; �)� �g(ej!))TPg(!)�1(g(ej!; �)� �g(ej!)) � �2(2) (7.5)The results presented in (7.5) are very ommon and an e.g. be foundin [47℄. However, these results do not give a response to some important



96 Frequeny domain image of a set of linearly parametrized...questions. If we design a on�dene ellipsoid in the parameter spaeusing (7.3), is the image of suh on�dene ellipsoid in the Nyquistplane a on�dene region with the same probability level? How anwe relate this image with the known probability density funtion ofthe frequeny response (7.5)? If we design a on�dene ellipse at eahfrequeny using (7.5) and de�ne a set by onneting all these ellipses,what is the inverse image of that set in parameter spae? In orderto answer these questions, we will onsider throughout this paper thefollowing on�dene ellipsoid in parameter spae and the orrespondingregion in transfer funtion spae. We will hoose a probability level of0.95 for these on�dene regions.De�nition 7.1 Let us onsider the parametrized model struture givenin (7.1) and the probability density funtion of the parameter vetor �given in (7.2). The ellipsoid U� of size �:U� = f� j �TP�1� � < �g; (7.6)with � suh that Pr(�2(k) < �) = 0:95, is a on�dene ellipsoid ofprobability 0.95 in the parameter spae. We de�ne the set D of transferfuntions that orrespond to the parameters � 2 U�:D = fG(z; �) j � 2 U�g (7.7)The probability level �(D) linked to D is thus given by �(D) �= Pr(G(z; �) 2D) = 0:95.In the next setions, we desribe the image in the Nyquist plane ofthe unertainty region D and we analyze the properties of suh image,as well as its inverse image, with respet to the probability level. Butbeforehand, we relate the general problem presented in this setion tothe partiular ase of the unertainty sets that an be derived from PEidenti�ation.7.2 Link with the unertainty set dedued fromPE identi�ationFor this purpose, let us onsider the following linearly parametrizedmodel struture. M = fG(z; Æ) j G(z; Æ) = Z(z)Æg; (7.8)



Frequeny domain image of a set of linearly parametrized... 97where Æ 2 Rk�1 is the parameter vetor and Z(z) is a transfer vetorontaining known transfer funtions (suh as Laguerre or Legendre ba-sis funtions). Aording to Proposition 2.2, if the true system an bedesribed as a plant G(z; Æ0) in M, then a PE identi�ation proedurewith the model struture M and N input-output data delivers an un-biased estimate Æ̂ of the true parameter vetor and an estimate PÆ ofthe ovariane matrix C of Æ̂. The estimate Æ̂ an be onsidered as therealization of a Gaussian distribution with mean Æ0 and ovariane C.In order to design on�dene ellipsoids ontaining the true system at aertain probability level, we an then onsider the following distribution:(Æ � Æ̂)TP�1Æ (Æ � Æ̂) � �2(k) (7.9)Using the last expression and the proedure desribed in Chapter 2, wean design an unertainty set Dpei ontaining the true system G(z; Æ0)at a ertain probability level, say 95 %. This unertainty set Dpei hasthe following struture:Dpei = fG(z; Æ) j G(z; Æ) = Z(z)Æ with Æ 2 Upeig (7.10)Upei = fÆ j (Æ � Æ̂)TP�1Æ (Æ � Æ̂) < �g; (7.11)where � is suh that Pr(�2(k) < �) = 0:95. The unertainty set Dpeian be rewritten in the formalism of Setion 7.1. Indeed, let us denote� �= Æ � Æ̂, �G �= Z(z)Æ̂ and P� �= PÆ. Then, (7.10) and (7.11) are,respetively, equivalent with:Dpei = fG(z; �) j G(z; �) = �G(z) + Z(z)� with � 2 UpeigUpei = f� j �TP�1� � < �g;By omparing these last expressions with (7.7) and (7.6), we see thatthe problem of �nding the image in the Nyquist plane of the unertaintyset Dpei dedued from PE identi�ation and ontaining the true systemwith probability 95 %, in the ase where that true system is linearlyparametrized, an be solved by solving the general problem presentedin the previous setion.7.3 Linear algebra preliminariesThe general problem presented in Setion 7.1 onsists of �nding (and ofanalysing) the image in the Nyquist plane of the set of plants D de�ned



98 Frequeny domain image of a set of linearly parametrized...in (7.7). We �rst present two theorems that desribe properties of amapping T between a real vetor y and another real vetor x of lowerdimension. This mapping has the following expressionx = Ty (7.12)where y 2 Rk�1, x 2 Rn�1 (n < k) are real vetors, and T 2 Rn�k is areal matrix of rank n.Let us �rst reall a well-known lemma that will be useful to provethe �rst theorem.Lemma 7.1 Let us onsider the partitioned symmetri positive de�nitematrix P 2 Rk�k: P = � P11 P12P T12 P22 �with P11 2 Rn�n, P12 2 Rn�(k�n) and P22 2 R(k�n)�(k�n). Let us alsoonsider two real vetors x 2 Rn�1 and �x 2 R(k�n)�1 and an ellipsoidUx�x de�ned as:Ux�x = ( � x�x � j � x�x �T P�1� x�x � < 1 ) :Then the set Ux Ux �= fx j � x�x � 2 Ux�xg (7.13)is also an ellipsoid given byUx = fx j xTP�111 x < 1g (7.14)Proof. see Appendix A.1. �Note that Ux is not the intersetion of Ux�x with the subspae �x = 0; itis a larger set. Let us now present our two theorems about the mappingT de�ned in (7.12).Theorem 7.1 Let us onsider the mapping T de�ned in (7.12) and theellipsoid Uy of size � in the y-spae:Uy = fy j yTP�1y y < �g; (7.15)



Frequeny domain image of a set of linearly parametrized... 99with Py 2 Rk�k a positive de�nite matrix. The image Ux of Uy by themapping T i.e. Ux �= fx j x = Ty with y 2 Uyg is an ellipsoid in thex-spae given by Ux = fx jxTP�1x x < �g; (7.16)with Px = TPyT T 2 Rn�n.Proof. Let us �rst omplete the mapping T by generating a nonsingularmapping eT : � x�x � = eTz }| {� TT � y (7.17)suh that ~T 2 Rk�k has rank k. Using eT , we have thatyTP�1y y < �() � x�x �T P�1z }| {eT�TP�1y eT�1� x�x � < � (7.18)Proving Theorem 7.1 is thus equivalent to proving that (7.16) is thedomain where x is onstrained to lie when (7.18) holds. This followsimmediately from Lemma 7.1, noting that if P = eTPy eT T , then Px =P11 = TPyT T . �Theorem 7.2 Let us onsider the mapping T and the ellipsoids Uy andUx de�ned in (7.12), (7.15) and (7.16), respetively. De�ne the inverseimage Cy of Ux using the mapping T asCy �= fy j x = Ty 2 Uxg; (7.19)Then Cy is a volume given byCy = fy j yTRCy < �g; (7.20)with RC = T TP�1x T , a singular matrix 2 Rk�k. Moreover, the volumeCy has the following properties:� The matrix RC de�ning Cy has rank n i.e. it has k � n zeroeigenvalues. The volume Cy has therefore k � n in�nite mainaxes. The diretions yi (i = 1:::k � n) of these in�nite main axesare the eigenvetors orresponding to the null eigenvalues of RC .Moreover, these eigenvetors yi belong to the null spae of T i.e.Tyi = 0.



100 Frequeny domain image of a set of linearly parametrized...� The ellipsoid Uy is inluded in Cy.Proof. See Appendix A.2. �Comments.� Sine the matrix T has rank n < k, the mapping (7.12) is notbijetive. This explains the fat that the image of Uy by the map-ping (7.12) is exatly Ux and that the inverse image of Ux is alarger volume Cy ontaining Uy.� In the partiular ase where k = 3 and n = 2, Ux is then an ellipse(Theorem 7.1) and Cy is a ylinder with in�nite axis. The axis ofthe ylinder is in the diretion of the eigenvetor orresponding tothe single null eigenvalue (Theorem 7.2).7.4 Image of D in the Nyquist planeTheorem 7.1 tells us that the image of an ellipsoid by a linear mappinginto a smaller dimensional spae is also an ellipsoid. This theorem willnow be used in order to �nd the frequeny domain region (or dynamiregion) that is the image of D in the Nyquist plane. This frequenydomain region is de�ned via a onstraint on the frequeny response ofthe plants in this region at every frequeny. The general expression of afrequeny domain region an e.g. be written as follows:L = fG(z) j g(ej!) 2 U(!) 8!g; (7.21)where g(ej!) = � Re(G(ej!)) Im(G(ej!)) �T and U(!) is the partiu-lar domain where the frequeny response vetor of the plants G(z) 2 Lis onstrained to lie at the frequeny !.We are thus looking for the frequeny domain region L that orre-sponds to the image of the set D in the Nyquist plane. Let us �rst de�nethis notion properly.De�nition 7.2 (image of D in the Nyquist plane) Consider the setD of transfer funtions de�ned in (7.7) and the general expression of afrequeny domain region L given in (7.21). The image of D in theNyquist plane is the frequeny domain region L de�ned by (7.21) withU(!) de�ned as follows, at eah frequeny !:



Frequeny domain image of a set of linearly parametrized... 101U(!) = fg(ej!) j g(ej!) = g(ej!; �) for some � 2 U�g (7.22)with g(ej!; �) de�ned in (7.4).Important omments. De�nition 7.2 tells us� that the image L of D in the Nyquist plane is a set ontaining theimage of all plants in D;� that all \points g(ej!) 2 U(!)" at a frequeny ! are the image ofsome plant in D.However, if we randomly selet frequeny funtions f(ej!) 2 L, for! 2 [0 �℄, then most of suh funtions will not be in D, i.e. formost of suh funtions f(ej!) 2 L, there will not exist a � suh thatf(ej!) = g(ej!; �) 8! with g(ej!; �) de�ned by (7.4).Using the mapping (7.4) between the spae of parametrized transferfuntions G(z; �) (or parameter spae) and the frequeny domain spae,and the results of Theorem 7.1, we an onstrut an expliit expressionof the image L of D in the Nyquist plane.Theorem 7.3 Consider the set D of transfer funtions G(z; �) = �G(z)+�(z)� presented in De�nition 7.1, and the mapping (7.4) between pa-rameter spae and frequeny domain spae. The image of D in theNyquist plane (see De�nition 7.2) is a frequeny domain region L havingthe following expression.L = fG(z) j g(ej!) 2 U(!) 8!g (7.23)U(!) = fg 2 R2�1 j (g � �g(ej!))TP (!)�1(g � �g(ej!)) < �g (7.24)with P (!) = T (ej!)P�T (ej!)T ,g(ej!) = � Re(G(ej!))Im(G(ej!)) � and �g(ej!) = � Re( �G(ej!))Im( �G(ej!)) � :The image L of D in the Nyquist plane is thus made up of ellipses U(!)at eah frequeny around the frequeny response of the known transferfuntion �G(z). The ellipse U(!) at a partiular frequeny an thereforebe onsidered as the image of D in the Nyquist plane at this frequeny.



