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SUMMARY

Over the past thirty years, significant progress relatecetsars technology and minia-
turized hardware has allowed for significant improvementthe fields of robotics and
automation, leading to major advancements in the area offisobots, also known as Un-
manned Aerial Vehicles (UAVS). In particular, small-schidicopter UAVS represent at-
tractive systems, as they may be deployed and recoveredinpnepared or confined sites,
such as from or above urban and natural canyons, forestaasmatiships. Currently, one of
the main hurdles for UAV economic expansion is the lack ofctegulations for safe oper-
ations. UAVs operated in the so-called non-segregatepaiies for civilian or commercial
purpose, are only approved by airworthiness authorities caise-by-case basis. A number
of complex issues, particularly related to UAV operatiosefiety and reliability, need to be
resolved, before seeing widespread use of UAVs for civilienommercial purposes.

A failure of the power or propulsion unit, resulting in an ergOFF flight condition,
represents one of the most frequent UAV failure modes. Focéise considered in this the-
sis, this would mean flying, and landing, a small-scale lbplier UAV without a working
engine, i.e. the autorotation flight condition. Helicoptatorotation is a highly challenging
flight condition in which no power plant torque is applied k@ tmain rotor and tail rotor,
i.e. a flight condition which is somewhat comparable to gligfor a fixed-wing aircraft.
During an autorotation, the main rotor is not driven by a ingrengine, but by air flowing
through the rotor disk bottom-up, while the helicopter isaEnding. The power required
to keep the main rotor spinning is obtained from the vehictstential and kinetic ener-
gies, and the task during an autorotative flight becomeslynaire of energy management.
As small-scale helicopter UAVs have higher levels of dynamgoupling and instability
when compared to either larger-size helicopter UAVs or-$igk helicopter counterparts,
performing a successful autorotation maneuver, for sucdllssnale vehicles, is considered
to be a great challenge.

Our research objective consists in developing a, modethamutomatic safety recov-
ery system, for a small-scale helicopter UAV in autorotatitat safely flies and lands the
helicopter to a pre-specified ground location. In pursuthig objective, the contributions
of this thesis are structured around three major techniealzes.

First we have developed a nonlinear, first-principles babkgh-order model, used as
a realistic small-scale helicopter UAV simulation. Thidibepter model is applicable for
high bandwidth control specifications, and is valid for agaof flight conditions, includ-
ing (steep) descent flight and autorotation. This comprskiermodel is used as-is for
controller validation, whereas for controller design,yoapproximations of this nonlinear
model are considered.
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Xii SUMMARY

The second technical avenue addresses the developmentimfaange module, or Tra-
jectory Planner (TP), which aims at generating feasibleapioinal open-loop autorotative
trajectory references, for the helicopter to follow. Insthihesis, we investigate two such
TP methods. The first one is anchored within the realm of neali optimal control, and
allows for an df-line computation of optimal trajectories, given a costaatiye, nonlinear
system dynamics, and controls and states equality and atigqoonstraints. The second
approach is based upon the concept @edéential flathess and aims at retaining a high com-
putational iciency, e.g. for on-line use in a hard real-time environment

The third technical avenue considers the Trajectory TnaKE), which compares cur-
rent helicopter state values with the reference valuesymed by the TP, and formulates the
control inputs to ensure that the helicopter flies alongdhmgstimal trajectories. Since the
helicopter dynamics is nonlinear, the design of the TT n&taes an approach that tries to
respect the system’s nonlinear structure. In this thesisave selected the robust control
paradigm. This method consists in using a, low-order, nahiimear Time-Invariant (LTI)
plant coupled with an uncertainty, and applying a small ggiproach to design a single
robust LTI controller. This robust LTI controller has provi® be capable of controlling
and landing a helicopter UAV in autorotation. In particulanr simulations have shown
that the crucial control of vertical position and velocithéited outstanding behavior, in
terms of tracking performance. However, the tracking ofizamtal position and velocity
could potentially be improved by considering some otheitmdmethods, such as Linear
Parameter-Varying (LPV) ones. To this end, we present anocagh that approximates a
known complex nonlinear model by affiae LPV model. The practicality of this LPV
modeling method is further validated on a pointmass pemd@xample, and in the future
this LPV method could prove useful when applied to our hglieoapplication.

