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System Identification

sc4110

X. Bombois

P.M.J. Van den Hof

Material:

• Lecture notes sc4110 - January 2006

available through: Blackboard or Nextprint

Lecture hours: (see schedule for details)

• Monday (15:45-17:30) in Room D (3Me)

• Thursday (15:45-17:30) in Room D (3Me)

• Friday (13:45-15:30) in Room A (API)
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Part I: Introduction to system identification
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System identification is about modeling
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Notion of model common in many branches of science

Within (systems and control) engineering:

models of dynamical systems for the purpose of

• system (re)design

• control design

• prediction

• simulation

• diagnosis / fault detection
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System identification is about data-based modeling

data-based modeling ???
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Data-based modeling of the DCSC DC motor

(applied )
voltage [V]

motor 
dynamics

(measured )
rotational speed 

[rad/s]

?

Determine a model of the dynamical relation existing between

the voltage u(t) driving the motor and the angular speed y(t)

of the rotor
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How to proceed?

• Excite the system by applying the following sequence for the

voltage u(t) during 20 seconds

applied u(t)
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• Measure the induced rotational speed y(t)

measured y(t)
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• Given a candidate model (i.e. a transfer function), we can use

the available data to compute the signal ε(t) featuring the

modeling error

motor 
dynamics

?

model
+

-
ε(t)

u(t) y(t)

y(t)

• determine that model minimizing the power of ε(t) (often a

filtered ε(t); see later)
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Identification result: a discrete-time transfer function (4th order)

Frequency

response

Frequency response of the identified model
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Measured y(t) (blue)

vs. ǫ(t) (red)
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ε(t) contains not only the model inaccuracy, but also the noise

acting on the system
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Why is data-based modeling useful ?

When thinking of modeling, we indeed generally think of

first-principle modeling and not data-based modeling

first-principle modeling = modeling using the laws of physics

(Newton, mass conservation.. )

However, data-based modeling is often as important as

first-principle modeling

System Identification: Part I 11
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Example 1: control of the pick-up mechanism of a CD-player

pick up mechanism: position the reading tool (laser) on the

right track of the CD using a mechanical arm

Arm is driven by the current i(t) of a motor

Optical sensor to measure the laser position θ(t)

System Identification: Part I 12
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Dynamical system i(t)
positioning
mechanism

θθθθ(t)

Objective: design a fast and precise position controller (required

bandwidth ≈ 1000 Hz)

i(t) positioning
mechanism

θθθθ(t)controllerθθθθref(t)

=⇒ model is needed

System Identification: Part I 13
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First-principle modeling

The model is designed based on the Newton law

Since the current induces a force, the relation between the

current and the position is modeled by a double integrator

The controller designed with this physical model could not

achieve the desired bandwidth without thrilling

System Identification: Part I 14
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Data-based modeling

An identification experiment was then performed and the

following model identified

double integrator

flexibility modes
(actuator dynamics)

double integrator

flexibility modes
(actuator dynamics)

For a bandwidth of ≈ 1000 Hz, the mechanical modes can no

longer be neglected and should be tackled by the controller

System Identification: Part I 15
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These flexible modes are quasi impossible to model with

physical laws

Identified model =⇒ new controller design

Since all significant dynamics were now tackled, the controller

based on the identified model showed satisfactory behaviour

System Identification: Part I 16
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Example 2: fatigue load reduction for new generation of wind

turbines J.W. Wingerden et al., Wind Energy, Wiley, 2008

bladeblade

The blades of a wind turbine are subject to high vibration loads

due to wind gust, periodic rotations, ...

System Identification: Part I 17
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To enhance the life duration of wind turbines, these vibrations

must be regulated

Two control loops to reduce the strain in the blade:

• pitch control: optimal orientation of the blades

• flap control: optimal orientation of flaps added to the blade

structure

flap

blade

flap

blade

System Identification: Part I 18
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For control design, we need a model of the dynamics between

the pitch and flap actuators and the strain in the blade:

pitch actuator

system
flap actuator

strain

wind
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First-principle modeling

Model based on aerodynamic and mechanical laws

linear model (order = 28)

many physical parameters to determine =⇒ high uncertainty
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With this model, impossible to deduce a controller stabilizing

the real-life system
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Data-based modeling

We excite both inputs up to 100Hz (important band for

control) and measure the corresponding strain

Based on these data, the following model is identified

St
ra

in
se

ns
or

Am
pl

itu
de

[V
] From Pitch Actuator [deg] From Smart actuator 1&2 [V]

Frequency [Hz]

St
ra

in
se

ns
or

Ph
as

e[
de

g]

Frequency [Hz]

1st flapping mode
2st flapping mode

1st lead-lag mode

1st flapping mode 2st flapping mode

100 101 102100 101 102

100 1P 3P 102100 1P 3P 102

-720

-360

0

10−4

10−2

100

102

System Identification: Part I 21

'
&

$
%

Important differences between the two models

Behaviour in low frequencies (the physical model did not take

into account the strain sensor dynamics)

Extra resonance between 10 Hz and 100 Hz due to other

vibration modes (unmodeled in the first-principle approach)

The identified model is simpler (order = 10) and less uncertaina

control design based on the identified model leads to a

satisfactory reduction of the strain in the blade

a
parameters of first-principle model have in fact been tuned with the identified

model

System Identification: Part I 22
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Example 3: Signal equalization in mobile telephony

clouds

Antenna emitting 
a signal u(t)

mobile phone receiving
a signal y(t)

ground

The received signal y(t) is made up of several delayed versions

of the emitted signal u(t) + noise

y(t) = g1 u(t − n1) + g2 u(t − n2) + ... + noise

=⇒ distorted signal

System Identification: Part I 23
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A model of the so-called channel is required to reconstruct u(t)

from the distorted y(t)

This model can not be determined in advance since the position

of the mobile phone is mobile (by definition)

The model is identified at each received call

System Identification: Part I 24
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How to proceed?

When emitting u(t), the signal of interest uinterest(t) is

preceded by a known sequence uknown(t)
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Both the known sequence and the signal of interest are

distorted by the channel
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Denote by yknown(t) and yinterest(t) the received signals

corresponding to uknown(t) and uinterest(t), respectively
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Since uknown is a known sequence, the GSM software uses the

data uknown and yknown to identify a model of the channel

This model can be then used to determine an appropriate filter

to reconstruct uinterest(t) from yinterest(t)

System Identification: Part I 27
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Summary: First-principle vs. Data-based modeling”

the two methodologies are often combined to increase

confidence in the model

General disadvantages of first-principle modeling

• model contains many unknown (physical) parameters =⇒

high uncertainty (not quantifiable)

• model generally more complicate than with system

identification

• missing actuator/sensor dynamics and phenomena can be

forgotten

• sometimes impossible to determine (as in example 3, but also

in the process industry)

• no disturbance model

System Identification: Part I 28
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System Identification: the players

to-be-identified system
G0

++u y

v

+

u(t) is the (discrete-time) input which can be freely chosen

y(t) is the (discrete-time) output which can be measured and is

made up of

• a contribution due to u(t) i.e. G0u(t)

• a contribution independent of u(t) i.e. the disturbance v(t)

System Identification: Part I 29
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the signal v(t) is an unknown disturbance (noise, process

disturbance, effects of non-measured inputs, ..)

It can be best modeled via a (zero-mean) stochastic process.

Indeed, v(t) will never be the same if you repeat the experiment

The challenging nature of system identification is due to the

presence of v(t)

If v(t) = 0, it is just an algebraic game to find the relation

between u(t) and y(t)

As result, an identification experiment (generally) delivers both

a model of the transfer G0 and of the disturbance v(t)

System Identification: Part I 30
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System identification procedure

Experiment
design

Model SetData

Validate
Model

Identification
Criterion

Construct model

prior knowledge /
intended model application

NOT OK

OK

intended
model application
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Identification Criterion

Measure the “distance” between a data set (u, y)t=1,···N and a

particular model.

In this course, we will consider two criteria

• Prediction Error Identification (PEI) delivering a

discrete-time transfer function as model of G0

• Empirical Transfer Function Estimate (ETFE) delivering an

estimate of the frequency response of G0

System Identification: Part I 32
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Why those?

• PEI is the most used method in practice and the one

delivering the most tools to validate a model

• ETFE is used to have a first idea of the system and facilitate

the use of PEI

Other criteria: subspace identification, IV methods, ML

methods, ...

System Identification: Part I 33
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Model set

Complexity of models (order, number of parameters) to be

determined

System Identification: Part I 34
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Experiment Design

• Choice of the type of excitation

• sum of sinusoids (multisine)

• realization of (filtered) white noise or alike

• Which frequency content?

• Which duration?

Experiment design is very important since it has a direct

influence on the quality of the model

System Identification: Part I 35
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Model validation

• Comparing the actual output of the system with the output

predicted by the model

• Determining the uncertainty of the system e.g. in the

frequency domain
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System identification for (robust) control

Feedback control systemIdentification

processprocess
outputinput

disturbance

Data → Model 10
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-1

10
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1 0
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Model → Controller

Feedback control systemFeedback control system

controllercontroller processprocess
+

-

output
reference
input

disturbance
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History

• Basic principle (LS) from Gauss (1809)

• Development based on theories of

- stochastic processes

- statistics

• Strong growth in sixties and seventies

Åström en Bohlin (1965), Åström en Eykhoff (1971)

• Brought to technological tools in nineties

(Matlab Toolboxes for either time-domain of frequency domain),

as well as to professional industrial control packages

(Aspen, SMOC-PRO, IPCOS, Tai-Ji Control, AdaptX, ...).

System Identification: Part I 38
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Notions from estimation theory

Estimator θ̂N of θ0 based on N data points.

a. Unbiased (zuiver): Eθ̂N = θ0

b. Consistent. θ̂N is consistent if:

• Pr[limN→∞ θ̂N = θ0] = 1

• θ̂N → θ0 with probability 1 voor N → ∞.

c. Variance: cov(θ̂N) = E(θ̂N − Eθ̂N)(θ̂N − Eθ̂N)T .

System Identification: Part I 39
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Bull’s eye represents θ0;

left: unbiased estimate with small variance

middle: biased estimate with small variance

right: unbiased estimate with large variance

System Identification: Part I 40
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Part II: RECAP on discrete-time systems and signals

System Identification: part II 1
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1. Introduction

Why are discrete-time systems and signals important in system

identification?

In system identification, we deal with measured signals =⇒

discrete-time signals

=⇒

the models/systems can be represented by discrete-time transfer

functions

System Identification: part II 2
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2. Discrete-time systems

Continuous-time vs. Discrete-time systems

x[n] yZOH
Ts

Continuous 
system

Sampling
Ts

u ucont ycont

The continuous output ycont(tc) (tc ∈ R) of the system is

sampled with sampled time Ts

This sampling delivers the discrete measurements y(t) where

t = 0, 1, 2, ... i.e. y(t) = ycont(tTs)

System Identification: part II 3
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x[n] yZOH
Ts

Continuous 
system

Sampling
Ts

u ucont ycont

The system is excited via the discrete sequence u(t)

t = 0, 1, 2, ... generated by a PC

This discrete signal is made continuous by the Zero Order Hold

(ZOH):

ucont(tc) = u(t) for tTs ≤ tc < (t + 1)Ts

System Identification: part II 4
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Illustration:

Continuous system: G0(s) = 10

s+10

Sampling time: Ts = 0.04 s.

The sequence u(t) is made up of 41 samples i.e. t = 0...40

u(t) =















0 for 0 ≤ t ≤ 2

0.8 for 3 ≤ t ≤ 17

0.5 for 18 ≤ t ≤ 40

System Identification: part II 5
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Upper plot: the discrete sequence u(t)

Bottom plot: the continuous signal ucont made by the ZOH

(red) compared with the discrete sequence u(t) (blue)
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The continuous signal ucont is then filtered by G0(s) delivering

the continuous signal ycont (upper plot, red). This continuous

signal is then sampled with a sample period Ts = 0.04s. (upper

plot, blue circle). This delivers the discrete sequence y(t) of 41

samples (t = 0...40) (bottom plot)
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Discrete-time transfer function

Does it exist a transfer function relation between y(t) and u(t)?

yZOH
Ts

Continuous 
system

Sampling
Ts

u ucont ycont

G0(z)

System Identification: part II 8
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yZOH
Ts

Continuous 
system

Sampling
Ts

u ucont ycont

G0(z)

G0(z)
∆

=
Y (z)

U(z)
=

+∞
∑

t=−∞

y(t)z−t

+∞
∑

t=−∞

u(t)z−t

G0(z) can be computed from G0(s) with the function c2d.m of

Matlab (ZOH methodology)

System Identification: part II 9
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Example:

When G0(s) = a

s+a
and Ts = 0.04s., the discrete-time transfer

function between y(t) and u(t) is

G0(z) =
(1− b)z−1

1− bz−1
with b = e−aTs

Thus:

G0(s) =
10

s + 10
←→ G0(z) =

0.33z−1

1− 0.67z−1

System Identification: part II 10
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Proof:

Suppose u(t) is a discrete step, then ucont(tc) is a continuous step.