102 Frequeny domain image of a set of linearly parametrized...Proof. In order to establish the proof of Theorem 7.3, we need to provethat the expression (7.24) of U(!) is equivalent with (7.22). The resultfollows diretly from Theorem 7.1 by onsidering the mapping (7.4) (i.e.g(ej!; �)� �g(ej!) = T (ej!)�) at a partiular frequeny !. �Remarks. It is to be noted that the matrix P (!) de�ning U(!) is equalto the ovariane matrix Pg(!) of g(ej! ; �) (see (7.5)). It is also to benoted that, at the frequenies ! = 0 and ! = �, the ellipse U(!) degen-erates into a line segment. The matrix P (!) is no longer nonsingular.However, beause Im(G(ej!)) = 0 at ! = 0 and ! = �, one only needthe �rst entry of P (!) to be nonzero.7.5 Inverse image of LIn the previous setion, we have determined the frequeny domain re-gion L, image of the set D of parametrized transfer funtions G(z; �).This set L, made up of ellipses U(!) at eah frequeny, is de�ned by theproperty (7.22). In partiular, L ontains all plants in D. The set L isnevertheless not equivalent to D. Indeed, we prove that there are moreplants in L than those in D. These additional plants obviously inludeplants having a struture di�erent from G(z; �) (i.e. they annot be de-sribed as G(z; �) for any � (see (7.1))), but surprisingly, also inludeplants having the struture G(z; �) but for � 62 U�.In this hapter, we will fous on the additional plants in L havingthe struture G(z; �) given in (7.1) but for � 62 U�. The fat that suhadditional plants exist in L is a onsequene of the fat that the map-ping (7.4) is not bijetive1 sine (7.4) maps a k-dimensional spae intothe 2-dimensional frequeny domain spae. In order to establish thatadditional plants G(z; �) lie in L, the inverse image of L in the spae ofparametrized transfer funtions G(z; �) has to be determined. For thispurpose, it is useful to �rst analyze the inverse image D(U(!)), via themapping (7.4), of one ellipse U(!) of L in the spae of parametrizedtransfer funtions G(z; �).Proposition 7.1 Consider a partiular frequeny ! and the ellipse U(!)de�ned in (7.24) whih is the image of the set D in the Nyquist plane at1The mapping T (ej!) is only bijetive if the size k of the vetor � is equal to two.



Frequeny domain image of a set of linearly parametrized... 103the frequeny !. Using the mapping (7.4) from � to g(ej!; �), de�ne theinverse image of U(!) in the parameter spae asC�(U(!)) = f� j g(ej!; �) 2 U(!)g: (7.25)Correspondingly, de�ne the inverse image of U(!) in the spae ofparametrized transfer funtions G(z; �) asD(U(!)) = fG(z; �) j g(ej!; �) 2 U(!)g: (7.26)Then the set C�(U(!)) is a volume in the �-spae with k�2 in�nite axesde�ned as:C�(U(!)) = f� 2 Rk�1 j �TT (ej!)TP (!)�1T (ej!)� < �g: (7.27)Moreover, U� � C�(U(!)) and D � D(U(!)).Proof. The expression (7.27) of C�(U(!)) follows diretly from The-orem 7.2 by substituting U(!) for Ux, U� for Uy and C�(U(!)) for Cy.It then follows from the last part of Theorem 7.2 that U� is a subsetof C�(U(!)). Now observe from (7.25) and (7.26) that D(U(!)) anequivalently be desribed asD(U(!)) = fG(z; �) j � 2 C�(U(!))g (7.28)It then follows from U� � C�(U(!)) and the de�nitions (7.7) and (7.28)that D � D(U(!)). �Proposition 7.1 tells us that the ellipse U(!) is the image of moreplants G(z; �) than those in D. These additional plants G(z; �out) with�out 2 C�(U(!)) n U�, have the property that 9 �in 2 U� suh that, atfrequeny !, g(ej!; �out) = g(ej!; �in);sine U(!) is de�ned by (7.22).It is also important to note that the inverse image D(U(!)) of U(!)in the spae of parametrized transfer funtions G(z; �) is di�erent ateah frequeny, beause the inverse image C�(U(!)) in parameter spaeis di�erent at eah frequeny. In other words, U(!) is the image of a setD(U(!)) of plants G(z; �) that are di�erent at eah frequeny.



104 Frequeny domain image of a set of linearly parametrized...In Proposition 7.1, we have omputed the inverse image C�(U(!))in parameter spae of one ellipse U(!), via the inverse of mapping (7.4).We now determine the inverse image U�(L) in parameter spae of thewhole set L de�ned by (7.23) and (7.24).Theorem 7.4 Consider the frequeny domain set L de�ned by (7.23)and (7.24). De�ne the inverse image U�(L) of L in parameter spae,via the mapping (7.4), as:U�(L) = f� j G(z; �) 2 Lg: (7.29)Then U�(L) = \!2[0 �℄C�(U(!)); (7.30)where C�(U(!)) is de�ned in (7.25) and (7.27). Moreover,U� � U�(L): (7.31)Proof. First observe that, by the de�nition of L in (7.23), the setU�(L) de�ned in (7.29) is equivalent withU�(L) = f� j g(ej!; �) 2 U(!) 8!g:The result (7.30) then follows immediately from De�nition (7.25). Theinlusion (7.31) then follows from the main result of Proposition 7.1,namely U� � C�(U(!)) 8!. �Corollary 7.1 Consider the frequeny domain set L de�ned by (7.23)and (7.24). De�ne the inverse image D(L) of L in the spae of parametrizedtransfer funtions G(z; �), via the mapping (7.4), asD(L) = fG(z; �) j G(z; �) 2 Lg: (7.32)Then D � D(L).Proof. By (7.32) and (7.29), it follows thatD(L) = fG(z; �) j � 2 U�(L)g: (7.33)The result then follows from the result (7.31) of Theorem 7.4, and thede�nition (7.7) of D. �



Frequeny domain image of a set of linearly parametrized... 105Corollary 7.2 With de�nitions as above, we have:U� � U�(L) � C�(U(!)) 8! (7.34)D � D(L) � D(U(!)) 8!: (7.35)Proof. The �rst inlusions follow from Theorem 7.4 and Corollary 7.1.The seond inlusion in (7.34) follows from (7.30), and the seond inlu-sion of (7.35) from (7.33), (7.28) and (7.34). �Theorem 7.4 tells that the ellipsoid U� whih de�nes D is a subsetof U�(L) = T!2[0 �℄C�(U(!)). We shall illustrate by an example inSetion 8 that it may be a stritly proper subset of U�(L). As a onse-quene, D may be a stritly proper subset of D(L), and the frequenydomain region L is therefore the image in the Nyquist plane of a set D(L)ontaining more plants G(z; �) than those in D. It is to be noted that,aording to the de�nition of L (De�nition 7.2), these additional plantsG(z; �out) with �out 2 U�(L) n U�, must have the property that, at eahfrequeny !, there exists �in in U� suh that G(ej!; �out) = G(ej!; �in).Note that it is not possible to have a single value of �in whih applies atall frequenies.7.6 Probability level linked to the on�deneregion LIn the previous setions, we have shown that the image of a set D in theNyquist plane is a frequeny domain region L made up of ellipses U(!)at eah frequeny. We have also shown that the sets U(!) and the wholeregion L are (or may be) the image of more plants G(z; �) than those inD. Let us now onsider both sets (i.e. U(!) and L) as on�dene regions.The ellipse U(!) is a on�dene region for the frequeny response vetorg(ej!; �) of the plants G(z; �) and the set L is a on�dene region for theplants G(z; �). Sine the parameter vetor � has a probability densityfuntion (see (7.2)), we an relate a probability level to both on�deneregions.De�nition 7.3 Consider the parametrized transfer funtions G(z; �)given in (7.1), whose parameter vetor � has the probability density fun-tion (7.2). Consider also the sets U(!) and L de�ned in (7.23)-(7.24).



106 Frequeny domain image of a set of linearly parametrized...The probability level �(U(!)) linked to U(!) is de�ned as :�(U(!)) = Pr(g(ej!; �) 2 U(!));where g(ej!; �) is de�ned in (7.4). The probability level �(L) linked toL is de�ned as: �(L) = Pr(G(z; �) 2 L):These probability levels �(U(!)) and �(L) will be larger than theprobability level �(D) linked to D (i.e. �(D) = 0:95) sine D � D(L) �D(U(!)) 8! (see Corollary 7.2). Theorem 7.5 gives an exat omputa-tion of �(U(!)), as well as upper and lower bounds for �(L).Theorem 7.5 Consider the parametrized transfer funtions G(z; �) givenin (7.1), whose parameter vetor � has the probability density fun-tion (7.2). Consider also the sets U(!) and L de�ned in (7.23)-(7.24).Then the probability level �(U(!)) linked to U(!) (see De�nition 7.3) isgiven by: �(U(!)) = Pr(G(z; �) 2 D(U(!))) (7.36)= Pr(�2(2) < �) 8!; (7.37)where D(U(!)) is de�ned in (7.26). The probability level �(L) linked toL (see De�nition 7.3) is bounded by:�(D) � �(L) < �(U(!)) (7.38)where �(D) is the probability level linked to the set D presented in Def-inition 7.1 and of whih the set L is the image in the Nyquist plane(�(D) = 0:95).Proof. That �(U(!)) is equal to Pr(G(z; �) 2 D(U(!))) follows fromProposition 7.1. That �(U(!)) is also equal to (7.37) is a diret on-sequene of the probability density funtion of g(ej!; �) given in (7.5)sine the ovariane matrix Pg(!) of g(ej!; �) is equal to the matrix P (!)de�ning the ellipse U(!).Sine the inverse image of L in the spae of parametrized transferfuntions G(z; �) is D(L), we an write the following about the proba-bility level �(L) linked to L:�(L) = Pr(G(z; �) 2 D(L)):



Frequeny domain image of a set of linearly parametrized... 107The upper bound in (7.38) proeeds then from the fat that D(L) �D(U(!)) 8! and the lower bound from the fat that D � D(L) (seeTheorem 7.4). �Important omments. Theorem 7.5 shows that the probability level�(L) linked to the image of D in the Nyquist plane is larger than theprobability level linked to D (i.e. �(D) = 0:95). This is a onsequeneof the fat that L is the image of more plants than those in D beauseof the singularity of the mapping (7.4).It is also interesting to note that if we onsider the ellipses U(!) fre-queny by frequeny, these ellipses are the image in the Nyquist planeof a set D(U(!)), di�erent at eah frequeny, and having a probabilitylevel �(U(!)) whih follows from the probability density funtion (7.5)of g(ej!; �). However, sine the sets D(U(!)) are di�erent at eah fre-queny, when we ollet together all ellipses U(!) to make up L, theprobability level �(L) is smaller than �(U(!)). This last remark showsthat the probablility density funtion of g(ej!; �) given in (7.5) is onlyrelevant for one partiular frequeny. Theorem 7.5 shows therefore that,in order to design a on�dene region L with a probability level �(L)larger than 95%, one has to �rst design a on�dene region D havingthe desired probability level (i.e. �(D) = 0:95) and then take its imageL in the Nyquist plane.Remarks. The plants having another struture than G(z; �) and thatlie in L do not modify the probability level �(L) sine only the parametervetor � has a probability density funtion.7.7 Summary and onsequenes for the uner-tainty region dedued from PE identi�a-tionIn the previous setion, we have onsidered the setD of linearly parametrizedtransfer funtions G(z; �) that is onstruted from a 95% on�dene el-lipsoid U� in parameter spae. We have shown that the image L of thisset D is a frequeny domain region L made up of ellipses at eah fre-queny. We have also shown that the inverse image of L in the spae ofparametrized transfer funtions G(z; �) is a set D(L) larger than the setD beause of the singularity of the mapping between parameter spae



108 Frequeny domain image of a set of linearly parametrized...and frequeny domain spae. If we onsider the set L as a on�dene re-gion for the plants G(z; �), the probability level �(L) linked to L is thuslarger than the probability level �(D) linked to D (i.e. �(D) = 0:95).These results an apply to the ase of the unertainty region Dpeiontaining the (linearly parametrized) true system G0 at a probabilitylevel of 0.95. This set has been introdued in Setion 7.2. Indeed, theset Dpei has the same struture as the set D presented in De�nition 7.1.Therefore, we an onstrut the image Lpei of Dpei in the Nyquist planeusing Theorem 7.3. If we onsider then the set Lpei as an unertaintyregion for the true system G0, Theorem 7.5 shows that the probabilitylevel of the presene of the true system G0 in the frequeny domainunertainty region Lpei is larger than 0.95.7.8 Case of not linearly parametrized model stru-turesUntil now, we have treated the ase of systems G(z; �) that an bewritten as in (7.1) and whose parameters have the probability densityfuntion (7.2). We have shown for this type of model struture the linkbetween a set D of transfer funtions G(z; �) and its image L in theNyquist plane. If the model struture is not linearly parametrized asin (7.1), our onlusions do not hold i.e. the image at a frequeny ! isnot guaranteed to be an ellipse. In [62, 43, 10℄, a �rst order approxi-mation was used to map the parametri on�dene ellipsoid into ellipsesin the Nyquist plane. However, using suh an approah, no probablitylevel an be guaranteed for the obtained frequeny domain region.As a onsequene, it is very diÆult to have a lear idea of the imagein the Nyquist plane of a set Dgen of rational transfer funtions withparameters appearing in both numerator and denominator like the setde�ned in (2.44). Some partial results have been presented in [20, 40℄.In [20℄, the authors have presented a way to ompute, at eah frequeny,the largest and the smallest modulus and phase of the plants in a regionDgen. In [40℄, we have given an LMI proedure that omputes at eahfrequeny the smallest overbounding ellipse that ontains the frequenyresponse of the plants in suh set Dgen.