To conclude, we illustrate in this thesis—using a high-fisiedimulation of a small-
scale helicopter UAV—the first, real-time feasible, motaked optimal trajectory planning
and model-based robust trajectory tracking, for the casesofiall-scale helicopter UAV in
autorotation.



SAMENVATTING

In de afgelopen dertig jaar heeft een aanzienlijke vooamitgaan sensoren technologie en
geminiaturiseerde hardware gezorgd voor belangrijkeateringen op het gebied van ro-
botica en automatisering, wat leidt tot grote vooruitgapdpet gebied van vliegende robots,
ook bekend als onbemande luchtvaartuigen 'Unmanned Aeeiaicles (UAV'S)’. In het
bijzonder kleinschalige helikopter UAV’'s worden gezies aantrekkelijke systemen omdat
zij kunnen worden ingezet vanuit ruwe of begrensde gebiexmis van of boven stedelijk
gebied, ravijnen, bossen en marineschepen. Op dit momeéénhigan de belangrijkste hin-
dernissen voor economische expansie van onbemande ladhiigeen het ontbreken van
duidelijke voorschriften voor veilige operaties. UAV'sdiend in een zogenaamd niet-
gescheiden luchtruim, voor civiel of commercieel doel, der alleen goedgekeurd door
luchtwaardigheid instanties op een 'case-by-case’ basen aantal complexe kwesties,
met name met betrekking tot operationele veiligheid endogtbaarheid van UAV’s, moet
worden opgelost voordat er sprake zal zijn van wijdverbgeioruik van UAV’s voor civiele
of commerciéle doeleinden.

Een fout in het voortstuwing systeem, wat resulteert in @eotor uit’ vliegconditie,
vertegenwoordigt één van de meest voorkomende UAV pechligevaln het geval be-
schouwd in dit proefschrift, zou dit betekenen het viiegehamden van een kleinschalige
onbemande helikopter zonder werkende motor, dat wil zeggesutorotatie viucht con-
ditie. Helikopter autorotatie is een zeer uitdagende eleglitie waarbij geen krachtbron
is geplaatst op de hoofd - en staartrotor, dat wil zeggen &egconditie die enigszins
vergelijkbaar is met zweven voor een vliegtuig. Tijdens aatorotatie wordt de hoofd-
rotor niet aangedreven door een lopende motor, maar dolor diie van onder naar boven
door de rotor stroomt, terwijl de helikopter aan het dalenie kracht die nodig is om
de hoofdrotor draaiende te houden wordt verkregen uit piélenen kinetische energie
van het voertuig, en de taak tijdens een autorotatie viuchttwer voornamelijk één van
energie management. Aangezien kleinschalige onbematillegters hogere niveaus van
dynamica, koppeling en instabiliteit hebben in vergetikimet grotere UAV helikopters
of grootschalige helikopter tegenhangers, is het uitvoeem een succesvolle autorotatie
manoeuvre voor dergelijke kleinschalige voertuigen, emngrotere uitdaging.

In dit proefschrift bestaat onze onderzoeksdoelstellinghet ontwikkelen van een,
model-gebaseerde, automatisch veiligheid herstelsysteer een kleinschalige onbemande
helikopter in autorotatie, dat de helikopter veilig lagegen naar, en landen op een vooraf
opgegeven locatie op de grond. Bij het nastreven van deZstdltiag zijn de bijdragen
van dit proefschrift gestructureerd rond drie belangrigehnische domeinen.

Het eerste betreft het modelleren van de niet-lineaire uhjoe van een kleinschalige
helicopter. We hebben een niet-lineaire, eerste-priscimbaseerde, hogere-orde model

xii
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ontwikkeld, en die wordt gebruikt als een realistischeridehalige helikopter simulatie-
omgeving. Dit helikopter model is toepasbaar voor hogedbegedte regel specificaties,
en is geldig voor een scala aan vliegcondities, waarondeitg)safdaling en autorotatie.
Dit uitgebreide model wordt gebruikt voor de regelaar \atiigl, terwijl voor de regelaar
ontwerp slechts benaderingen van dit niet-lineaire modetlen beschouwd.