The step response of G0(s) is, for tc > 0,

ycont(tc) = 1− e
−atc

The sampled signal y(t) is given by ycont(tc) at samples tc = tTs i.e.,

for t > 0,

y(t)
∆
= ycont(tTs) = 1− e

−atTs

= 1− b
t

G0(z) =
Y (z)

U(z)
=

1

1−z−1
−

1

1−bz−1

1

1−z−1

=
(1− b)z−1

1− bz−1

System Identification: part II 11
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Properties of discrete-time transfer function

y
G0(z)

u

With some abuse, we will write

y(t) = G0(z)u(t)

System Identification: part II 12
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y(t) = G0(z)u(t)

can be seen as a difference equation since:

z−1u(t)
∆

= u(t− 1)

Example:

y(t) =
bz−1

1− az−1
u(t)⇐⇒ y(t)− ay(t− 1) = bu(t− 1)

this allows to compute the sequence y(t) as a function of the

sequence u(t)

System Identification: part II 13
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Remark:

pure delays can be easily represented within G0(z)

For continuous transfer function, a pure delay of α = βTs

seconds (β integer) is a non-rational part:

e−αs
10

s + 10

The corresponding rational discrete transfer function is:

z−β
0.33z−1

1− 0.67z−1

System Identification: part II 14
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Impulse response of G0(z)

Assume G0(z) is causal

The impulse response g0(t) t = 0.. +∞ is the response

y(t) = G0(z)u(t) when u(t) is a discrete pulse δ(t) i.e.

u(t) = 1 when t = 0 and u(t) = 0 elsewhere

This response allows to rewrite G0(z) as follows:

G0(z) =
∞
∑

k=0

g0(k)z−k

System Identification: part II 15
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Indeed:

y(t) = G0(z)δ(t) =
∞
∑

k=0

g0(k)δ(t− k) = g0(t)

The impulse sequence g0(t) can be deduced

• by solving the difference equation for u(t) = δ(t)

• by dividing the numerator of G0(z) by its denominator

System Identification: part II 16
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Stability of G0(z)

a transfer function is stable ⇐⇒ the poles of G0(z) are all

located within the unit circle

Example:

bz−1

1− az−1
stable⇐⇒ |a| < 1

Indeed, z = a is the unique pole of 1− az−1

System Identification: part II 17
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Frequency response of G0(z)

the frequency response of G0(z) is given by the transfer

function evaluated at z = ejω i.e. on the unit-circle:

G0(z = ejω)

Only the frequency response between [0 π] is relevant.

Discrete frequency ω ∈ [0 π] =⇒ actual frequency

ωactual = ω

Ts

(ωactual lies within the interval between 0 and the

Nyquist pulsation)

System Identification: part II 18
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General interpretation:

Y (ω) = G0(e
jω)U(ω)

with Y (ω), U(ω) the Fourier transform of y(t),

u(t) (t = −∞... +∞)

One particular consequence:

u(t) = sin(ω0t) =⇒

y(t) = G0(z)u(t) = |G0(e
jω0)| sin

(

ω0t + ∠G0(e
jω0)

)

System Identification: part II 19
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Frequency response representation: bode plot
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Remarks

1. Choice of Ts

The sampling period Ts is an important variable

It should be chosen so that [0 π

Ts

] covers the band of

significance of the continuous-time system

See end of the course for methodologies to choose Ts

System Identification: part II 21
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2. Non-linearities

We adopt a linear framework to define the relation between u

and y

We thus analyze the behaviour around one particular set-point

If the system is used at multiple set-points, a model must be

identified for each of them (and coupled with a scheduling

function)

System Identification: part II 22
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3 Discrete-time signal analysis

Signals encountered in system identification

Input u(t):

multisine
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Disturbance v(t):

stochastic

signal
0 10 20 30 40 50 60 70 80 90 100
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Output y(t):

y(t) = G0(z)u(t) + v(t)

System Identification: part II 24
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Observations

finite-power signals =⇒ analysis via their power spectrum Φ(ω)

(i.e. distribution of power content over the frequency ω)

signal y(t) can be made up of a combination of stochastic and

deterministic signal (e.g. when u(t) is a multisine)

=⇒ make it complicate to define Φ(ω)

A new theory is necessary to deal with such signals called

quasi-stationary signals (see later)

System Identification: part II 25
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Recap: Stochastic vs. Deterministic signals

the values taken by a stationary stochastic signal at different t

are different at each experiment/realization

BUT, each realization has the same power content over ω (i.e.

the same Φ(ω))

three real-

izations

Ensemble 

Timet 
0 

System Identification: part II 26
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Stationarity also implies that the mean of the signal and the

auto-correlation function is time-invariant

the values taken by a deterministic signal at different t and thus

Φ(ω) are the same for all experiments/realizations

In identification, the deterministic signals are the multisines

System Identification: part II 27
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Analysis of quasi-stationary signals

A quasi-stationary signal is a finite-power signal which can be

• a stochastic signal (stationary)

• a deterministic signal

• the summation of a stochastic and a deterministic signal

Analysis very close to the one of stationary stochastic signals

(see WB2310 S&R3)
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Mean Ēu(t) of a quasi-stationary signal u(t)

Mean of a deterministic signal u(t): lim
N→∞

1

N

N
∑

t=1

u(t)

Mean of a stochastic signal u(t): Eu(t)

=⇒ New operator Ē

Ēu(t)
∆

= lim
N→∞

1

N

N
∑

t=1

Eu(t)

for purely stochastic or deterministic signal, the new operator is

equivalent to the classical mean operator
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Power spectrum Φu(ω) of a quasi-stationary signal

The power spectrum of u(t) is defined as the Fourier Transform

of the auto-correlation function of u(t):

Φu(ω)
∆

=

+∞
∑

τ=−∞

Ru(τ ) e−jωτ

with

Ru(τ )
∆

= Ē (u(t) u(t − τ ))
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Total power Pu
∆

= Ēu2(t) of u(t):

Pu = Ru(0) =
1

2π

∫ π

−π

Φu(ω)dω

Example 1: Φu(ω) and Pu when u(t) is a white noise of

variance σ2

u?

Ru(τ ) = lim
N→∞

1

N

N
∑

t=1

E (u(t)u(t − τ ))

= E (u(t)u(t − τ )) by stationarity

∆

=







σ2

u when τ = 0

0 when τ 6= 0
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Φu(ω) =

+∞
∑

τ=−∞

Ru(τ )e−jωτ = σ2

u
e−jω0 = σ2

u
∀ω

ω

Φu(ω)

0 π−π

σ2
u

and Pu = Ru(0) = σ2

u
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Example 2: Φu(ω) and Pu when u(t) = Asin(ω0t + φ)

Ru(τ ) = Ē (u(t)u(t − τ ))

= Ē
(

A2 sin(ω0t + φ) sin(ω0t − ω0τ + φ)
)

= Ē

(

A2

2
cos(ω0τ ) −

A2

0

2
cos(2ω0t − ω0τ + 2φ)

)
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=⇒ Ru(τ ) =

lim
N→∞

1

N

N
∑

t=1

(

A2

2
cos(ω0τ ) −

A2

0

2
cos(2ω0t − ω0τ + 2φ)

)

since Es(t) = s(t) for a deterministic signal.

=⇒ Ru(τ ) =
A2

2
cos(ω0τ )

and thus, in the fundamental frequency range [−π π],

Φu(ω) =
A2π

2
(δ(ω − ω0) + δ(ω + ω0))

and Pu = Ru(0) = A2

2
.
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Φu(ω) =
A2π

2
(δ(ω − ω0) + δ(ω + ω0))

The power spectrum of the sinus is independent of its phase

shift φ and is = to 0 except in ±ω0 where it is infinite.

ω

Φu(ω)

0 π−π ω0−ω0

System Identification: part II 35

'
&

$
%

Properties of the power spectrum

y(t) = G(z)u(t) =⇒ Φy(ω) = |G(ejω)|2 Φu(ω)

y(t) = s1(t) + s2(t) with s1(t) independent of s2(t)

=⇒ Φy(ω) = Φs1
(ω) + Φs2

(ω)
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Cross- and auto-correlation function

The cross-correlation Ryu(τ ) between y and u is a function

which allows to verify whether two q-s signals y(t) and u(t) are

correlated with each other

Ryu(τ )
∆

= Ē (y(t)u(t − τ ))

Properties:

• the value of y(t) at time t is not (cor)related in any way to

the value of u(t − τ ) =⇒ Ryu(τ ) = 0

• the signals y(t) and u(t) are independent =⇒

Ryu(τ ) = 0 ∀τ

NB. Ru(τ ) = Ruu(τ )
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Approximations of Ru(τ ) and Φu(ω) using finite data

To exactly compute Ru(τ ) and Φu(ω), we need both an infinite

number of measurements of u(t) and an infinite number of

realizations of u(t)

In practice, we have generally N < ∞ measurements of u(t):

{u(t) | t = 0...N − 1}

A. Approximation of Ru(τ ) and properties of this approximation

R̂N
u

(τ ) =















1

N

N−1
∑

t=0

u(t)u(t − τ ) for |τ | < N − 1

0 for |τ | > N − 1
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This approximation is a consistent estimate of Ru(τ ) i.e.

lim
N→∞

R̂N
u

(τ ) = Ru(τ )

For fixed N , though, the accuracy of R̂N
u (τ ) decreases for

increasing values of τ since R̂N
u (τ ) is computed with lesser and

lesser products u(t)u(t − τ )
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B. Approximation of Φu(ω) (Periodogram) and properties of

this approximation

Φu(ω) can be approximated in two equivalent ways:

Φ̂N
u (ω) =

+∞
∑

τ=−∞

R̂
N
u (τ ) e

−jωτ

= UN (ω) U
∗

N (ω)

with UN (ω) the (scaled) Fourier Transform of {u(t) | t = 0...N − 1}

i.e.

UN (ω) =
1

√

N

N −1
∑

t=0

u(t) e
−jωt

Note: the approximation via UN (ω) is the most logical for

deterministic signals
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When u(t) is deterministic, Φ̂N
u (ω) is a consistent estimate of

Φu(ω)

lim
N→∞

Φ̂N
u (ω) = Φu(ω)

For all other cases, we have only that Φ̂N
u (ω) is an

asymptotically unbiased estimate of Φu(ω) (variance is nonzero)

lim
N→∞

EΦ̂N
u (ω) = Φu(ω)
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Example 1: we have collected N = 1000 time-samples of a

white noise of variance σ2

u = 100

0 100 200 300 400 500 600 700 800 900 1000
−40

−30

−20

−10

0

10

20

30

40

time

u(
t)
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Obtained Periodogram Φ̂N
u (ω) (blue) w.r.t. Φu(ω) (red)
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Φ̂N
u (ω) is an erratic function fluctuating around Φu(ω)
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As expected, it does not change when N is increased to

N = 10000:
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Example 2: we have collected N = 100 time-samples of

u(t) = sin(0.63t) + 1

2
sin(1.26t) + 3

4
sin(1.89t) (fundamental

period = 10 time-samples):

0 10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time

u(
t)

System Identification: part II 45

'
&

$
%

Obtained Periodogram Φ̂N
u (ω) for ω ∈ [0 π]
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It can be proven that the value at ω1 = 0.63, ω2 = 1.26 and

ω3 = 1.89 are given by
NA2

i

4
where Ai (i = 1, 2, 3) is the

amplitude of the sinusoid of frequency ωi.
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For N → ∞, Φ̂N
u (ω) tends thus to Φu(ω). Here is the

periodogram for the same signal when N = 1000
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Part III: Prediction Error Identification

System Identification 0
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1. Introduction about Prediction Error Identification

1.1. Assumptions on the True System: S = { G0 H0 }

y(t) = G0(z)u(t) +

v(t)
︷ ︸︸ ︷

H0(z)e(t)

G0(z)

H0(z)

+u(t) y(t)

e(t)

true system S
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G0(z) and H0(z) are two unknown linear transfer functions in

the Z-transform ( e.g. G0(z) = 3z−1

1+0.5z−1
and

H0(z) = 1

1+0.5z−1
)

the input signal u(t) is chosen by the operator and applied to S

and the output signal y(t) is measured

y(t) is assumed to be made up of two distinct contributions:

• G0u(t): dependent of the choice of u(t)

• the disturbance v(t) = H0(z)e(t) : independent of the

input signal u(t)
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the disturbance v(t) represents the measurement noise; the

effects of stochastic disturbance, the effects of non-measurable

input signals; · · ·

the disturbance v(t) is modeled by H0(z)e(t):

• H0(z) is stable, inversely stable and

monic (i.e. H0(z) = 1 +
∑

∞

k=1
h0(k)z−k)

• e(t) is a white noise signal i.e. a sequence of independent,

identically distributed random variables (no assumption is

made on the probability density function)
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Properties of e(t) and v(t) as a consequence of the assumptions

Since {e(t)} is a white noise,

Ee(t) = 0

Re(τ )
∆

= Ee(t)e(t − τ ) = σ2

e · δ(τ )

{v(t)} is therefore the realization of a stochastic process with

properties:

Ev(t) = 0

Φv(ω) = |H0(e
iω)|2 · σ2

e
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1.2. Objective of PE Identification

General Objective

Find the best parametric models G(z, θ) and H(z, θ) for the

unknown transfer functions G0 and H0 using a set of measured

data u(t) and y(t) generated by the true system S.