Frequeny domain image of a set of linearly parametrized... 1097.9 Simulation exampleIn order to illustrate the results of this hapter, we present the followingexample. Let us onsider the following system desription:G(z; �) = 0:08z�1 + 0:1009z�2 + 0:0359z�31� 1:5578z�1 + 0:5769z�2 + �1z�1 + �2z�2 + �3z�31� 1:5578z�1 + 0:5769z�2= �G(z) + �(z)z }| {11� 1:5578z�1 + 0:5769z�2 � � z�1 z�2 z�3 � �z }| {0� �1�2�2 1Awhere the parameter vetor � is assumed to have a Gaussian probabilitydensity funtion with zero mean and ovariane P� given by:P� = 10�3 �0� 1:0031 0:0263 �0:01110:0263 1:0039 0:0268�0:0111 0:0268 1:0039 1A :We onsider the 95 % on�dene ellipsoid U� in the parameter spaethat de�nes a orresponding region D in the spae of transfer funtion:U� = f� j �TP�1� � < 7:81g;D = fG(z; �) j � 2 U�gUsing Theorem 7.3, we an design the image L of D in the Nyquistplane. This image L is made up of ellipses at eah frequeny around thefrequeny response of �G(z) and is represented in Figure 7.1. Aordingto Theorem 7.3, the expression of the ellipse U(!) at the frequeny ! isgiven by:U(!) = fg 2 R2�1 j (g � �g(ej!))TP (!)�1(g � �g(ej!)) < 7:81gwith P (!) = T (ej!)P�T (ej!)T and�g(ej!) = � Re( �G(ej!))Im( �G(ej!)) � ; T (ej!) = � Re(�(ej!))Im(�(ej!)) � :All plants in D lie in L, and L has the property (7.22). However, themappings between D and L and between D and U(!) are not bijetive
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Figure 7.1: Frequeny domain representation of D in the Nyquist planewith ellipsesU(!) at some frequenies, frequeny response of �G(z) (dash-dot), frequeny response of G(z; �out) (dashed) and frequeny responseof G(z; �bis) (solid)as shown in Theorem 7.4 and Proposition 7.1, respetively. In orderto illustrate the results presented in these theorems, we will show twothings:1. there exist plants G(z; �out) outside D whose frequeny responsevetor g(ej!; �out) lies in some ellipses U(!) but not in all of them;2. there exist plants G(z; �bis) outside D that lie in the whole regionL.Sine the size of � is 3, we know that the vetors � that are projetedinto U(!) at the frequeny ! are those lying in the ylinder C�(U(!))whose axis diretion is given by the normed eigenvetor �null(!) orre-sponding to the null eigenvalue of the mapping T (ej!) (see Theorem 7.2



Frequeny domain image of a set of linearly parametrized... 111and Proposition 7.1). Using this property, we an �nd a plant G(z; �out)suh that �out 62 U�, but suh that its frequeny response g(ej!0 ; �out) at!0 lies in U(!0) for a partiular frequeny !0, say !0 = 0:25. Indeed,let us hoose as vetor �out a vetor in the same diretion as �null(0:25)but outside the ellipsoid U�:�out = 0� 1:8084�3:50431:8084 1AThis vetor is well outside the ellipsoid U� sine we have that:�ToutP�1� �out = 19525 > 7:81but we also have that:g(ej0:25; �out) = �g(ej0:25) + =0z }| {T (ej0:25)�out = �g(ej0:25);and therefore g(ej0:25; �out) lies in U(0:25). However, this plant does notlie in all ellipses as an be seen in Figure 7.1 where it irles around theorigin at high frequenies.There also exist plants G(z; �bis) whose parameter vetors �bis 62 U�,but that lie ompletely in L. Aording to Theorem 7.4 and Corol-lary 7.1, these are the plants whose parameter vetors �bis lie in U�(L) =T!2[0 �℄C�(U(!)) but not in U�. In order to �nd one of those partiularvetors �bis, we proeed like we did to �nd �out. We hoose a partiularfrequeny !0 and we hoose a vetor in the diretion �null(!0) of the axisof the ylinder C�(U(!0)). But, here, we hoose this frequeny !0 in themiddle of the frequeny range: !0 = �=2 and we hoose the vetor justoutside the ellipsoid U�:�bis = 0� 0:068400:0684 1A ; �TbisP�1� �bis = 9:4501 > 7:81 :In Figure 7.1, we see that the frequeny response of the plant G(z; �bis)lies in U(!) for eah of the plotted ellipses. Sine we only plot the ellipsesat a ertain number of frequenies, Figure 7.1 alone does not prove thatG(z; �bis) is in L. In Figure 7.2, we have therefore plotted the value ofthe funtion
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omegaFigure 7.2: Values of (g(ej!; �bis)��g(ej!))TP (!)�1(g(ej! ; �bis)��g(ej!))as a funtion of the frequeny (solid) and size of the ellipses U(!)(dashed) (g(ej! ; �bis)� �g(ej!))TP (!)�1(g(ej!; �bis)� �g(ej!))at eah frequeny. We see that these values are, at eah frequeny,smaller than 7.81, the size of the ellipses U(!). As a onsequene, wean onlude that G(z; �bis) has its frequeny response in L even thoughG(z; �bis) does not lie in D.7.10 ConlusionsIn this hapter, we have onsidered linearly parametrized plants G(z; �)whose parameters are normally distributed and we have presented resultsabout the image L in the Nyquist plane of a on�dene region D inthe spae of parametrized transfer funtions. We have shown that thisimage is made of ellipses at eah frequeny. However, sine the mappingbetween these two spaes is not bijetive, the image L in the Nyquistplane ontains more plants G(z; �) than the initial on�dene region D.The image in the Nyquist plane is thus also a on�dene region for theparametrized plants G(z; �) but with a probability level larger than thatof the initial on�dene region D.



Chapter 8Extension to biased modelstrutures using stohastiembeddingIn Chapter 2, we have introdued an unertainty set D delivered bylassial predition error identi�ation methods and to whih the truesystem G0 is known to belong with some presribed probability. Thisunertainty set D is de�ned as a set of parametrized rational transferfuntions whose parameter vetor lies in an ellipsoidal on�dene region.In Chapters 3, 4 and 5, we have developed some robustness tools for thatunertainty set D. In the previous hapter, we have analyzed the imageof D in the Nyquist plane for the partiular ase of linearly parametrizedsystems.The only important restrition in the approah yielding D is that weassume that the model struture used for the identi�ation is unbiasedand therefore that the true system lies in the hosen model struture. Inthis hapter, we show that we an also design an unertainty set ontain-ing the true system using PE identi�ation with biased model struturesprovided that this model struture is linearly parametrized (e.g. FIRor Laguerre model struture [65, 88℄) and that the identi�ation is per-formed using the stohasti embedding assumptions [47℄. The key ideaof PE identi�ation with stohasti embedding assumptions is to on-sider the unmodelled dynamis just as the noise i.e. as the realizationof a zero mean stohasti proess. Using this assumption, the authorsof [47℄ show that, at eah frequeny, an ellipse ontaining the frequeny113



114 Extension to biased model strutures using stohasti embeddingresponse of the stable true system at a ertain probability level (e.g. �)an be designed in the Nyquist plane around the frequeny response ofthe identi�ed model. The ellipse at a partiular frequeny is onstrutedusing the probability density funtion of the frequeny response of theidenti�ed model dedued from the stohasti embedding assumptions.In [1, 79℄, the ellipses at eah frequeny have been olleted together inorder to make up a dynami (or frequeny domain) unertainty region 1.The problem with the unertainty region design presented in the papers[1, 79℄ is that, if eah ellipse ontains the frequeny response of the truesystem at a probability of �, the probability level of the presene of theNyquist plot of G0 in the tube of ellipses is muh smaller as proved inChapter 7.One of the ontribution of the present hapter is thus to review thedesign of unertainty sets for a PE identi�ation proedure with stohas-ti embedding assumptions. We �rst show that PE identi�ation withstohasti embedding assumptions allows one to design a set Dse of (lin-early) parametrized transfer funtions that ontains the true system ata ertain probability level (e.g. �) and whose parameter vetor is on-strained to lie in an ellipsoid. This unertainty set has thus the samestruture as the unertainty set D presented in Chapter 2. However,we also show that the parametri desription of Dse is not really \opti-mal" in this ase and we therefore propose another unertainty region:a dynami unertainty region L orresponding to the image of Dse inthe Nyquist plane. The image of Dse is obtained using the results ofChapter 7. The unertainty region L is made up of a tube of ellipsesin the Nyquist plane around the Nyquist plot of the identi�ed model.Aording to Chapter 7, the unertainty set L has also the property ofontaining the true system at a probability larger than the probability �related to Dse. It is to be noted that the matries de�ning the ellipses inour unertainty set L are exatly the same as those de�ning the ellipsesdedued in [47, 1, 79℄. However, the size � of our ellipses 2 is di�erentof the size of the ellipses dedued in these papers.Another ontribution of the present hapter is to extend the stohas-ti embedding tehnique to indiret losed-loop identi�ation. In losed-1In the sequel, we will use the term \dynami unertainty region" instead of \fre-queny domain unertainty region".2If we de�ne an ellipse as U = f� j �TR� < �g, the size of the ellipse is the value �and the matrix de�ning the ellipse is R.