Het tweede technische domein behandelt de ontwikkelingeesnsturings module, of
"Trajectory Planner (TP)’, die gericht is op het genereran taalbare en optimale open-
lus autorotatieve traject referenties, die de helikoptentdte volgen. In dit proefschrift
onderzoeken we twee van zulke TP methoden. Het eerste iskethin het domein van
de niet-lineaire optimale controle en zorgt voor eeffi-lime’ berekening van optimale tra-
jecten, gegeven een doelstelling, niet-lineaire systg@authica en randvoorwaarden. De
tweede benadering, gebaseerd op het concept fametitiéle vlakheid, beoogt het behoud
van een rekenkundige doelmatigheid, bijvoorbeeld vooilioe’ gebruik in een harde 'real-
time’ omgeving.

Het derde technische domein beschouwt het "TrajectorykBra@ T)’, die de huidige
waarden van de staat van de helikopter vergelijkt met degefiewaarden geproduceerd
door de TP, en die de controle ingangen formuleert om erwaotgen dat de helikopter
langs deze optimale trajecten vliegt. Aangezien de dynarnaa de helikopter niet-lineair
is, vereist het ontwerp van de TT een aanpak die probeertatdim¢aire structuur van
het systeem te behouden. Wij hebben in dit proefschrift deuste control@ paradigma
geselecteerd. Deze methode bestaat uit het gebruik vaagene-orde, nominale Line-
aire Tijd-Invariant (LTI) model in combinatie met een onedhkeid en het toepassen van
een 'small-gain’ aanpak voor het ontwerpen van een enkelustie LTI regelaar. Deze
robuuste LTI regelaar heeft bewezen in staat te zijn om ebrrmande helikopter te kun-
nen controleren en te laten landen in autorotatie. In hebbger blijkt uit onze simulaties
dat de cruciale controle van de verticale positie en snélbiéstekend gedrag vertonen, in
termen van het bijhouden van prestaties. Echter, het djglowan de horizontale positie
en snelheid zou kunnen worden verbeterd door het in ovengagmen van andere con-
trolemethoden, zoals 'Linear Parameter-Varying (LPV§.dien einde presenteren we een
aanpak die een bekend complex niet-lineaire model door &&née’ LPV model wordt
benaderd. De uitvoerbaarheid van deze LPV modelleringmaetis verder gevalideerd op
een slinger voorbeeld, en in de toekomst zou deze methotlg kutnen blijken wanneer
toegepast op onze helikopter applicatie.

Tot slot illustreren we in dit proefschrift—met behulp vaenehoog betrouwbare si-
mulatie van een kleinschalige onbemande helikopter—dste&eal-time’ haalbare auto-
matische autorotatie, die gebruik maakt van een modelsgalvde, optimale 'Trajectory
Planner’ en robuuste 'Trajectory Tracker'.
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| NTRODUCTION

Begin with the End in Mind.

Stephen R. Covey
The 7 Habits of Highly Hective People, Free Press, 1989

In this Chapter we present the background and motivatiotiferesearch addressed in this
PhD thesis. We start by a general introduction on the sulétinmanned Aerial Vehicles
(UAVS), helicopter mini-UAV, and helicopter autorotatiofhen we formulate the central
research objective of this thesis. We conclude this Chapitbrthe thesis roadmap, and a
list of the main contributions.

Parts of this Chapter have been published?is.[



2 1. INTRODUCTION

1.1.UNMANNED AERIAL VEHICLES (UAVs)

ver the past thirty years, significant scientific progress eslab sensors technology

and computational miniaturized hardware has allowed fetasoed improvements in
the fields of robotics and automation, leading to major adearent in the area of flying
robots, also known as Unmanned Aerial Vehicles (UAS), see Fig.1.1. A UAV is
further defined as a powered aerial vehicle, not carryingradruoperator, that

o Uses aerodynamic forces to provide vehicle lift

¢ |s expendable or recoverable (in contrast to missile system

o May fly autonomously, or may be piloted remotely

e Carries a payload

Unmanned systems are typically associated with the sedf2IDD missions:Dull i.e.

long duration,Dirty i.e. sampling for hazardous materials, @ddngerousi.e. extreme
exposure to hostile actio2].