Example of parametric models:

G(z, θ) =
θ1z−1

1 + θ2z−1
H(z, θ) =

1

1 + θ2z−1

θ =





θ1

θ2



 M = { G(z, θ), H(z, θ) ∀θ ∈ R2
}

Note: H(z, θ) is always chosen as a monic transfer function (like H0)
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In the beginning, we will make the following assumption:

∃θ0 such that G(z, θ0) = G0(z) and H(z, θ0) = H0(z)

i.e. S ∈ M

The objective can therefore be restated as follows:

Find (an estimate of) the unknown parameter vector θ0 using a

set of N input and output data:

ZN = { u(t), y(t) | t = 1...N }

generated by the true system i.e. y(t) = G0u(t) + H0e(t)
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Summary: the full-order identification problem

Consider the following true system:

y(t) = G0(z)u(t) +

v(t)
︷ ︸︸ ︷

H0(z)e(t) = G(z, θ0)u(t) + H(z, θ0)e(t)

from which N input and output data have been measured:

ZN = { u(t), y(t) | t = 1...N }.

Given the parametrization G(z, θ) and H(z, θ), find (an

estimate of) the unknown parameter θ0.
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Simple idea to reach this objective :

Let us simulate the parametric models with the input u(t) in

ZN :

y(t, θ) = G(z, θ)u(t) + H(z, θ)e(t)

and let us find the vector θ for which:

y(t) − y(t, θ) = 0 ∀t = 1...N

In other words, θ = θ0 minimizes the power of y(t) − y(t, θ)
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Problem: y(t, θ) can not be computed since the white noise

sequence e(t) is unknown

Consequences:

• we need to find an accurate way to predict y(t, θ)

• the predictor ŷ(t, θ) should be chosen in such a way that θ0

can still be deduced e.g. by minimizing the power of

y(t) − ŷ(t, θ)

System Identification 9
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2. Predictor ŷ(t, θ) in identification and prediction error ǫ(t, θ)

Given ZN and a model G(z, θ), H(z, θ) in M, we define the

predictor ŷ(t, θ) of the output of this model as follows:

ŷ(t, θ)
∆

= H(z, θ)−1G(z, θ)u(t)+(1−H(z, θ)−1)y(t) ∀t = 1...N

and we define the prediction error ǫ(t, θ) as follows:

ǫ(t, θ)
∆

= y(t) − ŷ(t, θ) ∀t = 1...N

= H(z, θ)−1 (y(t) − G(z, θ)u(t)) ∀t = 1...N

System Identification 10
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ǫ(t, θ) compares the output of the true system and the

predicted output of a candidate model.

G0(z)

G(z, θ)

ǫ(t, θ)

e(t)

u(t)

– +

+ y(t)

1

H(z, θ)

H0(z)

System Identification 11
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Properties of the prediction error ǫ(t, θ)

Property 1. Given θ and ZN , ǫ(t, θ) computable ∀t = 1...N

Example:

G(z, θ) = θ1z−1

1+θ2z−1
H(z, θ) = 1

1+θ2z−1
θ =





θ1

θ2





ǫ(t, θ) =
(

1 + θ2z−1
)

(

y(t) −

θ1z−1

1 + θ2z−1
u(t)

)

= y(t) + θ2y(t − 1) + θ1u(t − 1)

Notes:

it is typically assumed that u(t < 0) = y(t < 0) = 0

H−1(z, θ) is always causal since H(z, θ) is monic !

System Identification 12
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Property 2. ǫ(t, θ0) = e(t) (smth really unpredictable at time t)

ǫ(t, θ) = H(z, θ)−1







y(t)
︷ ︸︸ ︷

G0(z)u(t) + H0(z)e(t) −G(z, θ)u(t)







=
G0(z) − G(z, θ)

H(z, θ)
u(t) +

H0

H(z, θ)
e(t)

=⇒ ǫ(t, θ0) = e(t)

Property 3. ǫ(t, θ) 6= white noise for all θ 6= θ0 (provided an

appropriate signal u(t))

System Identification 13
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Property 4. θ0 minimizes the power Ēǫ2(t, θ) of ǫ(θ) i.e.

θ0 = arg minθ Ēǫ2(t, θ)

with Ēǫ2(t, θ)
∆

= lim
N→∞

1

N

N
∑

t=1

Eǫ2(t, θ)

Since ǫ(t, θ0) = e(t), we have thus:

Ēǫ2(t, θ0) = σ2

e

Ēǫ2(t, θ) > σ2

e ∀θ 6= θ0

(the latter provided u(t) has been chosen appropriately)

System Identification 14
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Sketch of the proof of Property 4:

ǫ(t, θ) = e(t) +

s1(t,θ)

︷ ︸︸ ︷

G0(z) − G(z, θ)

H(z, θ)
u(t)+

s2(t,θ)

︷ ︸︸ ︷

H0(z) − H(z, θ)

H(z, θ)
e(t)

with s2(t, θ) function of e(t − 1), e(t − 2), ... (not of e(t)).

u(t) and e(t) uncorrelated and e(t) white noise =⇒

Ēǫ2(t, θ) = σ2

e + Ēs2

1
(t, θ) + Ēs2

2
(t, θ)

θ = θ0 minimizes both Ēs2

1
(t, θ) and Ēs2

2
(t, θ) by making them

equal to 0.

=⇒ θ = θ0 minimizes Ēǫ2(t, θ)
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Important remark. The two following statements are equivalent:

• The true parameter vector θ0 reduces the prediction error

ǫ(t, θ) to the realization of the noise e(t).

• The true parameter vector θ0 minimizes the power of the

prediction error ǫ(t, θ).

System Identification 16
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Example

We have collected N = 2000 data u(t) and y(t) on the

following true system

y(t) =
z−3

(

0.103 + 0.181z−1
)

1 − 1.991z−1 + 2.203z−2 − 1.841z−3 + 0.894z−4
u(t)+e(t)

and we have chosen the following model structure M

M =







G(z, θ) =

z
−3

(

b0 + b1z
−1

)

1 + f1z
−1

+ f2z
−2

+ f3z
−3

+ f4z
−4

; H(z, θ) = 1







θ =
(

b0 , b1 , f1 , f2 , f3 , f4

)T

=⇒ θ0 =
(

0.103 , 0.181 , −1.991 , 2.203 , −1.841 , 0.894
)T

System Identification 17
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We have computed ǫ(t, θ) (t = 1...N) for θ = θ0 and for

another θ i.e. θ1 6= θ0:

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−4

−2

0

2

4
epsilon(t,theta0)

t

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−4

−2

0

2

4
epsilon(t,theta1)

t

θ1 =
(

0.12 , 0.25 , −2 , 2.3 , −1.9 , 0.8
)T
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As can be seen with R̂N
ǫ (τ ), ǫ(t, θ0) has well the properties of a

white noise as opposed to ǫ(t, θ1)
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auto−correlations of epsilon(t,theta0) (red) and epsilon(t,theta1) (blue)
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Estimated power of ǫ(t, θ0) : 0.1015 (σ2

e = 0.1)

Estimated power of ǫ(t, θ1) : 1.4678

Note: the estimated power is R̂N
ǫ (0)
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Summary:

• ǫ(t, θ) is a computable quantity comparing the output y(t)

of the true system and the predicted output of a model

• θ = θ0 minimizes the power of ǫ(t, θ)

System Identification 21
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3. Mathematical criterion for prediction error identification

3.1. An ideal criterion

Denote by θ∗, the solution of the minimization of the power of

the prediction error:

θ∗ = arg minθ V̄ (θ)

with V̄ (θ) = Ēǫ2(t, θ) = lim
N→∞

1

N

N
∑

t=1

Eǫ2(t, θ)

Properties of V̄ (θ) and θ∗ (when S ∈ M and u(t) appropriate)

V̄ (θ) has an unique minimum θ∗

θ∗ = θ0

System Identification 22
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Remark:

There is no difference between θ∗ and θ0 at this stage of the

course since we suppose S ∈ M and u(t) appropriate.

We nevertheless introduce the new notation θ∗ since

• when S 6∈ M, the notion of true parameter vector θ0 does

not exist, while the minimum θ∗ of the cost function V̄ (θ)

exists

• if u(t) is not chosen appropriately, then V̄ (θ) has several

minima and θ∗ represents the set of these minima, while θ0

is one single parameter vector
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The true parameter vector θ0 is thus the solution of:

arg minθ V̄ (θ)

with V̄ (θ) = Ēǫ2(t, θ) = lim
N→∞

1

N

N
∑

t=1

Eǫ2(t, θ)

Question ? Is it possible to consider this criterion ? NO !!!

Indeed, the power of the prediction error can not be exactly

computed with only one experiment and only N measured data.

System Identification 24
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3.2. Tractable identification criterion

Power of prediction error is estimated using the N available

data ZN :

VN(θ, ZN) =
1

N

N
∑

t=1

ǫ2(t, θ)

=
1

N

N
∑

t=1

(

(H(θ)−1(y(t) − G(θ)u(t))
)2

Parameter estimation through minimizing VN :

θ̂N = arg min
θ

VN(θ, ZN)

System Identification 25
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Consequences and properties of the identified parameter

vector θ̂N :

• different experiments and data =⇒ different θ̂N .

• θ̂N is only an estimate of θ∗(= θ0).

• θ̂N is a random variable which is asymptotically (N → ∞)

Gaussian with mean θ∗:

θ̂N ∼ AsN (θ∗, Pθ)

• θ̂N → θ∗ with probability 1 when N → ∞ (i.e. Pθ → 0

when N → ∞ )

System Identification 26
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Example:

S : y(t) =
0.7z−1

1 + 0.3z−1
u(t) +

1

1 + 0.3z−1
e(t)

M : G(z, θ) = bz−1

1+az−1
H(z, θ) = 1

1+az−1
θ =





a

b





we have applied 20 times the same sequence u(t) of length

N = 200 and we have measured the corresponding y(t).

For these 20 experiments, we have computed the estimate θ̂N

of θ0 =
(

0.3 , 0.7
)T
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The twenty estimates θ̂N are represented with a blue cross and

θ0 by a red circle.
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How can we solve the optimization problem delivering θ̂N ?

θ̂N = arg min
θ

1

N

N
∑

t=1

ǫ2(t, θ)

= arg min
θ

1

N

N
∑

t=1

(

(H(θ)−1(y(t) − G(θ)u(t))
)2

In order to answer this question, the parametrization of G(z, θ)

and H(z, θ) must be defined more precisely.

System Identification 29

'
&

$
%

4 Black box model structures

Model structure: M = {(G(z, θ), H(z, θ)), θ ∈ R
nθ}

General parametrization used in the Matlab Toolbox:

G(z, θ) = z−n
k B(z,θ)

F (z,θ)A(z,θ)
H(z, θ) = C(z,θ)

D(z,θ)A(z,θ)

θT =
(

a1 .. ana
b0 .. fnf

)

B(z, θ) = b0 + b1z−1 + · · · + bnb−1z−nb+1

A(z, θ) = 1 + a1z−1 + · · · + ana
z−na

C(z, θ) = 1 + c1z−1 + · · · + cnc
z−nc

D(z, θ) = 1 + d1z−1 + · · · + dnd
z−nd

F (z, θ) = 1 + f1z−1 + · · · + fnf
z−nf
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Model structures used in practice

Model structure G(z, θ) H(z, θ)

ARX
z−nkB(z, θ)

A(z, θ)

1

A(z, θ)

ARMAX
z−nkB(z, θ)

A(z, θ)

C(z, θ)

A(z, θ)

OE - Output Error
z−nkB(z, θ)

F (z, θ)
1

FIR z−nkB(z, θ) 1

BJ - Box-Jenkins
z−nkB(z, θ)

F (z, θ)

C(z, θ)

D(z, θ)
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Example: ARX Model structure

G(z, θ) =
z−nkB(z, θ)

A(z, θ)
; H(z, θ) =

1

A(z, θ)

with

B(z, θ) = b0 + b1z−1 + · · · + bnb−1z−nb+1

A(z, θ) = 1 + a1z−1 + · · · + ana
z−na

θ =
(

a1 a2 · · · ana
b0 b1 · · · bnb−1

)T

.

na, nb are the number of parameters in the A and B

polynomial.

nk number of time delays
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Distinction between model structures

• ARX and FIR have a predictor linear in θ

ŷ(t, θ) = z−nkB(θ)u(t) + (1 − A(θ))y(t)

= φT (t)θ

is a linear function in θ ⇒ Important computational

advantages.