Extension to biased model strutures using stohasti embedding 115loop, we onstrut a dynami unertainty region of losed-loop transferfuntions ontaining the true losed-loop transfer funtion. The uner-tainty region ontaining the true open-loop system G0 is then omputedusing the knowledge of the ontroller present in the loop.The last ontribution of the hapter is to give a general expression ofthis unertainty region L (valid for both the open-loop and losed-loopases) that will ease the robustness analysis of L developed in the nexthapter. In this general expression, the unertainty part takes the formof a transfer vetor whih represents the real and imaginary parts ofthe dynami unertainty and whose frequeny response is therefore real.This vetor appears linearly in both the numerator and denominator.Chapter outline. In Setion 8.1, we briey review the assumptions ofstohasti embedding. In Setion 8.2, we show how we an perform a PEidenti�ation proedure using the stohasti embedding assumptions. InSetion 8.3, we then present the way to onstrut an unertainty set withPE identi�ation with stohasti embedding assumptions in open loop.In Setion 8.4, we show that suh an unertainty region an also bededued using data olleted in losed loop. We then give the generalexpression of the unertainty region dedued from PE identi�ation withstohasti embedding assumptions in Setion 8.5.8.1 General assumptions on the true systemIn the previous hapters, we have redued the gap between PE identi�a-tion with unbiased model strutures and Robustness theory. Indeed, wehave shown that suh an identi�ation proedure delivers an unertaintyset that ontains the true system and for whih we have developed somerobustness tools. The aim of this hapter is to extend the results of theprevious hapters to the ase of biased model strutures using stohastiembedding [47℄. In this �rst setion, we will present the assumptions weneed to make for this purpose on the used model struture M and onthe stable, LTI, rational true system G0:y(t) = G0(z)u(t) + v(t): (8.1)Let us onsider that we want to identify a model of the true systemin the following linearly parametrized model struture M:



116 Extension to biased model strutures using stohasti embedding
M = fG(z; �) 2 RH1 j G(z; �) = �(z)z }| {� �1(z) �2(z) ::: �k(z) � �g;(8.2)where � 2 Rk�1 is the parameter vetor and the �i(z) (i = 1:::k)are stable transfer funtions (e.g. FIR of Laguerre funtions [65, 88℄).This model struture is biased i.e. there does not exist a �0 suh thatG0 = G(z; �0).The property that allowed us to design an unertainty set ontainingthe true system with PE identi�ation with unbiased model strutureswas the fat that the only soure of error between the identi�ed modeland the true system (i.e. the measurement noise v(t)) was assumed tobe the realization of a zero mean stohasti proess. With biased modelstrutures, the measurement noise is not the only soure of error. Theundermodeling is also another one. The key idea of stohasti embeddingis to onsider this seond soure of error just as the �rst one i.e. asthe realization of a zero mean stohasti proess, independent of thenoise. Note that although this assumption is nonstandard in lassial PEidenti�ation, this remains in the general philosophy of PE identi�ationsine the bias error is onsidered in the same way as the measurementnoise in lassial PE identi�ation. Let us now reall this key idea moreformally.Assumption 8.1 ([47℄) The key assumption in stohasti embeddingis that (8.1) an be deomposed in the following expression:y(t) = G(z; �0)u(t) +G�(z)u(t) +H0(z)e(t) (8.3)where G(z; �0) 2 RH1 is a transfer funtion lying inM and parametrizedby an unknown vetor �0. G�(z) 2 RH1 represents the (possibly in-�nite) unmodelled dynamis that is assumed to be the realization of astohasti proess with zero mean, independent of the additive noisev(t) = H0(z)e(t). It is further assumed that the impulse response o-eÆients �n of G�(z) = P1n=1 �nz�n have a variane that dies at anexponential rate : E(�2n) = ��n (E(�n) = 0). As a onsequene, there ex-ists a number L 3 suh that G� an be approximated suÆiently loselyby 3The hoie of L will be disussed in the sequel.



Extension to biased model strutures using stohasti embedding 117G�(z) = LXn=1 �nz�n �= �(z)�; (8.4)where �(z) = � z�1 z�2 ::: z�L � and �T = � �1 �2 ::: �L �.8.2 PE identi�ation with stohasti embeddingassumptionsUsing Assumptions 8.1, we an perform a PE identi�ation proedureon the true system G0 using N input and output data. This identi�-ation delivers a model G(z; �̂) 2 M. As the unmodelled dynamis areonsidered as the realization of a zero mean stohasti proess, the totalerror between the true system and the identi�ed model G(z; �̂) is madeup of the sum of variane ontributions only, wherein the ontributionof the unmodelled dynamis is omputed by estimating the parametersdesribing its variane (i.e. � and �). The total error is thus a fun-tion of the stohasti parameters desribing G�(z) (i.e. � and �) andof the stohasti parameters  desribing v(t) 4. These parameters anbe estimated from the data y(t) and u(t) using a maximum likelihoodtehnique. In that sense, the omputation of the total error follows aproedure very similar to the one used to ompute the variane errorin lassial predition error identi�ation theory with unbiased modelstrutures (see [63℄ and Setions 2.1.2 and 2.1.3). Let us now summarizethe results of PE identi�ation with stohasti embedding assumptionsin the following proposition.Proposition 8.1 ([47℄) Let us onsider a stable true system G0 sat-isfying Assumptions 8.1 and the model struture M de�ned in (8.2).Let us also onsider N measured inputs u(t) and the orresponding Noutputs y(t) generated by (8.3). A PE identi�ation proedure deliversthen an identi�ed parameter vetor �̂ de�ning a model G(z; �̂) 2 M.Moreover, if we rewrite the error between G0(z) and the identi�ed model4The stohasti parameters  desribing v(t) may ontain the parameters of thenoise model H0(z) as proposed in [1℄. Alternatively, it is possible to use a highorder identi�ed model of H0(z) as approximation of this noise model; and then theonly stohasti parameter of the noise v(t) is the variane �2e of the white noise e(t): = �2e .



118 Extension to biased model strutures using stohasti embeddingG(z; �̂) as follows using (8.2) and (8.4):G0(z)�G(z; �̂) = �(z)z }| {� �(z) �(z) � ~�z }| {� �0 � �̂� �; (8.5)the vetor ~� is then asymptotially a random vetor with Gaussian dis-tribution, zero mean and ovariane C�:~� � AsN (0; C�) (8.6)where C� 2 R(k+L)�(k+L) is an unknown symmetri positive de�nitematrix whih is a funtion of the stohasti parameters �, � and .Besides the identi�ed parameter vetor �̂, the PE identi�ation proedurealso delivers an estimate P� of C� obtained using the estimates �̂, �̂ and̂ of �, � and  derived from a maximum likelihood proedure.Remarks.� More details an be found in Appendix B.� The quality of the desription of the error between G0 and G(z; �̂)is of ourse inuened by the number N of measured data, thequality of the estimates (�̂, �̂ and ̂) of the stohasti parametersresulting from a nonlinear optimization (i.e. the maximum likeli-hood tehnique) and by the relevane of the stohasti embeddingassumptions (hoie of L, ...).� In [37℄, the authors present a new version of stohasti embed-ding where the undermodeling is represented by a multipliativeperturbation. One of the main advantage of this new stohastiembedding is that the proedure to estimate the stohasti param-eters is linear.� The hoie of L an now be disussed. This hoie an be dividedin two steps. In a �rst step, we hoose L large (e.g. L = N) andwe use the maximum likelihood tehnique to �nd estimates �̂ and�̂ of � and �. Using these \aurate estimates", the \�nal" L ishosen suh that: �̂�̂L < "where " is very small.



Extension to biased model strutures using stohasti embedding 1198.3 Design of unertainty regions using stohas-ti embedding in open loopIn the previous setion, we have presented the results related to a PEidenti�ation proedure with biased model struture and stohasti em-bedding assumptions. These results allow one to design di�erent typesof unertainty regions ontaining the true system at a ertain probabil-ity level. We �rst show that one of these types is an unertainty setDse having the same struture as the unertainty set D delivered by PEidenti�ation with unbiased model strutures.8.3.1 Design of the unertainty set DseThe properties presented in Proposition 8.1 are equivalent to those pre-sented in Proposition 2.2 that have allowed us to onstrut a unertaintyset ontaining the true system at a ertain probability level in Chapter 2.Using a similar proedure, an unertainty set Dse having the followingform is onstruted.Dse = fG(z; �) j G(z; �) = Ĝ(z) + �(z)� with � 2 Useg (8.7)Use = f� j �TP�1� � < �g (8.8)where Ĝ(z) �= G(z; �̂) and � is a real parameter vetor of size k + L.This unertainty set has the following property.Proposition 8.2 Let us onsider a true system G0 satisfying Assump-tions 8.1. Then, the unertainty region Dse de�ned in (8.7) ontains G0at a probability level �(k + L;�): Pr(�2(k + L) < �) = �(k + L;�).Proof. Aording to (8.6), the vetor ~� de�ned in Proposition 8.1 liesin Use with probability �(k + L;�). We an then onlude that G0 liesin Dse at the same probability level sine, using (8.5), we an rewrite G0as G(z; ~�). �The unertainty regionDse has the general struture presented in (2.44).As a onsequene, the results of Chapters 3, 4 and 5 an be usedto assess the quality of Dse and/or to validate a ontroller for sta-bility and performane with respet to Dse. However, the statement



120 Extension to biased model strutures using stohasti embeddingG0 2 Dse given in Proposition 8.2 is based on the approximation (8.4)that boils down to neglet the partP1n=L+1 �nz�n of the undermodelingG� = P1n=1 �nz�n. This an be misleading for robust ontrol designsine (8.4) is only an approximation in pratie. A solution to avoid thisproblem is to use a dynami unertainty region as we will see in the nextsetion. A dynami unertainty region is an unertainty region that isnot bounded by a onstraint on a parameter vetor but by a onstrainton the frequeny response of the plants in that unertainty region.8.3.2 Dynami unertainty region LolA possibility to design suh dynami unertainty region is to take theimage Lol 5 of Dse in the Nyquist plane using the results presented inChapter 7. Using Theorem 7.3, this image Lol is given byLol = fG(z) j g(ej!) 2 U(!) 8!g (8.9)U(!) = fg 2 R2�1 j (g � ĝ(ej!))TP (!)�1(g � ĝ(ej!)) < �g (8.10)with P (!) = T (ej!)P�T (ej!)T , � as de�ned in (8.8) andĝ(ej!) = � Re(Ĝ(ej!))Im(Ĝ(ej!)) � ; T (ej!) = � Re(�(ej!))Im(�(ej!)) � :In order to lear up and to simplify the notations, let us rewrite thedynami unertainty set Lol as follows.Lol = fGin(z) j Gin(z) = G(z; �̂) + �(z) with �(z) 2 RH1and� Re(�(ej!))Im(�(ej!)) � 2 Uol(!) 8!g(8.11)Uol(!) = fg 2 R2�1 j gTP (!)�1g < �g: (8.12)The dynami unertainty region Lol that we have just designed has thefollowing property.5We have hanged the subsript \se" into the subsript \ol" in order to maydi�erentiate Lol obtained with open-loop stohasti embedding from Ll that will bededued from losed-loop stohasti embedding.



Extension to biased model strutures using stohasti embedding 121Proposition 8.3 Let us onsider a true system G0 satisfying Assump-tion 8.1. Then, the unertainty set Lol de�ned in (8.11) ontains G0 witha probability larger than �(k +L;�): Pr(�2(k+L) < �) = �(k +L;�).Proof. Aording to Proposition 8.2, G0 lies in Dse with probability�(k+L;�). Sine Lol is the image of Dse in the Nyquist plane, the truesystem G0 lies therefore in Lol with a probability larger than �(k+L;�)(see Theorem 7.5). �The true system G0 lies thus in Lol and in Dse. So, if we stay in theframework de�ned in (8.4), there is no need to use Lol instead of Dse.However, the expression (8.4) is only an approximation. In pratie, wedo not have that: 1Xn=L+1 �nz�n = 0;As a onsequene, the struture of Dse may not ontain the \real" truesystem as opposed to the struture of Lol. Indeed, with respet to Dse,the dynami unertainty region Lol has the omplementary advantage ofontaining systems having a more ompliated struture thanG(z; �) butwhose frequeny response is suÆiently lose to the frequeny responseof the plants in Dse... suh as the \real" true system. Indeed we havethat: G0(z) = 2Dsez }| {G(z; ~�) + 1Xn=L+1 �nz�nG0(ej!) � G(ej!; ~�) 8!:In the sequel, we will therefore always use Lol instead of Dse.Let us summarize. Using the stohasti embedding assumptions, wehave developed a methodology that has allowed us to design a dynamiunertainty region Lol ontaining the true system with a probabilitylarger than a given level in the ase of an open-loop identi�ation witha biased model struture M. In the next setion, we will show thatsuh unertainty set an also be dedued from an indiret losed-loopidenti�ation with biased model struture.