Figure 1.1: Two small drones, Insitu’s Scan Eagle X200 anmb¥ieonment's PUMA—both weighing less than
25 kg and having a wingspans of approx. 3 m—have become thedirtsfied UAVs, by the Federal Aviation
Administration (FAA), for civilian use in the USA. They witiperate € the Alaska coast to survey ice floats and
wildlife, and to conduct commercial environmental moriitgrin the Arctic Circle, and further assist emergency
response teams in oil spill monitoring and conduct wildbfeservations. Hflington Post, July 2013.

1Although recently industry and the regulators have adopterhanned Aerial System (UAS) as the preferred
term for unmanned aircrafts, as the UAS term encompassaspatts of deploying such vehicles, and hence not
just the vehicle platform itself.
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1.1.1.CANDIDATE APPLICATIONS

UAVs have been developed for both civilian and military noass. Examples of such ap-
plications in the civilian sector include: agriculturattiézer dissemination, animal density
determination, area illumination, area mapping, areaufiolh measurements, communica-
tion relay, dam observation, flooded areas and forest figgention, object delivery, oil
spills detection, power line and pipeline inspection, cadtivity measurement, searching
for missed or shipwrecked persons, sports and culturaltéxemsmission, tridic surveil-
lance, video and film industry, volcano observation, andtheraforecast].

In the military sector, UAVs have been around for a long tim&ctually pilot-less
aircrafts, whether as aerial targets or for more belliggperposes, have a history stretching
back to World War I. A multitude of candidate military mise®could be performed by
unmanned systems. Some could be performed by a single UAéIgelwhereas others
could necessitate a co-operative engagement of severas UAVhon-exhaustive shortlist
of candidate missions is given here: Battle Damage AssegqBBA), border monitoring,
Intelligence Surveillance and Reconnaissance (ISR),ahireé scout helicopter (team with
attack helicopter), naval gunfire support, precision stdkd Suppression of Enemy Air
Defenses (SEAD), range safety monitor, Search And RescilRe)(8perations, support to
special operations forces, and surface search and caore]ak

1.1.2.M ARKETS

Several UAV markets exist, i.e. the military market, theil@wn government market, and
the civilian commercial market, with a current worldwide WAxpenditures of $5.2 billion
[4]. The military and civilian government markets contain aimumber of customers that
potentially may buy a large amount of unmanned systems, egisethe civil commercial
market is defined by a larger number of customers which asrdsted in buying only

a small number of systemS][ The military market developed first due to the operational
advantages of UAVs, the civil government market followesitrses it was driven by security
needs (law enforcement, and fire and rescue agencies),@mtlgethe civilian commercial
market has started to expand.

1.1.3.DEVELOPMENT AND ACQUISITION PROGRAMS

On a worldwide stage, there are nowadays at least 40 to 56nsaitivolved in at least
one UAV development aridr acquisition program, resulting in a total of over 600 UAV
programs §], with approximately 20% of which are rotary-wing vehiclese Fig.1.2and
Fig.1.3. The U.S.A., Israel, and France represent the three majges in this UAV arena,
combining more than half of worldwide UAV development andj@isition programs; al-
though other countries, such as China and others in SouthAS@, have been heavily in-
vesting in this sector for the past few years. About two thtithe worldwide systems have
the military as an end-user, the remaining systems beinigaled to civilian or Research
and Development (R&D) programs in academia and researttuiiens. Based upon the
Maximum Take-GF Weight (MTOW), approximately half of the developed systefials
into one of the three following categorie§]{ micro-UAV (MTOW < 5 kg), mini-UAV
(MTOW < 30 kg), or close-range UAV (MTOW 150 kg).
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Figure 1.3: Delft Dynamics’'s RH4 Spyder quadcopter UAV. @tfoom [7].