• BJ, FIR and OE have an independent parametrization of

G(z, θ) en H(z, θ)

There are no common parameters in G and H.

⇒ Advantages for independent identification of G and H.
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5 Computation of the identified parameter vector θ̂N

θ̂N = arg min
θ

1

N

N
∑

t=1

ǫ2(t, θ) = arg min
θ

1

N

N
∑

t=1

(y(t) − ŷ(t, θ))
2

5.1 Case of a predictor linear in θ (ARX and FIR)

G(θ) =
z−nkB(θ)

A(θ)
; H(θ) =

1

A(θ)

Predictor ŷ(t, θ):

ŷ(t, θ) = H(θ)−1G(θ)u(t) + [1 − H(θ)−1]y(t)

= z−nkB(θ)u(t) + [1 − A(θ)]y(t)

= φ(t)T θ LINEAR in θ !!!
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with

φ(t) = (−y(t − 1), ..., −y(t − na),

u(t − nk), ..., u(t − nk − nb + 1))T

θ =
(

a1 a2 · · · ana
b0 · · · bnb−1

)T

VN(θ, ZN) = 1

N

∑N

t=1

(

y(t) − φT (t)θ
)2

is quadratic in θ.

VN(θ)

θ
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θ̂N = arg minθ

VN (θ,ZN

)

︷ ︸︸ ︷

1

N

N
∑

t=1

(

y(t) − φ(t)T θ
)2

can be determined

analytically using:

∂VN(θ, ZN)

∂θ

∣

∣

∣

∣

∣

θ=θ̂N

= 0

Indeed:

∂VN(θ, ZN)

∂θ
= −2

1

N

N
∑

t=1

[φ(t)y(t) − φ(t)φT (t)θ]

Putting derivative to 0 in θ = θ̂N delivers:
[

1

N

N
∑

t=1

φ(t)φT (t)

]

θ̂N =
1

N

N
∑

t=1

φ(t)y(t)
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As a consequence:

θ̂N =













1

N

N
∑

t=1

φ(t)φT (t)

︸ ︷︷ ︸

R(N)













−1

·

1

N

N
∑

t=1

φ(t)y(t)

︸ ︷︷ ︸

f(N)

• Analytical solution through simple matrix operations.
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5.2 Case of a predictor nonlinear in θ (OE,BJ,ARMAX)

Example of the OE model structure:

G(θ) =
z−nkB(θ)

F (θ)
; H(θ) = 1

Predictor ŷ(t, θ):

ŷ(t, θ) = H(θ)−1G(θ)u(t) + [1 − H(θ)−1]y(t)

= z−nk

B(θ)

F (θ)
u(t)

= φ(t, θ)T θ NONLINEAR in θ !!!

with

φ(t, θ) = (u(t − nk), ..., u(t − nk − nb + 1),

−ŷ(t − 1, θ), ..., −ŷ(t − nf , θ))T
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θ =
(

b0 · · · bnb−1 f1 f2 · · · fnf

)T

θ̂N = arg minθ

VN (θ,ZN

)

︷ ︸︸ ︷

1

N

N
∑

t=1

(

y(t) − φ(t, θ)T θ
)2

can not be

determined analytically using:

∂VN(θ, ZN)

∂θ

∣

∣

∣

∣

∣

θ=θ̂N

= 0

since this derivative is a very complicate expression which is

nonlinear in θ and since this derivative is (generally) equal to 0

for several θ (local minima).

The solution θ̂N will therefore be computed iteratively. Risk of

finding a local minimum !
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6 Conditions on experimental data

The ideal identification criterion

arg min
θ

Ēǫ2(t, θ)

has a unique solution θ∗ (i.e. θ∗ = θ0 when S ∈ M) if the

input signal u(t) that is chosen to generate the experimental

data is sufficiently rich.
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Counterexample

S : y(t) =
b0z−1

1 + f0z−1
u(t) +

1

1 + d0z−1
e(t)

Consider u(t) = 0 ∀t as input signal and a full-order model

structure M for S:

M =















G(z, θ) =

bz
−1

1 + fz
−1

; H(z, θ) =

1

1 + dz
−1

θ =









b

d

f























Consequently:

ǫ(t, θ) =

=0

︷ ︸︸ ︷

G0(z) − G(z, θ)

H(z, θ)
u(t) +

H0

H(z, θ)
e(t)
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=⇒ ǫ(t, θ) =
1 + dz−1

1 + d0z−1
e(t)

We know that Ēǫ2(t, θ) is minimum for θ making ǫ(t, θ) = e(t)

=⇒

The power Ēǫ2(t, θ) is minimized for each θ making

H(z, θ) = H0 i.e.

θ∗ =























b

d0

f









∀b ∈ R and ∀f ∈ R















Note: θ0 lies in the set of θ∗.

System Identification 42

'

&

$

%

Notion of signal richness: persistently exciting input signals

A quasi-stationary signal u is persistently exciting of order n if

the (Toeplitz) matrix R̄n is non-singular

R̄n :=

















Ru(0) Ru(1) · · · Ru(n − 1)

Ru(1) Ru(0) · · · Ru(n − 2)
...

. . .
. . .

...

Ru(n − 1) · · · Ru(1) Ru(0)

















System Identification 43

'

&

$

%

Examples:

• A white noise process (Ru(τ ) = σ2

uδ(τ )) is persistently

exciting of infinite order. Indeed, R̄n = σ2

uIn.

• a block signal

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Ru(0) = 1 Ru(1) = 1

3
Ru(2) = −

1

3
Ru(3) = −1

Ru(4) = −
1

3
Ru(5) = 1

3
Ru(6) = 1 etcetera
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R̄4 =















1 1

3
−

1

3
−1

1

3
1 1

3
−

1

3

−
1

3

1

3
1 1

3

−1 −
1

3

1

3
1















R̄3 is regular, R̄4 is singular. Consequently, u is p.e. of order 3
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Another method to determine the order of u

If the spectrum Φu is unequal to 0 in n points in the interval

(−π, π], then u is persistently exciting of order n

Example

The signal

u(t) = sin(ω0t)

is persistently exciting of order 2. (Φu has a contribution

in ±ω0).
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Important result. Let us denote the number of parameters in

the function G(z, θ) by ng. The ideal identification criterion i.e.

θ∗ = arg min
θ

V̄ (θ)

has a unique solution (i.e. θ∗ = θ0) if the signal u(t) generating

the data is sufficiently exciting of order ≥ ng.
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Sketch of the proof (case of a FIR model structure):

ǫ(t, θ) = y(t) −

nb
∑

k=1

bku(t − k) (nk = 1)

θ∗ is characterized by:

















Ru(0) · · · Ru(nb−1)

Ru(1) · · · Ru(nb−2)
...

. . .
...

Ru(nb−1) · · · Ru(0)

















θ∗

︷ ︸︸ ︷

















b∗

1

b∗

2

...

b∗

nb

















=

















Ryu(1)

Ryu(2)
...

Ryu(nb)

















Consequence:

θ∗ can uniquely be identified if and only if u is persistently

exciting of order ≥ nb.
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What can we say about the identification of θ̂N?

θ̂N will be the (consistent) estimate of θ∗ = θ0 (the unique

solution of the ideal criterion) if the input signal is sufficiently

exciting of order ≥ ng.

Remark. In the sequel, we will always assume that the signal

u(t) has been chosen such that it is persistently exciting of

sufficient order.
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Example

Let us consider the following true system S:

y(t) =
z−3

(

0.103 + 0.181z−1
)

1 − 1.991z−1 + 2.203z−2 − 1.841z−3 + 0.894z−4
u(t)+e(t)

we have chosen the full-order model structure M

M =







G(z, θ) =

z
−3

(

b0 + b1z
−1

)

1 + f1z
−1

+ f2z
−2

+ f3z
−3

+ f4z
−4

; H(z, θ) = 1







θ =
(

b0 , b1 , f1 , f2 , f3 , f4

)T

=⇒ nG = 6

we now perform two identification experiments on S
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First experiment on S

we have applied u(t) = sin(0.1t) (u p.e. of order 2) to S and

collected N = 2000 IO data:

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−2

−1

0

1

2

t

input signal u(t)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−2

−1

0

1

2

t

output signal y(t)

Using the 2000 recorded data, we have identified θ̂N
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G(z, θ̂N) (blue) is compared with G(z, θ0) (red):
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Frequency (rad/s)

Due to the lack of excitation, there are multiple θ∗ which

minimize Ēǫ2(t, θ) and the identified θ̂N is a consistent

estimate of one of these θ∗ (6= θ0)
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Second experiment on S

we have applied a white noise u(t) (u p.e. of order ∞) to S

and collected N = 2000 IO data:

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−2

−1

0

1

2

t

input signal u(t)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−2

−1

0

1

2

t

output signal y(t)

Using the 2000 recorded data, we have identified θ̂N
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G(z, θ̂N) (blue) is compared with G(z, θ0) (red):
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Since the signal u is p.e. of order ≥ 6, θ∗ is unique and the

identified θ̂N is a consistent estimate of this θ∗ = θ0
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7 Statistical properties of θ̂N when S ∈ M

Due to the stochastic noise v(t) corrupting the data ZN , the

identified parameter vector θ̂N is a random variable i.e.

the value of θ̂N is different at each experiment
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When S ∈ M, the identified parameter vector θ̂N has the

following property:

• θ̂N ∼ N (θ0, Pθ)

• θ̂N → θ0 with probability 1 when N → ∞ (i.e. Pθ → 0
when N → ∞ ).

Note: the first property is in fact θ̂N ∼ AsN (θ0, Pθ)
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7.1 Normal distribution of the identified parameter vector θ̂N

Consider an identification experiment on S achieved using an

input signal u(t) and a number N of data

The parameter vector θ̂N identified in such an experiment is the

realization of a normal distribution:

θ̂N ∼ N (θ0, Pθ)

Pθ
∆
= E

(

(θ̂N − θ0)(θ̂N − θ0)
T
)

=
σ2

e

N

(

Ēψ(t, θ0)ψ
T (t, θ0)

)−1

with ψ(t, θ0) = ∂ŷ(t,θ)

∂θ

∣

∣

∣

θ=θ0

= − ∂ε(t,θ)

∂θ

∣

∣

∣

θ=θ0
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Interpretation of θ̂N ∼ N (θ0, Pθ)

Consider p different identification experiments on S which

deliver p different estimates θ̂
(i)
N

Eθ̂N = θ0 means that

lim
p→∞

1

p

p
∑

i=1

θ̂
(i)
N = θ0

θ̂N unbiased estimate of θ0
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Interpretation of θ̂N ∼ N (θ0, Pθ) (con’t)

Pθ
∆= E

(

(θ̂N − θ0)(θ̂N − θ0)T
)

the covariance matrix Pθ gives an idea of the standard deviation

between θ̂N and θ0 (see next slide)
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Estimates θ̂N distributed as θ̂N ∼ N (θ0, Pθ) with large Pθ

Estimates θ̂N distributed as θ̂N ∼ N (θ0, Pθ) with small Pθ
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Properties of the covariance matrix Pθ of θ̂N

Property 1. Pθ is a function of the chosen input signal u(t) and

of the number N of data used for the identification.