122 Extension to biased model strutures using stohasti embedding8.4 Extension to indiret losed-loop PE identi-�ation with stohasti embedding assump-tionsLet us onsider again the losed-loop experiment design presented in Se-tion 2.2.4. We onsider thus a ontroller K whih forms a stable losedloop with the stable true system G0 de�ned in (8.1). Our proedure todesign an unertainty set L with stohasti embedding in losed loop isvery similar to the one used in the ase of unbiased model strutures:it onsists of �rst designing a frequeny domain unertainty region on-taining one of the four transfer funtions of the matrix T (G0;K) de�nedin (2.27) and then to bak-ompute the unertainty region ontainingG0. We give here the proedure for the losed-loop transfer funtion T 10de�ned in (2.29). We then have to assume that K and K�1 are stable[21℄. Similar proedures exist for the other three losed-loop transferfuntions.Let us thus ollet N experimental data r1(t) and y(t) on the losedloop presented in Figure 2.1 and omposed of the true system G0 andthe stabilizing ontroller K:y(t) = G0K1 +G0Kr1(t) + H01 +G0Ke(t) = T 10 r1(t) + ~v(t) (8.13)As the loop [K G0℄ is stable, it is possible to use the proedure presentedin Setion 8.3 to design an unertainty region LT of losed-loop transferfuntions ontaining T 10 . For this purpose, we de�ne a biased modelstruture for T 10 as followsMl = fT (z; �) 2 RH1 j T (z; �) = �l(z)�g; (8.14)where � is a parameter vetor and �l(z) a row vetor ontaining knowntransfer funtions. We rewrite also (8.13) in a way similar to (8.3):y(t) = T (z; �0)r1(t) + T�(z)r1(t) + ~v(t) (8.15)where T 10 is deomposed into a model T (z; �0) 2Ml and the unmodelleddynamis T�(z). Using the proedure given in Setion 8.3, we maydedue the unertainty region LT ontaining T 10 with a probability largerthan a given level:
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LT = fTin(z) j Tin(z) = T̂ (z)z }| {T (z; �̂)+�(z) with �(z) 2 RH1and� Re(�(ej!))Im(�(ej!)) � 2 Ul(!) 8!g(8.16)where T̂ = T (z; �̂) 2 RH1 is the identi�ed model and Ul(!) is an el-lipse having the same form as the one de�ned in (8.12).The set LT is a set of losed-loop transfer funtions. The orre-sponding set of open-loop transfer funtions is now onstruted. AsG0 = T 10 =(K(1 � T 10 )), the open-loop transfer funtion Gin(z) orre-sponding to Tin(z) is given by:Gin(z) = 1K � Tin(z)1� Tin(z) : (8.17)In partiular, the nominal open-loop model G(z; �̂) orresponding toT̂ = T (z; �̂) is given by:G(z; �̂) = 1K � T (z; �̂)1� T (z; �̂) (8.18)As we assume that the true system G0 is stable, we also assume thatthis open-loop model G(z; �̂) is stable. The set Ll of open-loop plantsGin orresponding to the set LT of losed-loop transfer funtions Tin is:Ll = fGin(z) j Gin(z) = T̂K�KT̂ + 1K�KT̂ �1+ �11�T̂ � with �(z) 2 RH1and� Re(�(ej!))Im(�(ej!)) � 2 Ul(!) 8!g(8.19)The frequeny domain unertainty region Ll an be rewritten as followsusing (8.18).



124 Extension to biased model strutures using stohasti embeddingLl = fGin(z) j Gin(z) = G(z;�̂N )+ 1+KG(z;�̂N )K �1+(�1�KG(z;�̂N ))� with �(z) 2 RH1and� Re(�(ej!))Im(�(ej!)) � 2 Ul(!) 8!g(8.20)Properties of Ll. Aording to the results of the previous setion,the true losed-loop transfer funtion T 10 lies in LT with a probabilitylarger than a given level. As a onsequene, the true system G0 =T 10 =(K(1 � T 10 )) lies in the frequeny domain unertainty region Llwith the same probability.8.5 General struture of the unertainty regionsobtained from PE identi�ation with biasedmodel struturesIn the previous subsetions, unertainty regions Lol and Ll ontainingthe true system have been obtained as a result of open-loop or \in-diret" losed-loop PE identi�ation with biased model strutures andstohasti embedding assumptions, respetively. In both ases, these un-ertainty regions take the form of a set of open-loop transfer funtions(around some enter) de�ned by a dynami unertainty �(z) 2 RH1whose frequeny response is bounded at eah frequeny by an ellipsoidin the Nyquist plane. In the following proposition, we show that Lol andLl an be desribed using the same generi expression L. The form ofthis generi expression has been hosen very similar to the struture ofthe unertainty region D de�ned in (2.44) in order to ease the robustnessanalysis of L that will be developed in the next hapter. For this pur-pose, let us de�ne the RI vetor Æ(z) orresponding to the unertaintytransfer funtion �(z).De�nition 8.1 (The RI vetor Æ(z) orresponding to �(z)) Let �(z)be the stable unertainty transfer funtion present in (8.11) and (8.20).We de�ne the RI vetor Æ(z) as follows:Æ(z) = � Re(�(z))Im(�(z)) � : (8.21)



Extension to biased model strutures using stohasti embedding 125Note that the frequeny response Æ(ej!) of Æ(z) is, at eah frequeny,real: Æ(ej!) 2 R2�1 8!.Proposition 8.4 Consider the true open-loop dynamis G0. The un-ertainty regions Lol and Ll given in (8.11) and (8.20), respetively,and ontaining G0 with a probability larger than a given level have thegeneral form of a frequeny domain unertainty region L where the un-ertainty part is the RI vetor Æ(z) (see De�nition 8.1).L = (G(z; Æ(z)) j G(z; Æ(z)) = Ĝ(z) + ZN (z)Æ(z)1 + ZD(z)Æ(z) with Æ(ej!) 2 U(!) 8!)(8.22)U(!) = fÆ(ej!) 2 R2�1 j Æ(ej!)TR(!)Æ(ej!) < 1g (8.23)where� R(!) are symmetri positive de�nite matries 2 R2�2. These ma-tries are di�erent at eah frequeny !.� ZN (z) and ZD(z) are stable row vetors of length 2 ontainingknown transfer funtions.� Ĝ(z) 2 RH1 is a known transfer funtion that an be onsideredas the enter of L 6.Proof. Let us �rst prove that Lol an be expressed as in (8.22). Thisan be done by onsidering Expression (8.12) of Uol(!) and by rewritingexpression (8.11) of Lol using (8.21):Lol = nGin(z) j Gin(z) = G(z; �̂) + � 1 j � Æ(z) with Æ(ej!) 2 Uol(!) 8!o(8.24)whih is in the form (8.22) with ZN = (1 j), ZD = (0 0), Ĝ(z) =G(z; �̂) 2 RH1 and R(!) = P (!)�1=�.6we all \enter of the unertainty region L" the system orresponding to Æ(z) = 0



126 Extension to biased model strutures using stohasti embeddingNow onsider Ll and rewrite expression (8.20) using (8.21) and de-noting Ĝ(z) = G(z; �̂):Ll = fGin(z) j Gin(z) = Ĝ(z)+ 1+KĜ(z)K � 1 j �Æ(z)1+(�1�KĜ(z))� 1 j �Æ(z) andÆ(ej!) 2 Ul(!) 8!g(8.25)whih is learly in the form (8.22). Note that Ĝ(z) = G(z; �̂) is assumedstable; hene, ZN (z) and ZD(z) are also stable sine the ontroller Kis stable and non-minimum phase aording to [21℄. This ompletes theproof. �Remarks.� The enter Ĝ(z) of the unertainty region L is given by the iden-ti�ed model G(z; �̂) in the open-loop ase and, in the losed-loopase, by G(z; �̂), the open-loop model orresponding to the identi-�ed losed-loop model T (z; �̂): see (8.18).� The unertainty set L has a partiularity with respet to the las-sial linear frational dynami unertainty regions suh as addi-tive or multipliative unertainty sets (see (2.45) for the additiveunertainty set). Indeed, the unertainty part Æ(z) is not a las-sial transfer funtion but is a \transfer vetor" whose frequenyresponse is real7. Therefore, the lassial tools of Robustness The-ory an not be used for L. However, the unertainty set L has astruture that is very similar to the one of the unertainty regionD delivered by PE identi�ation with unbiased model struturesand for whih we have developed robustness tools in the previoushapters. The only di�erene is that the unertainty domain ofÆ(z) is here di�erent at eah frequeny. This similarity will helpus to develop robustness tools for this unertainty region L.8.6 ConlusionsIn this hapter, we have shown that a PE identi�ation proedure witha biased model struture allows one to design a dynami unertainty7Suh a desription is due to the ellipsoidal unertainty domain U(!) at eahfrequeny.



Extension to biased model strutures using stohasti embedding 127set L ontaining the true system with a probability larger than a givenlevel. Moreover, we have also shown that this partiular unertaintyregion presents similarities with the unertainty region D delivered byPE identi�ation with unbiased model strutures.
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Chapter 9Robustness analysis of LIn the previous hapter, we have introdued a dynami unertainty re-gion L. This unertainty region ontaining the true system with a prob-ability larger than a given level is the unertainty region obtained after aPE identi�ation with biased model struture and stohasti embeddingassumptions. The unertainty region L is made up of transfer funtionsparametrized by a transfer vetor1 Æ(z) whih represents the real andimaginary parts of the dynami unertainty and whose frequeny re-sponse is real. The unertainty vetor Æ(z) is onstrained to lie at eahfrequeny in an ellipse.Let us now onsider that a PE identi�ation proedure has deliv-ered suh unertainty set L. Let us also onsider that we have hosena model Gmod for ontrol design (e.g. the enter of L) and that wehave designed a ontroller C from that model Gmod. In order to vali-date the ontroller C with respet to the unertainty region L, we willdevelop, in this hapter, robust stability and performane analysis toolsfor suh unertainty set. These tools are the same as those developedfor the unertainty set D in Chapters 4 and 5 i.e. a neessary and suf-�ient ondition for the stabilization of all plants in L by the ontrollerC (ontroller validation for stability) and a proedure to ompute theworst ase performane ahieved by C over all plants in L (ontrollervalidation for performane). These robustness tools give therefore a on-dition guaranteeing the stabilization of the unknown true system G0 bythe ontroller C and a lower bound of the performane ahieved by the1We use the term \transfer vetor" with some abuse. The vetor Æ(z) is in fat afuntion of a omplex variable. 129



130 Robustness analysis of Lontroller C on the true system.In order to obtain these robustness tools, we will use the similaritiesbetween the struture of L and D. In that sense, our main ontributiononerning the robustness analysis of unertainty sets dedued from PEidenti�ation with stohasti embedding assumptions, has been ahievedin the last setion of Chapter 8. In that setion, we have indeed expressedthe general struture of L so that the tools developed in Chapters 4 and 5for D an be easily adapted for L.Robust stability analysis. Just as for the unertainty region D, theneessary and suÆient ondition for the stabilization of all plants in Lby C is thus derived from the LFT framework of the unertainty regionL. Indeed, we show that one an rewrite the losed-loop onnetion ofthe ontroller C and all plants in the unertainty region L as a partiu-lar LFT where the unertainty part is a transfer vetor whose frequenyresponse is real. In that partiular LFT, the (real) stability radius anbe omputed exatly, using the result presented in [53, 72℄.Our robust stability analysis tool is \better" than the one obtainedin [79℄. In [79℄, the authors present an LFT desription of the losed-looponnetion of the ontroller C and all plants in an unertainty regionL, where the ellipsoids at eah frequeny are approximated by a mixedperturbation set. The main advantage of our LFT desription is that itexatly represents the losed-loop onnetion of the ontroller C and allplants in the unertainty region L without any approximation.Robust performane analysis. Just as for D, our robust perfor-mane analysis tool for L is based on the omputation of the worst aseperformane of a losed-loop made up of the onsidered ontroller anda system in the unertainty region L. The performane of a partiularloop made up of the ontroller C and a plant in L is here also de�ned asthe largest singular value of a weighted version of the matrix ontainingthe four losed-loop transfer funtions of this loop. Our de�nition ofthe worst ase performane is thus very general and, by an appropriatehoie of the weights, allows one to derive most of the ommonly usedworst ase performane measures suh as e.g. the largest modulus ofthe sensitivity funtion. Our ontribution is to show that the omputa-tion of the worst ase performane an be formulated as an LMI-based