1.1.4. AIRWORTHINESS AND SAFETY ASPECTS

Currently one of the main hurdles for UAV economic expans®the lack of clear reg-
ulations for safe operations. So far, an internationallyeated regulatory basis for UAV
operations does not yet exisi, [8], although many forts are underway9] 10]. This
said, UAVs operated by the military, police, and fire brigadee so-called Operational
Air Traffic, meaning that they do not abide to the International Civiefion Organization
(ICAQ) rules. Especially, for cases involving emergenoiesrises, UAVS may benefit from
exemptions from civil regulations. However, UAVs operaieao-called non-segregated
airspace, for civilian or commercial purposes, do not inherit thedeamtages. In general,
airworthiness authorities tend to be rather cautious, anddod reasons, when evaluating
the insertion of UAVs into civilian airspace. The reliabilof UAVs has been a concern for

2For instance a country’s national airspace.
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many years, due to the high accident rafe§.[For instance, the reliability of UAVs would
need to improve by one to two orders of magnitude, in ordeeézin an equivalent general
aviatior? safety level [1, 17]. Hence, it is clear that an increase in UAV system integrity
reliability, and safety could only facilitate the introdian of UAVs into non-segregated
airspace for civilian or commercial purposes. In fact, @gafnalysis would need to ad-
dress each part of the UAV system, from the structural inie@f the vehicle, its engine
and electronics, to the data links and embedded software.

1.2. THE HELICOPTER

In some cases, UAV deployment and recovery from unpreparedrfined sites may be

required, such as when operating from or above urban andahaanyons, forests, or from

naval ships. These specific missions would require veryatiégsflight modes, such as

vertical taked/landing, hovering, and longitudintdteral flight. Here, a helicopter UAV

capable of flying autonomously, in and out of such restrieteghs, would represent a par-
ticularly attractive asset. Hence, in the sequel, we briefljew some helicopter concepts.

The four forces acting on a helicopter are denoted by: thdrsty, lift and weight,
see Fig.1.4. The thrust overcomes the force of drag; the drag is a redrfeace caused
by the disruption of airflow by the moving rotors and vehidi&;is produced by the dy-
namic dfect of the air flowing on the main rotor blades, opposing therdeard force of
the vehicle weight. On a standard helicopter configuratioetail rotor is a small rotor,
traditionally mounted vertically at the end of the tail-moof a helicopter. The tail rotor’s
thrust, multiplied by the distance from the vehicle’s cemkgravity, allows it to counter
the torque fect created by the main rotor, see Figh. A typical helicopter has four sep-
arate flight control inputs, which allow to control the attie—roll, pitch, and yaw angles,
see Fig.l.6—of the helicopter.

,— Blade Rotation

w1

Drag

{ |:> Tail Rotor Thrust

to Compensate for Torque

Figure 1.4: The four forces acting on a helicopter. Picture Figure 1.5: Top view of a counter-clockwise rotating
from [13]. main rotor. Picture from14].

SRoughly speaking, general aviation refers to all civil fivia operations other than scheduled air services (i.e.
other than commercial airlines). General aviation fliglisge from gliders and powered parachutes to corporate
jet flights.
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*, Pitch 4

Longitudinal

Y
Vertical &ur al

Figure 1.6: Attitude angles and control axis of an aerospabile. Picture from15].

The controls are known as main rotor collective, main rodmgitudinal cyclic, main
rotor lateral cyclic, and tail rotor anti-torque pedals; §ég.1.7.

THROTTLE

Figure 1.7: Helicopter flight controls. Picture frord].

Some smaller helicopters have also a manual throttle netedeintain rotor speed.
The main rotor collective changes the pitch angle of all nmator blades collectively, and
independently of the blade rotational position. Through tbllective, one can increase
or decrease the total lift derived from the main rotor. On dkiger hand, the main rotor
cyclics change the pitch angle of the main rotor blades cgttyi, i.e. the pitch angle of the
rotor blades changes depending upon their position, asrtitate around the main rotor
hub [16]. For example in Fig.l.7, pushing the cyclic forward results in a pitch-down of
the helicopter, and consequently produces a thrust veetitrel forward direction. If the
cyclic is moved to the right, the helicopter starts rollingte right and produces thrust in
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that direction, causing the helicopter to move sideway# [The anti-torque pedals change
the pitch of the tail rotor blades. The anti-torque pedd®aato increase or decrease the
thrust produced by the tail rotor, causing the nose of thécleeko yaw. For each control
input channel, Tablé..1 summarizes the primary, and secondary, impacts on theleehic

response.