Proof:

ε(t, θ) =
G0(z) −G(z, θ)

H(z, θ)
u(t) +

H0

H(z, θ)
e(t) =⇒

ψ(t, θ0) =
−∂ε(t, θ)

∂θ

∣

∣

∣

∣

θ=θ0

=
ΛG(z, θ0)

H(z, θ0)
u(t) +

ΛH(z, θ0)

H(z, θ0)
e(t)

with ΛG(z, θ) = ∂G(z,θ)

∂θ
and ΛH(z, θ) = ∂H(z,θ)

∂θ
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ψ(t, θ0) =
ΛG(z, θ0)

H(z, θ0)
u(t) +

ΛH(z, θ0)

H(z, θ0)
e(t)

Now defining ΓG = ΛGΛ
∗
G

HH∗ and ΓH = ΛHΛ
∗
H

HH∗ and using Parseval

theorem

Pθ =
σ2

e

N

(

Ēψ(t, θ0)ψT (t, θ0)
)−1

=⇒

Pθ =
σ2

e

N

(

1

2π

∫ π

−π

ΓG(ejω , θ0) Φu(ω) + ΓH (ejω , θ0) σ
2

e dω

)−1

=⇒ Pθ function of u(t) and N

We can therefore influence the value of Pθ by appropriately

choosing u(t) and N
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Property 2. The covariance matrix Pθ is a function of the

unknown true system S via σ2

e and θ0.

Property 3. A reliable estimate P̂θ of Pθ can nevertheless be

deduced using the data and θ̂N

P̂θ =
σ̂2

e

N

(

1

N

N
∑

t=1

ψ(t, θ̂N)ψT (t, θ̂N)

)−1

with σ̂2

e = 1

N

∑N
t=1

ε(t, θ̂N)2
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7.2 Consistency property of the PEI estimate θ̂N

θ̂N → θ0 with probability 1 when N → ∞

≡

If we could collect N = ∞ data from S, then the identified

parameter vector θ̂N→∞ would have the following distribution:

θ̂N→∞ ∼ N (θ0, Pθ) with Pθ = 0

In other words, θ̂N→∞ is a random variable whose realization is

always equal to θ0
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Indeed:

Pθ =
σ2

e

N

(

Ēψ(t, θ0)ψT (t, θ0)
)−1

and N → ∞ =⇒

Pθ → 0
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7.3 Proof of the statistical properties of θ̂N when M is FIR

S : G0(z) = a0 + b0z
−1 and H0(z) = 1

N input-output data have been collected from S
Full-order FIR model structure:

G(z, θ) = a+ bz−1 H(z, θ) = 1

θ =

⎛

⎝

a

b

⎞

⎠

Predictor:

ŷ(t, θ) = φ(t)T θ with φT (t) =
(

u(t) u(t− 1)
)
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Note that the data y(t) and u(t) collected from S obey the

following relation:

y(t) = φ(t)T

θ0

︷ ︸︸ ︷

⎛

⎝

a0

b0

⎞

⎠+e(t) t = 1...N
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The estimate θ̂N is obtained as follows:

θ̂N =

⎡

⎢

⎢

⎢

⎢

⎣

1

N

N
∑

t=1

φ(t)φT (t)

︸ ︷︷ ︸

R

⎤

⎥

⎥

⎥

⎥

⎦

−1

1

N

N
∑

t=1

φ(t)y(t)

What is the relation between θ̂N and θ0 ?

Replace y(t) by its expression:

θ̂N = R−1

⎛

⎜

⎝

1

N

N
∑

t=1

φ(t)

=y(t)
︷ ︸︸ ︷

(

φ(t)T θ0 + e(t)
)

⎞

⎟

⎠
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θ̂N = θ0 +R−1

(

1

N

N
∑

t=1

φ(t)e(t)

)

︸ ︷︷ ︸

estimation error

=⇒

θ̂N is a random variable and is (asymptotically) normally

distributed

Indeed

• e(t) is a random process and

• central limit theorem
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What are the moments of this normal distribution ?

Mean:

Eθ̂N = θ0 + E

(

R−1

(

1

N

N
∑

t=1

φ(t)e(t)

))

Since φ(t) and R are deterministic (not stochastic):

Eθ̂N = θ0 +R−1

⎛

⎝

1

N

N
∑

t=1

φ(t)

=0

︷ ︸︸ ︷

Ee(t)

⎞

⎠

= θ0
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Covariance matrix:

Pθ
∆= E

(

(θ̂N − θ0)(θ̂N − θ0)T
)

Pθ = E

(

R−1

N

(

N
∑

t=1

φ(t)e(t)

)(

N
∑

s=1

e(s)φT (s)

)

R−1

N

)

=
R−1

N

(

N
∑

t=1

N
∑

s=1

φ(t) E(e(t)e(s)) φT (s)

)

R−1

N

=
R−1

N

(

σ2

e

N
∑

t=1

φ(t)φT (t)

)

R−1

N

=
σ2

e

N
R−1RR−1 =

σ2

e

N
R−1
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The FIR case is a very particular case: only the normal

distribution is asymptotic in N while Eθ̂N = θ0 and the

covariance matrix are valid ∀N

Note that Pθ = σ2

e

N
R−1 converges when N → ∞ to the

asymptotic expression

σ2

e

N

(

Ēψ(t, θ0)ψT (t, θ0)
)−1

since

ŷ(t, θ) = φT (t)θ =⇒ ψ(t, θ) = φ(t) ∀θ

System Identification 72

�
�

�
�

What happens when N → ∞ ?

θ̂N→∞ = θ0 + lim
N→∞

⎛

⎝R−1
1

N

N
∑

t=1

⎛

⎝

u(t)e(t)

u(t− 1)e(t)

⎞

⎠

⎞

⎠

︸ ︷︷ ︸

random variable whose realisation is always 0
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Parametric uncertainty region

θ̂N close to θ0 if Pθ “small”

To determine how close, we can build an uncertainty region in

the parameter space:

θ̂N ∼ N (θ0, Pθ) ⇐⇒

(θ0 − θ̂N)T P−1

θ (θ0 − θ̂N) ∼ χ2(k)

with k the dimension of θ̂N
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(θ0 − θ̂N)T P−1

θ (θ0 − θ̂N) ∼ χ2(k)

the unknown true parameter vector θ0 lies therefore in the

following ellipsoid U with probability, say, 95%

U =
{

θ ∈ Rk | (θ − θ̂N)T P−1

θ (θ − θ̂N) ≤ α
}

with α such that Pr(χ2(k) < α) = 0.95.
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U =
{

θ ∈ Rk | (θ − θ̂N)T P−1

θ (θ − θ̂N) ≤ α
}

The uncertainty ellipsoid U is centered at the identified

parameter vector θ̂N and shaped by its covariance matrix Pθ

The largest Pθ, the largest the ellipsoid and thus the largest the

uncertainty

Remark: G(z, θ0) lies with the same probability in

D = {G(z, θ) | θ ∈ U}
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Example:

S : y(t) =
0.7z−1

1 + 0.3z−1
u(t) +

1

1 + 0.3z−1
e(t)

M : G(z, θ) = bz−1

1+az−1
H(z, θ) = 1

1+az−1
θ =

⎛

⎝

a

b

⎞

⎠

we have applied a sequence u(t) of length N = 1000 to S and

we have measured the corresponding y(t).
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Using these data, we have computed the estimate θ̂N of

θ0 =
(

0.3 , 0.7
)T

along with its (estimated) covariance

matrix Pθ:

θ̂N =

⎛

⎝

0.301

0.733

⎞

⎠ Pθ = 10−3

⎛

⎝

0.4922 0.0017

0.0017 0.6264

⎞

⎠

The 95% uncertainty region U can then be constructed

U =
{

θ ∈ Rk | (θ − θ̂N)T P−1

θ (θ − θ̂N) ≤ 5.99
}
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The estimate θ̂N ( blue cross ) along with its uncertainty

ellipsoid U in the parameter space

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

a

b

The in practice unknown θ0 is represented by the red circle and

lies in U as expected
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8 Statistical distribution of the identified model when S ∈ M

the identified parameter vector θ̂N is a random variable

distributed as θ̂N ∼ AsN (θ0, Pθ) =⇒

the identified models G(z, θ̂N) (and H(z, θ̂N)) are also random

variables:

• G(z, θ̂N) is an (asymptotically) unbiased estimate of

G(z, θ0)

• the variance of G(z, θ̂N) is defined in the frequency domain

as:

cov(G(ejω, θ̂N)) ∆= E
(

|G(ejω, θ̂N) −G(ejω, θ0)|2
)
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cov(G(ejω, θ̂N)) can be expressed as a function of Pθ:

cov(G(ejω, θ̂N)) = ΛG(ejω, θ0) Pθ Λ∗
G(ejω, θ0)

with ΛT
G(z, θ) = ∂G(z,θ)

∂θ

(obtained using a first order approximation and the assumption that N

is large enough)
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Properties of cov(G(ejω, θ̂N))

Property 1. cov(G(ejω, θ̂N)) is a function of the chosen u(t)
and of the number N of data used for the identification.

direct consequence of the fact that Pθ is a function of these

quantities
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More speaking relation between the choice of u(t) and of N

and cov(G(ejω, θ̂N))

Obtained by assuming that the MacMillan degree n of the

model G(z, θ) in M → ∞

cov
(

G(ejω, θ̂N)
)

≈ n

N

Φv(ω)

Φu(ω)
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Property 2. cov(G(ejω, θ̂N)) is a function of the unknown S

Property 3. An estimate of cov(G(ejω, θ̂N)) can nevertheless

be computed using the data and θ̂N

cov(G(ejω, θ̂N)) ≈ Λ∗
G(ejω, θ̂N) P̂θ ΛG(ejω, θ̂N)
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Comparison with non-parametric identification:

• cov(G(ejω, θ̂N)) → 0 when N → ∞ (even for

non-periodic signal)

• the modeling error at ω1 is correlated to the error at ω2 due

to the parametrization
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9 Validation of the identified model when S ∈ M

We have identified a model G(z, θ̂N) in M using ZN and we

have verified that S ∈ M (see later).

Important question: Is G(z, θ̂N) close to G(z, θ0) ?
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Validation using cov(G(ejω, θ̂N)

cov(G(ejω, θ̂N)) ∆= E
(

|G(ejω, θ̂N) −G(ejω, θ0)|2
)

Consequently, at each frequency ω:

the modeling error |G(ejω, θ0) −G(ejω, θ̂N)| is very likely to

be small w.r.t. |G(ejω, θ̂N)|

if

the standard deviation
√

cov(G(ejω, θ̂N) of G(ejω, θ̂N) is small

w.r.t. |G(ejω, θ̂N)|
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More precizely, since G(z, θ̂N) is normally distributed, we have

at each frequency ω that

|G(ejω, θ0)−G(ejω, θ̂N)| < 1.96
√

cov(G(ejω, θ̂N) w.p. 95%

√

cov(G(ejω, θ̂N) is thus a measure of the modeling error and

allows to deduce uncertainty bands around the frequency

response of the identified model G(z, θ̂N)
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What is a small standard deviation
√

cov(G(ejω, θ̂N) (or a

small modeling error) w.r.t. |G(ejω, θ̂N)|?

Highly dependent on the expected use for the model !!

For example, if we want to use the model for control, the

modeling error (measured by
√

cov(G(ejω, θ̂N)) has to be

much smaller around the cross-over frequency than at the other

frequencies

See the literature on “identification for robust control” to know

how large
√

cov(G(ejω, θ̂N) may be
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What to do if the variance appears too large ?