Robustness analysis of L 131optimization problem. Just as in the ase of D, the LMI formulationof the problem uses the fat that the unertainty part (i.e. the transfervetor Æ(z)) of the unertainty region L appears linearly in the expres-sion of both the numerator and the denominator of the systems in theunertainty region L and, as a onsequene, also appears linearly in theexpression of the di�erent losed-loop transfer funtions.If you are only interested by the largest modulus of one losed-looptransfer funtion (e.g. the sensitivity funtion), our LMI-optimizationis not neessary. Indeed, in this ase, the omputation of the worst aseperformane an also be ahieved by using the fat that an ellipse ofunertainty for the open-loop system maps into an ellipse of unertaintyfor the losed-loop system (see [81, 30℄ for the ase of a disk). However,this result an not be used to ompute our more general worst aseperformane riterion. Our optimization approah has also the furtheradvantage that it an easily be extended to the multivariable ase.Chapter outline. In Setion 9.1, we present our proedure to validatea ontroller for stability with respet to an unertainty set L. In Se-tion 9.2, we present the LMI proedure allowing the exat omputationof the worst ase performane ahieved by a ontroller C over all plantsin L. In Setion 9.3, we present a simulation example and we �nish bydrawing some onlusions in Setion 9.4.9.1 Robust stability analysis of LAs said in the introdution, the aim of this �rst setion is to validatea given ontroller for stability i.e. to �nd a neessary and suÆientondition for the stabilization of all plants in an unertainty region Lby this ontroller. Robust stability theory provides suh neessary andsuÆient onditions [34, 31, 92, 68, 53℄. But for the appliation of ro-bust stability results, it is required that the losed loop onnetions ofthis ontroller to all plants in the unertainty region be rewritten as aset of loops that onnet a known �xed dynami matrix M(z) to anunertainty part �(z) of known struture that belongs to a presribedunertainty domain.



132 Robustness analysis of L9.1.1 LFT framework for the unertainty region L and aontroller CJust as was done for the unertainty set D in Chapter 4, a �rst step isto �nd the partiular set of loops, given in the general LFT framework,that orrespond to the losed-loop onnetions of all plants in L withC. This is ahieved using the following theorem whih is very similar toTheorem 4.1.Theorem 9.1 (LFT framework for L) Consider an unertainty re-gion L of plant transfer funtions given by (8.22) and a ontroller C(z) =X(z)=Y (z) 2. The set of losed-loop onnetions [G(z; Æ(z)) C℄ for allG(z; Æ(z)) 2 L an be rewritten into to the set of loops [ML(z) Æ(z)℄whih obey the following system of equations� p = Æ(z)qq =ML(z)p (9.1)The unertainty part (i.e. the RI vetor Æ(z)) has a real frequenyresponse Æ(ej!) that is onstrained to lie, at the frequeny !, in thenormalised unertainty domain: jT (!)Æ(ej!)j2 < 1. T (!) 2 R2�2 isa square root of the matrix R(!) de�ning U(!) in (8.22): R(!) =T (!)TT (!). ML(z) is a row vetor of transfer funtions of length 2de�ned as: ML(z) = �(ZD + X(ZN � ĜZD)Y + ĜX ): (9.2)Proof. The losed-loop onnetion of C and a partiular plantG(z; Æ(z)) =(Ĝ+ ZNÆ(z))=(1 + ZDÆ(z)) in L (see (8.22)) is given by( y = Ĝ+ZNÆ(z)1+ZDÆ(z) u = (Ĝ+ (ZN�ĜZD)Æ(z)1+ZDÆ(z) )uu = �Cy (9.3)By introduing two new signals q and p, we an restate (9.3) as8>>>>><>>>>>: � qy � = H(z)z }| {� �ZD 1ZN � ĜZD Ĝ �� pu �p = Æ(z)qu = �Cy (9.4)2X(z) and Y (z) are the polynomials orresponding to the numerator and to thedenominator of C(z), respetively



Robustness analysis of L 133By doing so, we have isolated the unertainty vetor Æ(z) from the knownmatrix H(z) and the ontroller C(z). The variables y and u are noweliminated from (9.4), yielding the following system of equations whihis equivalent to (9.1):8>>><>>>: p = Æ(z)qq = ML(z)z }| {(�ZD � C(ZN � ĜZD)1 + ĜC ) p (9.5)The system (9.5) is equivalent with the losed-loop onnetion of apartiular G(z; Æ(z)) in L with the ontroller C. In order to onsider thelosed-loop onnetions for all plants in L, we have to onsider all Æ(z)suh that Æ(ej!) 2 R2�1 lies in the ellipsoid U(!) given by:U(!) = fÆ(ej!) j Æ(ej!)TR(!)Æ(ej!) < 1g: (9.6)This last expression is the unertainty domain of the unertainty ve-tor Æ(z) at the frequeny !. This unertainty domain an be normalized.Using R(!) = T (!)TT (!), we see thatÆ(ej!) 2 U(!), (T (!)Æ(ej!))T (T (!)Æ(ej!)) < 1() jT (!)Æ(ej!)j2 < 1(9.7)The set of loops [ML Æ(z)℄ for all Æ(z) suh that Æ(ej!) 2 R2�1 liesin the unertainty domain jT (!)Æ(ej!)j2 < 1 is therefore equivalent tothe set of losed-loop onnetions [G(z; Æ(z)) C℄ for all plants G(z; Æ(z))in L. This ompletes the proof. �9.1.2 Robust stability ondition for the unertainty re-gion LTheorem 9.1 allows us to \transform" our problem of testing if the on-troller C stabilizes all the plants in the unertainty region L into theequivalent problem of testing if the set of loops [ML(z) Æ(z)℄ are sta-ble for all Æ(z) suh that Æ(ej!) 2 R2�1 lies in the unertainty domainjT (!)Æ(ej!)j2 < 1. This equivalent set of loops is very similar to the setof loops [M(z) �℄ presented in Setion 4.1 and for whih there exists arobust stability theorem (see Proposition 4.1). The only di�erene is thesize of the unertainty domain whih is here di�erent at eah frequeny.As a onsequene, Proposition 4.1 an not be used to �nd a neessary



134 Robustness analysis of Land suÆient robust stability ondition for the unertainty set L. How-ever, we an derive the neessary and suÆient robust stability onditionafter a last e�ort of normalisation and using the following property ofthe stability radius of the loop [M(z) �℄ (whih is a diret onsequeneof its de�nition (4.3)).Proposition 9.1 Consider a known omplex vetor M 2 C1�b and � 2Rb�1. We have that 1 �M� 6= 0 for all � suh that j�j2 < 1 if andonly if �(M) � 1 (9.8)where � is the stability radius de�ned in (4.3).Theorem 9.2 (robust stability ondition) Consider an unertaintyregion L of plant transfer funtions having the general form (8.22) andlet C be a ontroller that stabilizes the enter Ĝ(z) of L. All the plantsin the unertainty region L are stabilized by the ontroller C if and onlyif, at eah frequeny !, �(ML(ej!)T�1(!)) � 1: (9.9)with �, the stability radius de�ned in (4.3), R(!) = T (!)TT (!) andML(z) as de�ned in (9.2).Proof. By Theorem 9.1, our problem of testing if the ontroller Cstabilizes all the plants in the unertainty region L is equivalent to test-ing if the set of loops [ML(z) Æ(z)℄ are stable for all Æ(z) suh thatÆ(ej!) 2 R2�1 lies in the unertainty domain jT (!)Æ(ej!)j2 < 1.A �rst step of this proof is to observe� that ML(z) is stable. Indeed, its denominator ontains the de-nominator of the sensitivity funtion of the losed loop [C Ĝ(z)℄,whih is stable by assumption, and the denominators of ZN (z) andZD(z) whih are also stable aording to Proposition 8.4;� that, by De�nition 8.1, �(z) = (1 j)Æ(z) with �(z) 2 RH1;� and that the unertainty domain of Æ(z) i.e. Dom(Æ(z)) = fÆ(z) jjT (!)Æ(ej!)j2 < 1 8!g is onneted and ontains Æ(z) = 0.



Robustness analysis of L 135A �rst onlusion that follows from these observations is that one ofthe onsidered loops i.e. [ML(z) Æ(z) = 0℄ is guaranteed to be stable. Asa onsequene, using the fat that Dom(Æ(z)) is onneted and the fatthat �(z) 2 RH1, the set of loops [ML(z) Æ(z)℄ are internally stablefor all Æ(z) 2 Dom(Æ(z)) if and only if, at eah frequeny !,1�ML(ej!)Æ(ej!) 6= 0 8Æ(ej!) suh that jT (!)Æ(ej!)j2 < 1: (9.10)A �nal normalisation shows that expression (9.10) is equivalent withthe statement (9.9). Indeed, if, at eah frequeny !, we de�ne a realvetor �(ej!) �= T (!)Æ(ej!), then, (9.10) is equivalent with:1�ML(ej!)T�1(!)�(ej!) 6= 0 8�(ej!) suh that j�(ej!)j2 < 1 (9.11)Sine �(ej!) is real, this last expression is equivalent with (9.9), byProposition 9.1. �Theorem 9.2 gives a neessary and suÆient ondition for the sta-bilization of all plants in L by any ontroller that stabilizes Ĝ(z), the\enter" of L. This neessary and suÆient ondition involves the om-putation at eah frequeny of the stability radius �(ML(ej!)T�1(!)),whih is ahieved using De�nition 4.1. Sine the true system lies in L,Theorem 9.2 gives also a ondition guaranteeing that the ontroller Cstabilizes the unknown true system G0.9.2 Robust performane analysis of LIn this setion, we show that we an evaluate the worst ase performaneahieved by some ontroller C with all systems in the unertainty regionL, i.e. the worst level of performane of a losed loop made up of theonnetion of the onsidered ontroller and a partiular plant in L. Thisworst ase performane is of ourse a lower bound for the losed-loopperformane ahieved with the true system. We say that a ontrolleris validated for performane if the worst ase performane in L remainsbelow some threshold.The worst ase performane riterion over all plants in an unertaintyregion L is de�ned in a similar way as has been de�ned, in Setion 5.1,



136 Robustness analysis of Lthe worst ase performane ahieved by a ontroller C over the plantsin the unertainty region D.De�nition 9.1 Consider an unertainty region L of systems G(z; Æ(z))whose general struture is given in (8.22). Consider also a ontrollerC(z). The worst ase performane ahieved by this ontroller at a fre-queny ! over all systems in L is de�ned as:JWC(L; C;Wl;Wr; !) = maxG(z;Æ(z))2L �1 �WlT (G(ej!; Æ(ej!)); C(ej!))Wr� ;(9.12)where Wl(z) = diag(Wl1;Wl2) andWr(z) = diag(Wr1;Wr2) are diagonalweights, �1(A) denotes the largest singular value of A, and T (G;C) isthe transfer matrix of the losed-loop system de�ned in (3.3).The worst ase performane JWC an be omputed at a given fre-queny using an LMI based optimization problem. The LMI proedureis now given in the following theorem. Note that this proedure is verysimilar to that used in Theorem 5.1 to ompute the worst ase perfor-mane in the unertainty set D.Theorem 9.3 Consider an unertainty region L de�ned in (8.22) anda ontroller C(z) = X(z)=Y (z) 3. Then, at frequeny !, the riterionfuntion JWC(L; C;Wl;Wr; !) is obtained asJWC(L; C;Wl;Wr; !) = popt; (9.13)where opt is the optimal value of  for the following standard onvexoptimization problem involving LMI onstraints evaluated at !:minimize over ; �subjet to � � 0 and� Re(a11) Re(a12)Re(a�12) Re(a22) �� � � R(!) 00 �1 � < 0 (9.14)where3X(z) and Y (z) are the polynomials orresponding to the numerator and to thedenominator of C(z), respetively