Table 1.1: Typical input-output coupling, for a helicoptéth a single main rotor (derived from.]).

Input Response
Axis Roll(¢) | Pitch@) | Yaw(y) | Climb/Descent§) |
Main rotor Dueto Due to Power change Prime
collective transient transient varies response
(60) & steady & steady requirement
lateral longitudinal for TR
flapping flapping thrust
& sideslip
Main rotor Prime Due to Undesired Descent
lateral cyclic response | longitudinal | (especially with
(61c) flapping in hover) roll angle
Main rotor Dueto Prime Negligible Desired
longitudinal cyclic lateral response in forward
(015) flapping flight
Tail rotor Rolldueto| Negligible Prime Undesired,
collective TR thrust response due to
(6orr) & sideslip power changes
in hover

1.2.1.HeLicorTER MINI-UAV s

In many cases small size and low purchase cost, of the h&dictja\V, represent the pri-
mary driving system specifications. In these situationgbpter mini-UAVs, see Figl .8,
provide clear inherent strengths, albeit at the cost ofelsad capabilities, when compared
to the larger-size helicopter UAVS §, 19). Helicopter mini-UAVs can even be deployed
in large numbers, at an acceptable cost. Briefly summarizelitopter mini-UAVs are
commonly upgraded from Remote-Controlled (RC) hobby lgliers, by assembling an
avionics suite. The role of this avionics suite is to collantl integrate various measure-
ment signals, drive the actuators, provide communicatiattsa Ground Control Station
(GCS), and support real-time operations of autonomoug ftightrol laws P0]. Helicopter
systems can be characterized as Multiple-Input Multiplegt (MIMO), under-actuated,
nonlinear, and unstable dynanfic$n addition helicopter mini-UAVS when compared to
their full-size helicopter counterparts, or even to largige helicopter UAVs (i.e. in the

4And time-varying in some cases, e.g. when a gasoline engimsdd, implying fuel consumption and hence
vehicle mass variation.
5In this thesis, the termiselicopter mini-UAY andsmall-scale helicopter UA\are used interchangeably.



8 1. INTRODUCTION

Figure 1.8: NLR’s mini-UAV project (2004-2006) based on adified Bergen Industrial Twin helicopter.

close-range UAV class), feature an increased power-tesmad®, an increase in fiiness
of the main rotor assembly, and a higher torque-to-inegtii@r Consequently, small-scale
helicopter UAVs are much more agile, and have higher leveyaamics coupling and
instability, than larger-size helicopter3]].

1.2.2.HELICOPTER MAIN ROTOR HUBS

For the case of a fully articulated main rotor system, eatdr tdade is attached to the rotor
hub through a series of hinges, which allow each blade to nmolependently of the others,
see for example FidL..9for the case of a full-size helicopter main rotor hub. The Aamge
allows the blade to move in a plane containing the blade amddtor shaft; the lag hinge
allows the blade to move in the plane of rotation; whereagpitoh hinge allows the blade
to rotate about its pitch (feathering) axis.

For small-scale helicopters, the rotor hub generally idekia pitch hinge close to the
shaft, and a lead-lag hing&urther outboard. Besides the hub is typically not equippitd
a flap hinge, this latter is often replaced byffstubber rings, hence a so-called hingeless
flap mechanism, see Fify.10 But for the purpose of helicopter flight dynamics modeling,
it is standard practice to model a hingeless rotor (and ixsbile blades) as a rotor having
rigid blades attached to a virtual hing&d], this latter being éset from the main rotor axis.
This virtual hinge is often modeled as a torsional springlinmg stiffness and dampirig

1.3. HELICOPTER AUTOROTATION

As discussed in Sectioh.1.4 the overall system safety of unmanned systems has to be
improved, if not guaranteed, in order to prevent harms todnsmnd materials, and to allow
for sustained helicopter UAVs expansion into the civiliaarket segment. For unmanned