If the variance cov(G(ejω, θ̂N)) appears too large, then we can

not guarantee that G(z, θ̂N) is a close estimate of G0(z)

A new identification experiment has then to be achieved in

order to obtain a better model

For this purpose, we have to take care that the variance in this

new identification is smaller
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How can we reduce the variance of the identified model in a

new identification ?

cov
(

G(ejω, θ̂N)
)

≈ n

N

Φv(ω)

Φu(ω)

Consequently, cov(G(ejω, θ̂N)) can be reduced by

• increasing the number of data N ;

• or increasing the power spectrum Φu(ω) of the input signal

at the frequencies where cov(G(ejω, θ̂N)) was too large
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Example

Let us consider the same flexible transmission system S (in the

ARX form)

Let us consider a full order model structure M for S

We want to use G(z, θ̂N) for control

In this example, we need
√

cov(G(ejω,θ̂N)

|G(ejω,θ̂N)| < 0.1 ∀ω ∈ [0 1]

First identification experiment

We apply a white noise input signal u(t) of variance σ2

u = 0.005
to S, collect N = 2000 IO data and identify a model G(z, θ̂N)
in M

System Identification 92

�
�

�
�

Validation of the identified model G(z, θ̂N):

we compare
√

cov(G(ejω, θ̂N) (blue) and |G(z, θ̂N)| (red):

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

10
1

10
2

identified G (red); standard deviation (blue)

omega

√

cov(G(ejω, θ̂N) is too large !!!
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Second identification experiment

We want to reduce the variance of the identified model

Let us for this purpose increase the power of u(t):

We apply a white noise input signal u(t) of variance σ2

u = 1 to

S, collect N = 2000 IO data and identify a model G(z, θ̂N)
in M
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Validation of the identified model G(z, θ̂N):

we compare
√

cov(G(ejω, θ̂N) (blue) and |G(z, θ̂N)| (red):

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

10
1

10
2

identified G (red); standard deviation (blue)

omega

√

cov(G(ejω, θ̂N) is better, but still too large at the 1st peak

for our control purpose!!!
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Third identification experiment

We want to reduce the variance of the identified model further

around the 1st peak

Let us for this purpose increase the power of u(t) around this

first peak:

u(t) = white noise of the 2nd experiment +sin(0.3t)+sin(0.4t)

We apply this input signal u(t) to S, collect N = 2000 IO data

and identify a model G(z, θ̂N) in M
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Validation of the identified model G(z, θ̂N):

we compare
√

cov(G(ejω, θ̂N) (blue) and |G(z, θ̂N)| (red):

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

10
1

10
2

identified G (red); standard deviation (blue)

omega

√

cov(G(ejω, θ̂N) is now OK for our control purpose!!!
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Final note:

Similar analysis can be made for H(ejω, θ̂N) using

cov(H(ejω, θ̂N))

cov(H(ejω, θ̂N)) can be deduced using a similar reasoning as

for cov(G(ejω, θ̂N))
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10 A special case of undermodelling

10.1 Identification in a model structure M which does not

contain S: S 6∈ M

S 6∈ M ⇐⇒ there does not exist a θ0 such that

G(z, θ0) = G0(z) and H(z, θ0) = H0(z)

Consider a model structure M = {G(z, θ) ; H(z, θ)} such

that S 6∈ M and an input signal u(t) sufficiently exciting of

order ≥ ng
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Define, as before, the ideal identification criterion:

θ∗ = arg min
θ

Ēǫ2(t, θ)

and the estimate θ̂N of θ∗ :

θ̂N = arg min
θ

1

N

N
∑

t=1

ǫ(t, θ)2

Statistical properties of θ̂N w.r.t. θ∗

• θ̂N → θ∗ w.p. 1 when N → ∞

• θ̂N ∼ AsN (θ∗, Pθ) (Pθ having a more complicate

expression than when S ∈ M)
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Since S 6∈ M, we have in general:

G(z, θ∗) 6= G0(z) and H(z, θ∗) 6= H0(z)

One exception though:

S 6∈ M with G0 ∈ G and M OE, BJ or FIR
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10.2 Special case of undermodelling: S 6∈ M with G0 ∈ G

The model structure M used for identification purpose is

such that

∃θ0 such that G(z, θ0) = G0(z) but H(z, θ0) 6= H0(z)
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What can be said about θ∗ in this special case ?

To answer this question, we distinguish two classes of model

structures M:

• M with no common parameters in G(θ) and H(θ) (i.e.

OE, BJ, FIR)

θ =





η

ζ



 G(θ) = G(η) H(θ) = H(ζ)

• M with common parameters in G(θ) and H(θ) (i.e. ARX,

ARMAX)
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Result:

True system S: y = G0u(t) + H0e(t)

Chosen model structure M = { G(z, θ), H(z, θ) } such that

∃θ0 with G(z, θ0) = G0(z) but H(z, θ0) 6= H0(z).

• if M is OE, BJ or FIR, then

θ∗ =





η∗

ζ∗



 G(z, η∗) = G0 H(z, ζ∗) 6= H0

• if M is ARX or ARMAX, then

G(z, θ∗) 6=

G0

︷ ︸︸ ︷

G(z, θ0) H(z, θ∗) 6= H0
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Example

y(t) =
z−3

(

0.103 + 0.181z−1
)

1 − 1.991z−1 + 2.203z−2 − 1.841z−3 + 0.894z−4
u(t)+v(t)

with v(t) = H0(z)e(t); H0(z) very complicate i.e. S is not

ARX, not OE !!!

We have applied a powerful white noise input signal (σ2

u = 5) to

S and collected a large number of IO data (N = 5000) =⇒

small variance =⇒ θ̂N ≈ θ∗
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Using these IO data, we have identified a model in two model

structures such that S 6∈ M with G0 ∈ G:

Marx = ARX(na = 4, nb = 2, nk = 3)

Moe = OE(nb = 2, nf = 4, nk = 3)

Let us denote G(z, θ̂arx
N ) and G(z, θ̂oe

N ), the models identified

in Marx and Moe, respectively.
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Bode plots of G(z, θ̂arx
N ) (blue) and G(z, θ̂oe

N ) (black) and

G0(z) (red)
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As expected, we obtain G(z, θ̂oe
N

) ≈ G0(z) and G(z, θ̂arx
N

) very

different from G0
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11 Choice and validation of model order and structure

Until now, we have posed assumptions on the property of the

model structure M w.r.t. S:

• S ∈ M

• S 6∈ M with G0 ∈ G

• S 6∈ M with G0 6∈ G

How can we verify these assumptions ?

a solution: model structure validation
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11.1 Model structure validation: an a-posteriori verification

Assume that we have identified a parameter vector θ̂N in a

model structure M = { G(θ), H(θ) } with N data ZN

collected on the true system S: y(t) = G0u(t) + H0e(t).

Model structure validation: based on θ̂N and ZN , determine if

the chosen model structure M is such that:

• S ∈ M or

• S 6∈ M with G0 ∈ G

• S 6∈ M with G0 6∈ G
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11.2 Model structure validation in the asymptotic

case (N → ∞)

The identified parameter vector is then θ∗

Model structure validation is performed by considering Rǫ(τ )

and Rǫu(τ ) of ǫ(t, θ∗):

ǫ(t, θ∗) = H(θ∗)−1(y(t) − G(θ∗)u(t))

Due to the fact that

ǫ(t, θ∗) =
G0 − G(θ∗)

H(θ∗)
u(t) +

H0

H(θ∗)
e(t),

three situations can occur for these quantities Rǫ(τ ) and

Rǫu(τ )
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Situation A

We observe:

Rǫ(τ ) = σ2

eδ(τ ) =







σ2

e
for τ = 0

0 elsewhere

Rǫu(τ ) = 0 ∀ τ

This situation occurs when

ǫ(t, θ∗) =
G0 − G(θ∗)

H(θ∗)
u(t) +

H0

H(θ∗)
e(t)

= 0 × u(t) + e(t)

⇐⇒ G(θ∗) = G0 and H(θ∗) = H0

⇐⇒ S ∈ M
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Situation B

We observe:

Rǫ(τ ) 6=σ2

eδ(τ )

Rǫu(τ ) = 0 ∀ τ

This situation occurs when

ǫ(t, θ∗) =
G0 − G(θ∗)

H(θ∗)
u(t) +

H0

H(θ∗)
e(t)

= 0 × u(t) +

6=1

︷ ︸︸ ︷

H0

H(θ∗)
e(t)

⇐⇒ G(θ∗) = G0 and H(θ∗) 6= H0

⇐⇒ S 6∈ M with G0 ∈ G for M OE, BJ or FIR
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Situation C

We observe:

Rǫ(τ ) 6=σ2

eδ(τ )

∃τ s.t. Rǫu(τ ) 6=0

This situation occurs when

ǫ(t, θ∗) =

6=0

︷ ︸︸ ︷

G0 − G(θ∗)

H(θ∗)
u(t) +

H0

H(θ∗)
e(t)

⇐⇒ G(θ∗) 6= G0

⇐⇒







either S 6∈ M with G0 ∈ G for M ARX or ARMAX

or S 6∈ M with G0 6∈ G
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Conclusions for the asymptotic case:

1) M is chosen as OE, FIR or BJ:

Situations A, B and C can occur for Rǫ(τ ) and Rǫu(τ )

By determining in which situations we are, we verify whether

the identification of θ∗ has been performed in a M such that

• S ∈ M (situation A)

• S 6∈ M with G0 ∈ G (situation B)

• or S 6∈ M with G0 6∈ G (situation C)
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2) M is chosen as ARX or ARMAX:

Situations A and C can occur for Rǫ(τ ) and Rǫu(τ )

By determining in which situations we are, we verify whether

the identification of θ∗ has been performed in a M such that

• S ∈ M (situation A)

• S 6∈ M (situation C)

No distinction can be made between G0 ∈ G and G0 6∈ G
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11.3 Model structure validation in the practical case N < ∞

The identified parameter vector is θ̂N which is an unbiased

estimate of θ∗

Model structure validation is performed by considering R̂N
ǫ

(τ )

and R̂N
ǫu(τ ) of ǫ(t, θ̂N):

R̂N
ǫu(τ ) = 1

N

∑N−τ

t=1
ǫ(t + τ, θ̂N)u(t)

R̂N
ǫ

(τ ) = 1

N

∑N−τ

t=1
ǫ(t + τ, θ̂N)ǫ(t, θ̂N)

and by considering 99%-confidence regions for these estimates
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What do these 99%-confidence regions represent ?

R̂N
ǫ (τ ) lies in its confidence region ∀τ

w.p.
=⇒ Rǫ(τ ) = σ2

eδ(τ )

R̂N
ǫu

(τ ) lies in its confidence region ∀τ
w.p.
=⇒ Rǫu(τ ) = 0 ∀τ
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To construct these confidence regions, we use the following

result:

if Rǫ(τ ) = σ2

eδ(τ ), then
√

N
R̂N

ǫ
(τ)

R̂N

ǫ
(0)

∼ AsN (0, 1).

if Rǫu(τ ) = 0 ∀ τ , then
√

NR̂N
ǫu

(τ ) ∼ AsN (0, P ) with an

estimable P .
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Based on the results of the asymptotic case, we can therefore

deduce:

1) when M is OE, FIR, or BJ

both R̂N
ǫ (τ ) and R̂N

ǫu(τ ) are in their confidence regions ∀τ
w.p.
=⇒ S ∈ M

R̂N
ǫu(τ ) is in its confidence regions ∀τ while R̂N

ǫ (τ ) is not

completely in its confidence region
w.p.
=⇒ S 6∈ M with G0 ∈ G

both R̂N
ǫ (τ ) and R̂N

ǫu(τ ) are not completely in their confidence

regions
w.p.
=⇒ S 6∈ M with G0 6∈ G
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2) when M is ARX or ARMAX

both R̂N
ǫ (τ ) and R̂N

ǫu(τ ) are in their confidence regions ∀τ
w.p.
=⇒ S ∈ M

other cases
w.p.
=⇒ S 6∈ M

No distinction can be made between G0 ∈ G and G0 6∈ G
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11.4 Example of how we can find a M s.t. S ∈ M

Let us consider an unknown true system S

We would like to determine a model set M which contains S
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First analysis of the system

Let us apply a step input signal u(t) to S and observe y(t)

0 20 40 60 80 100 120 140 160 180 200
−10

0

10

20

30

40

50

60

70

80
step response: u(t) (red) and y(t) (blue)

t

From this behaviour, we can conclude that G0 has a limited

order and from a detailed observation, we see that the delay is

nk = 3
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Collection of the data for the identification and determination

of M

We have applied a white noise input signal to S and collected

N = 5000 input-output data =⇒ ZN

Based on the first analysis of S, first choice for M:

M = BJ(nb = 2, nc = 2, nd = 2, nf = 2, nk = 3)

We can identify a parameter vector θ̂N in this M using ZN
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Does this M contain the true system S ?

Let us perform the model structure validation (Matlab function:

resid)

0 5 10 15 20 25
−0.2
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w.p.
=⇒ S 6∈ M with G0 6∈ G
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Let us increase the order for G(z, θ) and H(z, θ)

M = BJ(nb = 3, nc = 3, nd = 3, nf = 3, nk = 3)

and identify θ̂N in this new model structure using the same data

ZN

System Identification 125

'
&

$
%

Let us perform the model structure validation of this new M:
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=⇒ S 6∈ M with G0 ∈ G
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A third order H(z, θ) is thus not sufficient to describe H0(z).

Let us try:

M = BJ(nb = 3, nc = 4, nd = 4, nf = 3, nk = 3)

and identify θ̂N in this new model structure using the data ZN
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Let us perform the model structure validation of this new M:
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=⇒ S ∈ M
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By a simple iteration, we can find a model set M that has the

property S ∈ M

Note: the used S was indeed BJ(3,4,4,3,3) !!
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11.5 Final remarks.