Robustness analysis of L 137� a11 = (Z�NW �l1Wl1ZN + Z�DW �l2Wl2ZD)� (QZ�1Z1)� a12 = Z�NW �l1Wl1Ĝ+W �l2Wl2Z�D � (QZ�1 (Y + ĜX))� a22 = Ĝ�W �l1Wl1Ĝ+W �l2Wl2 � (Q(Y + ĜX)�(Y + ĜX))� Q = 1=(X�W �r1Wr1X + Y �W �r2Wr2Y )Proof. In order to ease the establishment of the proof, we rewritethe weighted matrix Tw(z; Æ(z)) �= WlT (G(z; Æ(z)); C(z))Wr , using thede�nition of the losed-loop transfer matrix T in (3.3) and the expressionof G(z; Æ(z)) in (8.22):Tw(z; Æ(z)) = � Wl1X(Ĝ+ ZNÆ(z))Wr1 Wl1Y (Ĝ+ ZNÆ(z))Wr2Wl2X(1 + ZDÆ(z))Wr1 Wl2Y (1 + ZDÆ(z))Wr2 �Y + ĜX + (XZN + Y ZD)Æ(z) (9.15)It is important to note that Tw(z; Æ(z)) is of rank one. As a result (9.15)an be written as follows:Tw(z; Æ(z)) = 0� Wl1(Ĝ+ZN Æ(z))Y+ĜX+Z1Æ(z)Wl2(1+ZDÆ(z))Y+ĜX+Z1Æ(z) 1A� XWr1 YWr2 � (9.16)with Z1 = XZN + Y ZD. Using the above introdued notations, we annow state that proving Theorem 9.3 is equivalent to proving that thesolution opt of the LMI problem (9.14), evaluated at !, is suh that:popt = maxÆ(ej!)2U(!) �1(Tw(ej!; Æ(ej!)))()opt = maxÆ(ej!)2U(!) �1(Tw(ej!; Æ(ej!))�Tw(ej!; Æ(ej!)))where U(!) = fÆ(ej!) j Æ(ej!)TR(!)Æ(ej!) < 1g, and where �1(A) and�1(A) denote the largest singular value and the largest eigenvalue of A,respetively.An equivalent and onvenient way of restating the problem of om-puting maxÆ(ej!)2U(!) �1(Tw(ej!; Æ(ej!))�Tw(ej!; Æ(ej!))) is as follows:



138 Robustness analysis of Lminimize  suh that�1(Tw(ej!; Æ(ej!))�Tw(ej!; Æ(ej!)))�  < 0 8Æ(ej!) 2 U(!):Sine Tw(ej!; Æ(ej!)) has rank one, we have:�1(Tw(ej!; Æ(ej!))�Tw(ej!; Æ(ej!))) �  < 0()0� Wl1(Ĝ+ZN Æ(ej!))Y+ĜX+Z1Æ(ej!)Wl2(1+ZDÆ(ej!))Y+ĜX+Z1Æ(ej!) 1A�0� Wl1(Ĝ+ZNÆ(ej!))Y+ĜX+Z1Æ(ej!)Wl2(1+ZDÆ(ej!))Y+ĜX+Z1Æ(ej!) 1A 1Q �  < 0()0BB� Wl1(Ĝ+ZNÆ(ej!))Y+ĜX+Z1Æ(ej!)Wl2(1+ZDÆ(ej!))Y+ĜX+Z1Æ(ej!)1 1CCA�� I2 00 �Q �0BB� Wl1(Ĝ+ZN Æ(ej!))Y+ĜX+Z1Æ(ej!)Wl2(1+ZDÆ(ej!))Y+ĜX+Z1Æ(ej!)1 1CCA < 0 (9.17)where Q = 1=(X�W �r1Wr1X + Y �W �r2Wr2Y ). By pre-multiplying (9.17)by (Y + ĜX + Z1Æ(ej!))� and post-multiplying the same expression by(Y + ĜX + Z1Æ(ej!)), we obtain:0� Wl1(Ĝ+ ZNÆ(ej!))Wl2(1 + ZDÆ(ej!))Y + ĜX + Z1Æ(ej!) 1A�� I2 00 �Q �0� Wl1(Ĝ+ ZNÆ(ej!))Wl2(1 + ZDÆ(ej!))Y + ĜX + Z1Æ(ej!) 1A < 0(9.18)whih is equivalent to the following onstraint on Æ(ej!) with variable � Æ(ej!)1 ��� a11 a12a�12 a22 �� Æ(ej!)1 � < 0 (9.19)with a11, a12 and a22 as de�ned in (9.14). Sine Æ(ej!) is real, it an beshown that (9.19) is equivalent with (Æ(ej!))z }| {� Æ(ej!)1 �T � Re(a11) Re(a12)Re(a�12) Re(a22) �� Æ(ej!)1 � < 0 (9.20)



Robustness analysis of L 139This last expression is equivalent to stating that �1(Tw(ej!; Æ(ej!))�Tw(ej!; Æ(ej!))) �  < 0 for a partiular Æ(ej!) in U(!). However, thismust be true for all Æ(ej!) 2 U(!). Therefore (9.20) must be true forall Æ(ej!) suh that �(Æ(ej!))z }| {� Æ(ej!)1 �T � R(!) 00 �1 �� Æ(ej!)1 � < 0 (9.21)whih is equivalent to the statement \Æ(ej!) 2 U(!)".Let us now reapitulate. ComputingmaxÆ(ej!)2U(!) �1(Tw(ej!; Æ(ej!))�Tw(ej!; Æ(ej!))) is equivalent to �nding the smallest  suh that  (Æ(ej!)) <0 for all Æ(ej!) for whih �(Æ(ej!)) < 0. By the S proedure [55,17℄, this problem is equivalent to �nding the smallest  and a posi-tive salar � suh that  (Æ(ej!)) � ��(Æ(ej!)) < 0, for all Æ(ej!) 2R2�1, whih is preisely (9.14). To omplete this proof, note that sine�1(Tw(ej!; Æ(ej!))�Tw(ej!; Æ(ej!))) = �21(Tw(ej!; Æ(ej!))), the valuemaxÆ(ej!)2U(!) �1(Tw(ej!; Æ(ej!))) at ! is equal to popt, where opt isthe optimal value of . �9.3 Simulation exampleTo illustrate our results, we present an example of ontroller validationbased on an unertainty region Lol design using a PE identi�ation pro-edure with stohasti embedding assumptions in open-loop. The open-loop model G(z; �̂), enter of Lol, is used to design the \to-be-validated"ontroller C. This ontroller is then validated for stability using theproedure of Setion 9.1, and for performane using the proedure ofSetion 9.2.Identi�ation step. Let us onsider the same true system G0 asin [47℄: y(t) = G0z }| {0:0355z�1 + 0:0247z�21� 1:2727z�1 + 0:3329z�2 u(t) + e(t)where e(t) is a white noise with a variane equal to 0.005. The samplingtime is 1 seond. We simulate this system olleting 300 data from whih



140 Robustness analysis of Lwe use the last 50 for least-square model �tting ( the �rst 250 are usedto get rid of initial ondition e�ets). As in [47℄, we hoose a seondorder Laguerre model of the form (the pole of the Laguerre model ishosen near the dominant pole of G0):G(z; [�1; �2℄T ) = 0:9063 �1z�11� 0:8187z�1 + �2z�1(0:7311 � 0:8954z�1)(1� 0:8187z�1)2Using the 50 data, the identi�ed parameters are:�̂1 = 0:1129 �̂2 = �0:0689Design of the unertainty region Lol. The unertainty region Lol isonstruted using the lassial assumptions and the lassial proeduredesribed in Setion 8.3, i.e. the unmodelled dynami stohasti proessis assumed to have impulse response oeÆients �n whose variane diesat an exponential rate: E(�2n) = ��n, with � and � determined by themeasured data. The parameters � and � and the variane �2 of thewhite noise e(t) are estimated using the maximum likelihood tehniquedesribed in [47℄. This estimation delivers:�̂ = 19:96; �̂ = 0:002; �̂2 = 0:006:The number L in (8.4) is hosen equal to 15 as in [47℄. These valuesallow us to design a frequeny domain unertainty region Lol made up ofellipses at eah frequeny in the Nyquist plane. The desired probabilityfor the presene of G0 in Lol is here hosen equal to 0.9. This unertaintyregion is represented in Figure 9.1. Even though G0(ej!) seems at eahfrequeny to lie in the ellipses, it is to be noted that, at very few ones,G0(ej!) lies slightly outside. This phenomenon an be explained bythe nonlinear optimization that delivers the estimate of the stohastiparameters, by the very few data used to design the unertainty regions,but also by the hosen probabilisti framework.Control design. The seond order Laguerre model G(z; [�̂1; �̂2℄T ) ishosen as model Gmod for ontrol design. From this model Gmod, wehave designed a ontroller with a lead-lag �lter:C(z) = 5:2314 � 3:8667z�11� 0:6z�1 :
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Figure 9.1: Ellipses of Lol at some frequenies, G(ej!; [�̂1; �̂2℄T ) (dashed)and G0(ej!) (dashdot) in the Nyquist planeWith this ontroller, the designed losed-loop [C Gmod℄ has a phasemargin of 85 degrees. The ut-o� frequeny ! is equal to 0.5. Beforeapplying this ontroller C(z) to the true system, we verify whether itahieves satisfatory behaviour with all plants in an unertainty regionLol (and therefore also with the true system G0).Validation of C for stability. We an use the proedure presentedin Setion 9.1 to hek whether C stabilizes all plants in Lol. For thispurpose, we onstrut the row vetor MLol(z) de�ned in Theorem 9.1and we ompute the orresponding stability radius �(MLol(ej!)T�1(!))at all frequenies. The stability radii are plotted in Figure 9.2. Themaximum over all frequenies in [0 �℄ is 0:4577 < 1; thus, we onludethat C(z) stabilizes all plants in Lol (and therefore also the true systemG0). In other words, C is validated for stability.Validation of C for performane. In order to verify that C givessatisfatory performane with all plants in Lol, we hoose the sensi-tivity funtion T22 as performane indiator, and we ompute, at eahfrequeny, the largest modulus tLol(!; T22) of T22. This an be doneby omputing JWC(Lol; C;Wl;Wr; !) using Theorem 9.3 with the par-tiular weights Wl = Wr = diag(0; 1). The worst ase modulus of allsensitivity funtions over Lol is represented in Figure 9.3. It is ompared
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OmegaFigure 9.3: tLol(!; T22) (solid) and modulus of the designed sensitivityfuntion T22(Gmod; C) (dashed) and atually ahieved sensitivity fun-tion T22(G0; C) (dashdot)is judged to be satisfatory.9.4 ConlusionsIn this hapter, we have developed the robust stability and robust per-formane analysis tools for the unertainty region L. This unertaintyregion L is the unertainty region obtained after a PE identi�ationproedure with biased model struture and with stohasti embeddingassumptions. The robust stability analysis tool for L is a neessary andsuÆient ondition for the stabilization of all plants in L by a givenontroller. The robust performane analysis tool is an LMI proedurethat exatly omputes the worst ase performane ahieved by a givenontroller over all plants in L. It is to be noted that we an omputethe worst ase hordal distane at eah frequeny for the set L (see e.g.our paper [10℄). However, the maximum of these worst ase hordal dis-tanes over the frequenies is not guaranteed to deliver the worst ase�-gap sine we do not have a similar result for L as Lemma 3.1 for D.
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Chapter 10Conlusions10.1 Contribution of this thesisThis thesis presents a framework to onnet PE identi�ation with Ro-bust Control theory. The proposed framework has been initially pre-sented for PE identi�ation with an unbiased model struture, but hasbeen extended, in the last part of the thesis, to PE identi�ation with abiased model struture in the ase where this model struture is linearlyparametrized.First, we have shown that PE identi�ation with unbiased modelstruture yields an unertainty region D ontaining the true system ata ertain probability level. We have developed a proedure to omputesuh unertainty region for open-loop identi�ation, di�erent types oflosed-loop identi�ation methods, but also the MEM approah. Thisunertainty region takes the form of a set of transfer funtions whoseparameter vetor is onstrained to lie in an ellipsoid. We have then de-veloped robustness tools that are adapted to this unertainty set. The�rst robustness tool is a neessary and suÆient ondition for the stabi-lization of all plants in D by a given ontroller. The seond robustnesstool is an LMI proedure to ompute exatly the worst ase performaneahieved by a ontroller over all plants in D. We have also introdueda measure of the unertainty set D that is diretly onneted to a setof model-based ontrollers that stabilize all plants in this set D. Thismeasure is used to assess the quality of the unertainty set with respetto robustly stable ontrol design. From that measure, we have also de-dued guidelines for the design of the identi�ation experiment, paving145