Model structure validation validates the hypothesis S ∈ M

based on the available data

Other data can be used for the validation than for the

identification

Model structure validation is often called model validation

However

a successful model structure validation does not necessarily

imply that G(z, θ̂N) and H(z, θ̂N) are close estimates of

G0(z) = G(z, θ0) and H0(z) = H(z, θ0) (variance can be still

large !!!)
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12 A typical procedure to identify a reliable full-order model

For some type of systems, a reasonable objective can be to

identify reliable full-order models G(z, θ̂N) and H(z, θ̂N) of G0

and H0

To reach this objective:

Model structure validation allows to determine a model set M

such that S ∈ M

and

√

cov(G(ejω, θ̂N)) allows one to verify whether G(z, θ̂N) is

close to G0 (and eventually

√

cov(H(ejω, θ̂N)) for H(z, θ̂N))
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=⇒ Typical iterative procedure

1. choose the input signal and collect ZN

2. choose a model structure M

3. identification of the models G(z, θ̂N) and H(z, θ̂N)

4. Verify if S ∈ M. If it is the case, go to item 5. If not, go

to item 2 and choose another model structure M

5. Verify if
√

cov(G(ejω, θ̂N)) (and eventually
√

cov(H(ejω, θ̂N))) are small. If not, go back to item 1. If

yes, stop
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Possible additional tests for item 5:

• simulation of the identified model

• observation of the poles and zeros of the identified models

• comparison of the frequency response of the identified

models with the ETFE (see later) and/or with the physical

equations.
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13 Identification in a low order model structure

Some real-life systems have a very large order (e.g. chemical

and industrial plants)

For such plants, identifying a reliable full-order model is:

• not a good idea since cov(G(ejω, θ̂N)) will be typically

very large

cov(G(ejω, θ̂N)) ≈

n

N

Φv(ω)

Φu(ω)

with n large and N , Φu(ω) limited
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• not necessary: for control, a low order model accurate in

the frequencies around the cross-over frequency is sufficient

=⇒

For that type of S,

• choose a reduced order M which is nevertheless sufficiently

rich to be able to represent the behaviour of the system in

the important frequency range

• perform the identification experiment in such a way that the

identified model is a close estimate of S in the important

frequency range
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Considered problem: What is the influence of the experimental

conditions (choice of u(t), choice of N) on the approximation

of G0(z) by G(z, θ̂N) when:

S : y(t) = G0(z)u(t) +

v(t)
︷ ︸︸ ︷

H0(z)e(t)

and M = {G(z, θ) ; H(z, θ) = 1} is an OE model structure

such that 6 ∃θ0 with G(z, θ0) = G0(z)
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We restrict thus attention to:

• to the approximation of G0 by G(z, θ̂N)

• to Output Error (OE) model structure M (reason: easier

analysis)
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Reminder from before ....

θ̂N can be computed as in the case S ∈ M

θ̂N is a random variable due to the stochastic disturbance v(t)

corrupting the data

θ̂N is distributed as N (θ∗, Pθ) where θ∗ is the solution of the

ideal identification criterion

Pθ can not be determined analytically, but Pθ → 0 when

N → ∞ =⇒ θ̂N → θ∗ w.p. 1 when N → ∞

6 ∃θ0 with G(z, θ0) = G0(z) =⇒ G(z, θ∗) 6= G0(z)
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13.1 Modeling error when S 6∈ M with G0 6∈ G

the modeling error G0(z) − G(z, θ̂N) is decomposed into two

contributions:

G0(z)−G(z, θ̂N) = (G0(z) − G(z, θ∗))+
(

G(z, θ∗) − G(z, θ̂N)
)

Note: when S ∈ M, G0(z) − G(z, θ∗) = 0
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the two contributions and their source:

G0(z)−G(z, θ̂N) = (G0(z) − G(z, θ∗))+
(

G(z, θ∗) − G(z, θ̂N)
)

• G0 − G(θ∗) is called the bias error and is due to the fact

that S 6∈ M with G0 6∈ G;

• G(θ∗) − G(θ̂N) is called the variance error and is due to

the fact that N < ∞
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Considered problem (rephrased): what is the influence of the

experimental conditions

• on the bias error

• on the variance error
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13.3 shaping the bias error G0 − G(θ∗)

Recall we consider an OE model structure M

13.3.1 a frequency domain expression of the bias error

G0(e
jω) − G(ejω, θ∗)

θ∗ = arg min
θ

V̄ (θ)

and

V̄ (θ) = Ēǫ(t, θ)2

=
1

2π

∫ π

−π

Φǫ(ω, θ)dω

(Parseval; both expressions are equal to Rǫ(0))
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M = OE =⇒

ǫ(t, θ) = (G0(z) − G(z, θ))u(t) + v(t)

=⇒

θ
∗ = arg min

θ

1

2π

∫ π

−π

Φǫ(ω, θ)dω

= arg min
θ

1

2π

∫ π

−π

|G0(e
jω) − G(ejω

, θ)|2Φu(ω) + Φv(w)dω
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θ
∗ = arg min

θ

1

2π

∫ π

−π

|G0(e
jω) − G(ejω

, θ)|2Φu(ω) + Φv(w)dω

=⇒

G(ejω, θ∗) is the model minimizing the integrated quadratic

error |G0(e
jω) − G(ejω, θ)|2 with weighting function Φu(ω)

=⇒

the bias will be the smallest at those ω’s where Φu(ω) is

relatively the largest
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Notes:

• the bias error is a function of the power spectrum Φu(ω) of

the input signal used for the identification

• the bias obtained with a signal u(t) of spectrum Φu(ω) is

the same as the bias obtained with spectrum αΦu(ω) (α a

scalar constant)

• the absolute level of power has thus no influence on the

bias error, but influences the variance error
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13.3.2 Another way to shape the bias error - off-line prefiltering

Given a filter L(z) and the data u(t) and y(t) collected from S

Filter u(t) and y(t) with L:

uF (t) = L(z)u(t) and yF (t) = L(z)y(t)

Result:

If you use the data uF (t) and yF (t) for the identification, the

weighting function shaping the bias error is:

W (ω) = Φu(ω)|L(eiω)|2
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Proof:

If we use the data uF (t) and yF (t) for the identification, the

corresponding prediction error ǫF (t, θ) is

ǫF (t, θ) = L(z)ǫ(t, θ)

where ǫ(t, θ) is the prediction error if we would have used u(t)

and y(t)

Consequently,

ΦǫF
(ω, θ) = |L(eiω)|2 · Φǫ(ω, θ)

and therefore W (ω) = Φu(ω)|L(eiω)|2
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13.4 shaping the variance error G(θ∗) − G(θ̂N)

Analysis more difficult than in the case S ∈ M

However we can nevertheless cautiously state that

• large Φu(ω) around ω =⇒ small variance error around ω

• large N =⇒ small variance error
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13.5 Example

S : y(t) = G0(z)u(t) + e(t)

with G0(z) 4th order with three delay

We have to use a given set of data ZN (N = 5000) for the

identification where u is the sum of a white noise of variance 5

and three high-frequencies sinus of amplitude 10

Objective: Using the given data, identify a good model

G(z, θ̂N) for G0(z) in the frequency range [0 0.7] in the

reduced order model structure:

M = OE(nb = 2, nf = 2, nk = 3)
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Since ZN is given, the only degree of freedom we have is to use

a pre-filter L(z) to shape the bias error

We want a small bias error in the frequency range [0 0.7] =⇒

choose L(z) such that |L(ejω)|2Φu(ω) is relatively (much)

larger in the frequency range [0 0.7] than in [0.7 π]

=⇒ L(z) Butterworth low pass filter of order 7 and cut-off

frequency 0.7rad/s

We filter u and y collected from S by this L and we obtain

filtered data with which we perform the identification in M
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G0(z) (red) and G(z, θ̂N) (blue) identified with the filtered

data
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What if we do not use a pre-filter L ?

G0(z) (red) and G(z, θ̂N) (blue) identified with the data in ZN

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

10
1

A
m

pl
itu

de

From u1 to y1

10
−2

10
−1

10
0

10
1

−400

−300

−200

−100

0

100

200

P
ha

se
 (

de
gr

ee
s)

Frequency (rad/s)

=⇒ G(z, θ̂N) is KO

System Identification 152

'
&

$
%

13.6 What about a Box Jenkins model structure

The weighting function W (ω) for the bias error

G0(e
jω) − G(ejω, θ∗) is then

W (ω) =
Φu(ω)|L(eiω)|2

|H(ejω, θ∗)|2

the noise model H(ejω, θ∗) influences the bias error of the

G-model !!
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Part IV: Nonparametric Identification (ETFE)

Sc4110: part IV 1
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General objective of ETFE

S : y(t) = G0(z)u(t) + v(t)

We apply an input signal u(t) to S and we collect the

corresponding output for N time samples:

ZN = { y(t), u(t) | t = 0...(N − 1) }

Based on these N time-domain data, we want to estimate the

frequency response G0(e
jω) (amplitude and phase) of the true

plant transfer function
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Nonparametric identification is generally performed in order

• to have a first idea of G0(e
jω)

• to determine the frequency band of interest
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Empirical Transfer Function Estimate (ETFE)

Time-Domain data −→ Frequency-Domain data via (scaled)

Fourier Transform

{ u(t) | t = 0...(N − 1) } ←→ UN(ω) =
1
√

N

N−1
∑

t=0

u(t) e−jωt

{ y(t) | t = 0...(N − 1) } ←→ YN(ω) =
1
√

N

N−1
∑

t=0

y(t) e−jωt
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Estimate Ĝ(ejω) of G0(e
jω)

Ĝ(ejω) = |Ĝ(ejω)|ej∠Ĝ(ejω

) =
YN(ω)

UN(ω)

Ĝ(ejω) can in theory be computed at each frequency ω ∈ [0 π]

for which UN(ω) 6= 0
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Practical Aspects

All information contained in { u(t) | t = 0...(N − 1) } is

contained in the elements of UN(ω) at the N

2
frequencies

ωk = 2π

N
k, k = 0, 1, ... located in [0 π]

Ĝ(ejω) is therefore only computed at those frequencies ωk

Special attention should be given when u(t) is a periodic signal

of fundamental frequency ω0

The Fourier transform UN(ω) of such a signal is indeed only

significant at the (active) harmonics of ω0. Ĝ(ejω) will

therefore only be computed at those harmonics.
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Illustration

y(t) =

G0(z)

︷ ︸︸ ︷

z
−3

(

0.103 + 0.181z
−1

)

1 − 1.991z
−1 + 2.203z

−2
− 1.841z

−3 + 0.894z
−4

u(t) + H0e(t)

with H0 = 1/den(G0) and e(t) a white noise disturbance of

variance σ2

e
= 0.1

We collect N = 10000 data on this true system subsequently

with two different input signals having the same

Pu = 0.5 = 5σ2

e
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Input signal 1: a multisine of fundamental frequency ω0 = 2π

100
≈ 0.06

(power=0.5)

u(t) =
1
√

30

30
∑

k=1

sin(kω0t)

The ETFE is computed at the 30 harmonics of ω0 present in

u(t)
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Above plot: the ETFE at the 30 harmonics of ω0; Bottom plot:

the same with the frequency response of G0(e
jω) (blue)

We see that the ETFE is a good estimate of G0(e
jω) at the

harmonics of ω0
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Input signal 2: a white noise of variance 0.5

The ETFE is computed at all the N

2
= 5000 frequencies ωk
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Above plot: the ETFE at ωk; Bottom plot: the same with the

frequency response of G0(e
jω) (blue)

We see that the ETFE is an erratic and poor estimate of

G0(e
jω)
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How can we explain this?

For this purpose, we need to understand the statistical

properties of the ETFE
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Statistical properties of the ETFE

Due to the stochastic noise v(t) corrupting the data ZN , the

ETFE Ĝ(ejω) is a random variable i.e.

the ETFE is different at each experiment
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Moreover,

there is no (cor)relation between the estimate at the frequency

ωk and the other frequencies i.e. ωk−1, ωk+1, ...

At one frequency ωk, the estimate Ĝ(ejωk) is a random variable

(asymptotically) distributed around G0(e
jωk)

=⇒

the ETFE will be reliable if the variance of the estimates

Ĝ(ejωk) are small for all ωk
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Variance of the ETFE

the variance cov(Ĝ(ejω))
∆

= E|Ĝ(ejω)−EĜ(ejω)|2 is given by:

cov(Ĝ(ejω)) = E

(

|VN(ejω)|2

|UN(ejω)|2

)

with VN(ω) defined as YN(ω) and UN(ω)

cov(Ĝ(ejω)) tends, for increasing values of N , to Φv(ω)

Φu(ω)
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Explanation of the results in the illustration

Multisine: u(t) = 1
√

30

∑

30

k=1
sin(kω0t)

The ETFE is only computed at the harmonics ωk = k ω0

(k = 1...30) of ω0.

Property of |UN |
2 at the harmonics ωk:

(

|UN(ejωk)|2
)

=
NA2

k

4
=

10000

120

since the amplitude Ak of each sine is 1/
√

30 and N = 10000
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What is the variance of the ETFE at the available frequencies

ωk ?