146 Conlusionstherefore the way to a new researh �eld i.e. PE identi�ation for robustontrol.We have also developed results in order to represent D in the Nyquistplane. Our results are restrited to linearly parametrized unertainty re-gions D. We have shown that the mapping between the parameter spaeand the Nyquist plane is not bijetive and that the image of D in theNyquist plane ontains therefore more plants than D.In the last part of this thesis, we have extended our framework to thease of PE identi�ation with a biased model struture, provided thatthis model struture is linearly parametrized. For this purpose, we haveused the stohasti embedding assumptions. Our �rst ontribution hasbeen to propose a proper way to design the unertainty region deduedfrom stohasti embedding in open-loop. We have then extended thestohasti embedding tehnique to losed-loop identi�ation and given ageneral expression of the unertainty set L delivered by PE identi�ationwith stohasti embedding assumptions that is valid as well in open-loopas in losed-loop. This unertainty region L takes the form of a set oftransfer funtions parametrized by a transfer vetor whose frequenyresponse is real and onstrained to lie in an ellipse at eah frequeny.We have then developed the robustness tools adapted to this unertaintyset L i.e. a neessary and suÆient robust stability ondition for L andan LMI proedure to ompute the worst ase performane in that setL. It is to be noted that a tehnial problem has prevented us fromomputing the worst ase �-gap for L.10.2 Open questionsHave we losed the gap between PE identi�ation and Robust Controltheory. Of ourse, not ! We have ontributed to redue it, but thereremain some open problems. Some are tehnial, the others are openresearh �elds.10.2.1 Open tehnial problemsLet us begin by the problems we have just mentioned at the end ofSetion 10.1. We still need to �nd a proedure to derive the worstase �-gap in the unertainty region L obtained by stohati embeddingfrom the worst ase hordal distanes at eah frequeny. The problem is



Conlusions 147here that a result in that sense exists for parametri unertainty regions(like D) but not for frequeny domain unertainty regions (like L). InChapter 4, we have also mentioned that we are urrently investigatingthe possibility to ompute a measure for robust stability �min(D) (or�min(L)) based on the neessary and suÆient result of that hapterin order to improve the result of Chapter 3 that is based on suÆientonditions only. Another and important tehnial problem is the ex-tension to Multiple Inputs Multiple Outputs (MIMO) systems. Indeed,the result of this thesis has been presented in the SISO ontext. Whilemany of the new onepts arry over to the MIMO ase, the extensionof a number of our tehnial and omputational results is by no meanstrivial.10.2.2 Open researh �eldsIn Chapter 3, we have paved the way to a new researh �eld i.e. PE iden-ti�ation for robust ontrol. We have indeed haraterized what qualityan unertainty set dedued from PE identi�ation must possess for it tobe tuned for robustly stable ontrol design based on the model, and wehave drawn guidelines for the design of the identi�ation experiment.Plenty of work is still to be ahieved in this diretion. In Setion 10.2.1,we have already stated the problem that follows from the fat that ourresult is based on a suÆient ondition only. A lot of researh has alsoto be done in order to apply, in pratie, the proposed guidelines for thedesign of the identi�ation experiment. Moreover, our result is restritedto stability purposes. It will be interesting to seek a robust performanemeasure for the unertainty sets delivered by PE identi�ation.It would also be interesting to integrate our framework in one of theiterative shemes [24, 90, 75℄ that alternate ontrol design and identi�-ation steps (for example on a real-life plant).Another possible development may be a proedure to apply when one(or both) ontroller validation proedure (stability and/or performane)has failed with respet to an unertainty set D1. We have then twopossibilities:� We perform a new identi�ation experiment yielding a new uner-tainty set Dbis. When we have this new unertainty set, we try1or L



148 Conlusionsagain to validate the ontroller with respet to this new unertaintyset Dbis.� We design a new ontroller and we try to validate this new on-troller with respet to the unertainty set D.In the �rst ase, we are bak in the problem of designing the validationexperiment in order to obtain an unertainty set that is tuned for robustontrol design. In the seond ase, we fae the problem of designing arobust ontroller with respet to the unertainty sets D or L. For thispurpose, �-analysis an be investigated. However, this tehnique hasthe drawbak of not being guaranteed to onverge.Another possible extension is the extension of our framework to PEidenti�ation with a biased model struture in the general ase where themodel struture is not linearly parametrized. Finally, another possibleresearh �eld is the extension of the results of Chapter 7 to the generalase of nonlinearly parametrized unertainty regions D.



Appendix AAppendies to Chapter 7A.1 Proof of Lemma 7.1The inverse of the blok matrix P an be written (see e.g. [92, page 22℄)P�1 = � K11 K12KT12 K22 �where K11 = P�111 + P�111 P12��1P T12P�111 , K12 = �P�111 P12��1, K22 =��1 and � = P22 � P T12P�111 P12.Using these notations and introduing the vetor z = K�122 KT12x+ �x,we have the following equivalenes:� x�x �T P�1� x�x � < 1 () xT (K11 �K12K�122 KT12)x+ zTK22z < 1() xTP�111 x+ zTK22z < 1 (A.1)Using this last expression, we an now write that1. if (xT �xT )T 2 Ux�x, then xTP�111 x < 1. Indeed� x�x �T P�1� x�x � < 1 =) xTP�111 x < (1� zTK22z) < 12. if xTP�111 x < 1 then there exists �x suh that (xT �xT )T 2 Ux�x. In-deed, take as �x, the vetor �x suh that z = 0 (i.e. �x = �K�122 KT12x).Then, � x�K�122 KT12x � 2 Ux�x.This ompletes the proof. �149



150 Appendies to Chapter 7A.2 Proof of Theorem 7.2We �rst prove that the inverse image of Ux by the mapping (7.12) isgiven by (7.20). This follows diretly from:xTP�1x x < �() yTT TP�1x Ty < � (A.2)The volume Cy is thus the inverse image of Ux sine y has to satisfy theright-hand side of (A.2) in order to have x in Ux.It follows from RC = T TP�1x T 2 Rk�k with T of rank n < k thatRC has k � n null eigenvalues and that the orresponding eigenvetorsare in the null-spae of the mapping T .Theorem 7.1 and the de�nition (7.19) of Cy show that Uy is inludedin Cy. Indeed, we know by Theorem 7.1 that eah y in Uy has an image(i.e. Ty) in Ux. Therefore, eah y in Uy lies in Cy de�ned by (7.19). �



Appendix BPE identi�ation withstohasti embeddingassumptions in open loopIn this appendix, we give some details about the results of PE identi-�ation with stohasti embedding assumptions that are presented inProposition 8.1. The results presented below an be found in [47℄. Inorder to ease the notations, we will assume that H0 = 1. However, it isnot a requirement as shown in [47℄.Aording to Proposition 8.1, a PE identi�ation proedure withAssuptions 8.1 delivers a model G(z; �̂) 2M and an estimate P� of theovariane matrix C� of the vetor ~� parametrizing the error betweenG0 and the identi�ed model G(z; �̂).
B.1 Identi�ation of a model in MIn order to identify a model G(z; �̂), we ollet N input signals u(t) andthe N orresponding output signals y(t) generated by (8.3). Just as wasdone in Setion 2.1.3, we an write the relation between the N signalsy(t) and the N signals u(t) as follows using the approximation (8.4):151



152 PE identi�ation with stohasti embedding assumptions...Yz }| {0BB� y(1)y(2):y(N) 1CCA = �z }| {0BB� �(1)�(2):�(N) 1CCA �0 + 	z }| {0BB�  (1) (2): (N) 1CCA � + Ez }| {0BB� e(1)e(2):e(N) 1CCA (B.1)where �(t) 2 R1�k (t = 1:::N) is equal to �(z)u(t) and  (t) 2 R1�L(t = 1:::N) is de�ned by: (t) = � u(t� 1) u(t� 2) ::: u(t� L) � :Sine the predited output of a system G(z; �) inM is given by ŷ(t; �) =�(t)�, the estimate �̂ minimizing the riterion (2.3) is:�̂ = (�T�)�1�TY = QY: (B.2)Let us now analyze the mean and the ovariane of the estimate �̂.These values will be used in the sequel in order to express the matrix C�de�ned in (8.6). The mathematial expetation E �̂ of �̂ an be omputedas follows: E �̂ = E [(�T�)�1�T Yz }| {(��0 +	� +E)℄= �0 +QE(	� +E)= �0 (B.3)The fat that the unmodeling is onsidered as the realization of a zeromean stohasti proess independent of the noise e(t) has as onsequenethat the estimate �̂ has a mean equal to �0. Using the same property,the ovariane matrix C of the estimate �̂ an now be derived as follows:C = E [(�̂ � �0)(�̂ � �0)T ℄ = E [(Q(	� +E))(Q(	� +E))T ℄= Q(	C�	T + �2IN )QT ; (B.4)where �2 is the variane of the white noise e(t) and C� �= E(��T ) is,aording to Assumptions 8.1, equal toC� = diag(��; ��2; :::; ��L) (B.5)



PE identi�ation with stohasti embedding assumptions... 153B.2 Error between G0(z) and G(z; �̂)After having identi�ed a model G(z; �̂), we an now express the error be-tween the true system G0 and the identi�ed model. For this purpose, letus rewrite G0(z) and the model G(z; �̂) as follows using (8.2) and (8.4):G0(z) = G(z; �0) + LXn=1 �nz�n = � �(z) �(z) �� �0� � (B.6)G(z; �̂) = � �(z) �(z) �� �̂0 � (B.7)The di�erene between these two transfer funtions is thus equal toG0(z)�G(z; �̂) = � �(z) �(z) � ~�z }| {� �0 � �̂� � (B.8)If we assume that the impulse response oeÆients �n of G�(z) areGaussian distributed, ~� 2 R(k+L)�1 has (asymptotially) a Gaussiandistribution. Using (B.3) and the fat that E(�n) = 0, the mean of thisGaussian distribution is zero. The ovariane matrix C� an be deduedfrom (B.4), (B.5), and the fat thatE [(�0 � �̂)�T ℄ = E [(�Q	� �QE)�T ℄ = �Q	C�The ovariane matrix C� is thus equal to:C� = � C �Q	C��C�	TQT C� � :The matrix C� is unknown sine the variane �2 of the white noise e(t)and C� are unknown. However, we an obtain estimates �̂2, �̂ and �̂ ofthe stohasti parameters �2, � and � by using a maximum likelihoodtehnique [47℄. As a onsequene, we also obtain an estimate P� of C�:P� = � P� �Q	Ĉ��Ĉ�	TQT Ĉ� � :where Ĉ� = diag(�̂�̂; �̂�̂2; :::; �̂�̂L) and P� is the estimate of the matrixC given by P� = Q(	Ĉ�	T + �̂2In)QT
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