E|UN |
2 = |UN |

2 since u(t) is deterministic

=⇒

cov(Ĝ(ejω
k)) =

E
(

|VN (ejω
k)|2

)

|UN (ejω
k)|2

≈
Φv(ωk)

|UN (ejω
k)|2

=
120Φv(ωk)

10000

Since |UN |
2 is proportional to N and A2

k, the variance is

proportional to 1

N
and 1

A2

k

Sc4110: part IV 17

'
&

$
%

u(t) white noise of variance σ2

u = 0.5

The ETFE is computed at N

2
= 5000 frequencies ωk

Since N is large, the variance at the frequencies ωk can be

approximated by:

cov(Ĝ(ejωk)) ≈
Φv(ωk)

Φu(ωk)
=

Φv(ωk)

σ2

u

=
Φv(ωk)

0.5
= 2Φv(ωk)

Unlike for a multisine u(t), the variance is not proportional to
1

N
; variance only proportional to 1

σ2
u
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Multisine vs. stochastic signal

ETFE available at more frequencies for stochastic u(t)

For equal power, variance much smaller for multisine u(t)
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Suppose u(t) is not free to be chosen and is stochastic,

and that the power of u(t) cannot be increased

How can we then get a relatively good estimate? How can we

reduce the variance ?
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Smoothing of ETFE through the use of windows

only really relevant when u(t) is stochastic

Principle: reduction of the variance by averaging over

neighbouring frequency points

Smoothing is motivated by:

• ETFE estimates are independent for different ωk’s

• Averaging over a frequency area where G0 is constant

reduces the variance

Sc4110: part IV 21
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The averaging can be performed as follows:

Ĝsm(ejω) =

∫ π

−π

Wγ(ξ − ω)Ĝ(eiξ)dξ

∫ π

−π

Wγ(ξ − ω)dξ

with Ĝ(ejω) the unsmoothed ETFE and Wγ(ω) a positive

real-valued frequency-function (window)

A Hamming window is generally chosen for Wγ(ω)
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Hamming frequency window for different resolutions

frequency (rad/sec)

Wγ(ω) of Hamming window for γ = 10 (solid), γ = 20

(dash-dotted) and γ = 40 (dashed).

γ is measure for the width of the window.
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The window is non zero in an interval [−∆ω, +∆ω] around 0.

The larger γ, the smaller ∆ω.

Ĝsm(ejω) =

∫ π

−π

Wγ(ξ − ω)Ĝ(eiξ)dξ

∫ π

−π

Wγ(ξ − ω)dξ

Ĝsm(ejωk) at a particular frequency ωk is obtained by averaging

Ĝ(ejω) in the interval [ωk −∆ω, ωk + ∆ω]
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• Window introduced bias in an attempt to reduce the

variance (bias/variance trade-off)

• Choice of window dependent on expected smoothness of

G0(e
iω)

• Window too narrow: variance too large

Window too wide: possible smoothing of dynamics
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Illustration (cont’d): consequence of the use a too wide window

γ = 10 on the ETFE of slide 11
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Above plot: the smoothed ETFE at ωk; Bottom plot: the same

with the frequency response of G0(e
jω) (blue)
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Besides trial-and-error coupled with physical insights on G0(z),

is there another way to select γ?

Yes....
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To find this way, note that

Ĝ(ejω) =
YN(ω)

UN(ω)

=
YN(ω)U∗

N(ω)

UN(ω)U∗

N(ω)

=

+∞
∑

τ=−∞

R̂N
yu

(τ ) e−jωτ

+∞
∑

τ=−∞

R̂N
u (τ ) e−jωτ

where the last step follows from expressions (3.13) and (3.19) in

the lecture note.
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Ĝ(ejω) =

+∞
∑

τ=−∞

R̂N
yu

(τ ) e−jωτ

+∞
∑

τ=−∞

R̂N
u (τ ) e−jωτ

SPA

with

R̂N
u (τ ) =















1

N

N−1
∑

t=0

u(t)u(t− τ ) for |τ | < N − 1

0 for |τ | > N − 1

R̂N
yu(τ ) =















1

N

N−1
∑

t=0

y(t)u(t− τ ) for 0 < τ < N − 1

0 elsewhere
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Interpretation

Ĝ(ejω) can thus be seen as the ratio
Φ̂yu(ω)

Φ̂u(ω)
of the

approximation Φ̂yu(ω) of Φyu(ω)
∆

= F(Ryu(τ )) and of the

approximation Φ̂u(ω) of Φu(ω)
∆

= F(Ru(τ )).

This seems logical since

Φyu(ω)

Φu(ω)
=

G0(e
jω)Φu(ω)

Φu(ω)
= G0(e

jω)

The approximations of the spectra are obtained by taking the

Fourier transforms of estimates R̂N
yu(τ ) and R̂N

u (τ ) of the exact

correlation functions.

Sc4110: part IV 30

'
&

$
%

Moreover it can be shown that

Ĝsm(ejω) =

+∞
∑

τ=−∞

wγ(τ )R̂N
yu(τ ) e−jωτ

+∞
∑

τ=−∞

wγ(τ )R̂N
u (τ ) e−jωτ

with wγ(τ ) obtained as the inverse Fourier transform of the

frequency window Wγ(ω)
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Hamming lag-window wγ(τ )

0 10 20 30 40 50 60 70
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

typical R̂N
yu(τ ) (solid) together with the Hamming lag-windows

w10(τ ) (dotted), w30(τ ) (dashed) and w70(τ ) (dash-dotted).
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wγ(τ ) is a window with width γ: wγ(τ ) = 0, |τ | > γ

Smoothing corresponds thus to remove from the estimate

Φ̂yu(ω) of Φyu(ω) the elements of R̂N
yu(τ ) for τ > γ

This is relevant since Ryu(τ )→ 0 for τ →∞ (G0(z) stable)

and since the accuracy R̂N
yu

(τ ) is smaller and smaller for

increasing values of τ (R̂N
yu(τ ) computed with less data points)

Method for the selection of γ: choose γ such that, for τ > γ,

R̂N
yu(τ ) are small w.r.t |R̂N

yu(0)| and “less reliable”
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Illustration (cont’d):

We compute R̂N
yu

(τ ) with the data generated by the white

noise of variance 0.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

est
ima

ted
 Ry

u(τ
)

τ

we see the inaccuracy of the estimate: R̂N
yu

(τ ) does not tend to

0 for τ →∞
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Let us focus on the first 500 τ ’s

0 50 100 150 200 250 300 350 400 450 500
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

es
tim

ate
d R

yu
(τ)

τ

we see that, after τ = 100, R̂N
yu(τ ) increases again which is

much unlikely for Ryu(τ ) =⇒ we select γ = 100
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Obtained smoothed ETFE with γ = 100
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Above plot: the smoothed ETFE at ωk; Bottom plot: the same

with the frequency response of G0(e
jω) (blue)
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Final remarks: drawbacks of ETFE

ETFE gives a discrete estimate of the frequency response of

G0(e
jω) and not the rational transfer function G0(z)

For simulation, for modern control design, such a transfer

function is necessary

No information about the noise spectrum Φv(ω) while this

information is important for e.g. disturbance rejection
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=⇒ parametric identification (prediction error identification)

• delivers a model of the plant G0 and information on Φv(ω)

• higher accuracy (cov(G(ejω, θ̂N) ≈ n

N

Φv(ω)

Φu(ω)
with PEI)
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Illustration (cont’d): Parametric Identification of G0(z) with

the 1000 first samples of the white noise of variance 0.5

10
−2

10
−1

10
0

10
−1

10
0

10
1

10
2

ω

Mo
du

lus

10
−2

10
−1

10
0

10
−1

10
0

10
1

10
2

ω

Mo
du

lus

Above plot: frequency response of the identified model; Bottom plot:

the same with the frequency response of G0(e
jω) (blue)
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the previous figure has to be compared with the non-smoothed

ETFE and the smoothed ETFE

This comparison shows that PEI delivers much better results

even with ten times less data points
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Part V: practical issues when designing

the identification experiment
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1 Preparatory experiments

• noise measurement on the output

• step response analysis

• area of linearity

• time constants

• static gain

• delay of the system

Possibilities depend on circumstances
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2 Choice of the sampling frequency ωs = 2π

Ts

x[n] yZOH
Ts

Continuous 
system

Sampling
Ts

u ucont ycont

Data for the ETFE with high(est) value of ωs

Indeed, the higher ωs, the larger the frequency range that is

capured (Shannon theorem)

The ETFE obtained with these data can be represented up to ωs

2

By inspecting this ETFE, it is then possible to determine the

bandwidth ωb of the system (ωb << ωs

2
)
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Data for parametric (PEI) identification with smaller ωs

High ωs induces numerical problems with parametric

identification

Indeed all poles cluster around z = 1 since the discrete-time

state-space matrix Ad = eAcont Ts → I when Ts → 0
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Typical choice for parametric identification:

10ωb < ωs < 30ωb

with ωb as observed in the ETFE

Data with a smaller ωs can be obtained

• either by re-collecting data with a smaller ωs

• or by decimating the data obtained with high ωs

(+anti-aliasing filter)

SC4110: Part V 5

'
&

$
%

Remark (actual vs. normalized frequencies):

The model of G0 identified with data collected with a sampling

frequency ωs contains information up to the Nyquist frequency
ωs

2
(actual frequency)

Considering now the normalized frequency ω = ωactual Ts

We note that the interval [0 ωs

2
] (actual frequencies)

corresponds to the main interval [0 π] when considering

normalized frequencies. Indeed

ωs

2
=

π

Ts
︸ ︷︷ ︸

actual frequency

=⇒ normalized ω = π
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3 Input signals used for system identification

Finite-power quasi-stationary signals for continuous excitation

• periodic signals (in particular multisines)

• realization of stochastic process ((filtered) white noise or

alike)

Trade-off when designing the excitation signal

• the power Pu / Φu(ω) should be as high as possible to

increase the accuracy of the identified model

• the amplitude of the time-domain signal should be

bounded/limited in order not to damage the actuators and

in order not to excite the nonlinearities
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Multisines

u(t) =
n

∑

k=1

Ak sin(kω0t + φk)

Φu(ω) made up of Dirac pulses at the frequencies of the sines

in the multisines

the phase shifts φk can be optimized in order to reduce the

maximal amplitude of u(t) without any effect on the power

spectrum Φu(ω)
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Realization of a stochastic process

u(t) = F (z)w(t)

with F (z) an user-selected filter and w(t) a white noise of

variance σ2

w

The power spectrum is given by:

Φu(ω) = |F (ejω)|2σ2

w

Shaping Φu(ω) is very easy, but there is no a-priori bound on

the amplitude of u(t) !!
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Alternative: Random Binary Sequence (RBS)

u(t) = c sign

(

w

(

int

(

t

ν

)))

with c the amplitude, w(t) a white noise of variance σ2

w and ν

the so-called clock period which is an integer such that 1 ≤ ν

The amplitude of the RBS is either +c or −c

The RBS has the maximal power Pu = Ēu2(t) = c2 that can

be attained by a signal u(t) ≤ c ∀t
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(b)
c

−c

t →

(a)
c

−c

t →

(a) Typical RBS with clock period equal to sampling interval

(ν = 1);

(b) RBS with increased clock period ν = 2.

SC4110: Part V 11

'
&

$
%

Influence of ν on Φu(ω)

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Spectrum 1

2π
Φu(ω) of (P)RBS with basic clock period ν = 1

(black), ν = 3 (green), ν = 5 (red), and ν = 10 (blue).
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The power spectrum Φu(ω) of the RBS is thus shaped via ν:

• ν = 1 =⇒ Φu(ω) = c2
∀ω i.e. the RBS has the flat power

spectrum of a white noise

• For increasing values of ν, the power spectrum Φu(ω) will

be more and more located in low frequencies

less flexibility, but bounded amplitude !!
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Another alternative: P(seudo)RBS

• binary signal constructed from a deterministic shift register

• otherwise very similar to RBS
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4 Data (pre)processing

• Anti-aliasing filter

• outliers/spike

• Non-zero mean and drift in disturbances; detrending
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5 Remarks on unstable systems

Unstable systems can not be identified in open loop

Experiments has to be done with a stabilizing controller C in

closed loop:

y(t) =
G0C

1 + G0C
r(t) +

H0

1 + G0C
e(t)

SC4110: Part V 16



'
&

$
%

y(t) =
G0C

1 + G0C
r(t) +

H0

1 + G0C
e(t)

Since r(t) is independent of e(t), we can excite the closed-loop

system via r(t) and identify a model T̂ (z) of G0C

1+G0C

A model for the unstable G0(z) is then

Ĝ(z) =
T̂ (z)

C(z)(1 − T̂ (z))
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