60n small-scale helicopters this is technically not a himgther we refer here to the blade fixation bolt.
“Adjusting the virtual hinge fiset distance, gfness, and damping, allows to recreate the correct blademioti
terms of amplitude and frequency4].
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Figure 1.9: Agusta-109 fully articulated 4-blades mairoroPhoto from p2].

l_ Pitch hinge
Rubber O-rings

(flap motion)

LT

Blade fixation bolts
(lag motion)

Pitch linkage

Figure 1.10: NLR'’s Facility for Unmanned ROtorcraft REs#a(FURORE) project. Typical main rotor hub for a
(small-scale) UAV helicopter.
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systems, a failure of the power or propulsion units reprissemrrently the most frequent
failure mode of the vehicle, accounting for more than a tbirdll failure events 1]. For

a helicopter, such failures would mean flying and landinguéleicle without a working
engine, which is also known as thatorotationflight maneuver in helicopter jargon.

1.3.1.AUTOROTATION: A THREE-PHASES MANEUVER

Helicopter power-OFF flight, or autorotation, is a conditio which no power plant torque
is applied to the main rotor and tail rotor, i.e. a flight cdia which is somewhat com-
parable to gliding for a fixed-wing aircraft. During an audtation, the main rotor is not
driven by a running engine, but by air flowing through the ralsk bottom-up, while
the helicopter is descendingd, 26]. In this case, the power required to keep the rotor
spinning is obtained from the vehicle’s potential and kinehergy, and the task during an
autorotative flight becomes mainly one of energy managef@ehtAn autorotative flight
is started when the engine fails on a single-engine hekgppt when a tail rotor failure
requires engine shut-down. Unfortunately, autorotatiameuvers are known to beflicult

to perform, and highly risky. From a flight maneuver standpcd complete autorotation
generally contains three phasés{37], detailed below

e The entry. First, the tail rotor thrust needs to be reduced to accoonthfe loss
of main rotor torque (since not driven anymore by an engimtNgxt a reduction of
main rotor thrust, as to prevent main rotor blade $ttid rapid decay in main rotor
Revolutions Per Minute (RPM), is often required. In additiit is recommended
to pitch the helicopter nose down in order to gain some fodvadrspeed. Indeed,
attaining higher airspeed avoids entering the so-calledeXeRing-State (VRSY
[25], and allows for a buildup of rotor RPM while lowering the telpter vertical
sink rate.

e Steady autorotation This is the stabilized autorotation, at a constant maiorrot
RPM, in which the helicopter also descends at a constantwaieh may be chosen
for minimum rate of descent, or maximum glide distance. Hswene rotor blade sta-
tions on the main rotor will absorb power from the air, wharethers will consume
power, such that the net power at the main rotor shaft is zerafficiently negative
to make up for losses in the tail rotor and transmission ay$&s, 34].

o Flare for landing. The purpose of the flare is to reduce the sink rate, redueeafadr
airspeed, maintain or increase rotor RPM, and level theud#ifor a proper landing,
i.e. achieve appropriate tail rotor ground clearance. Tiedpter flare capability is
the most important of the three autorotation phasésif], and depends particularly
on a high main rotor kinetic energy, which requires a highmmator RPM angbr a
large main rotor blade moment of inertia.

8Although the precise characteristics of the autorotati@neuver depends upon the initial flight condition, i.e.
the helicopter flight condition just prior to the engine ORaation [27].
9Stall corresponds to a sudden reduction in lift coupled withrge increase in drag.
10Briefly summarized, the VRS corresponds to a condition whteeehelicopter is descending in its own wake,
resulting in a chaotic and dangerous flight condition.
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1.4.PROBLEM FORMULATION
First, we summarize the following observations

¢ In order to support the economic growth of the small-scaledgter UAV market,
particularly within the civilian segment, the overall UAYstem safety has to be
improved, especially when considering the case of engih@da This requires for
an autorotative flight capability of the unmanned helicoptestem.

e An autorotation maneuver is a highly challenging flight mares for a helicopter.
For the case of manned helicopters, it is long known that @ gieal of pilot training
is required if disaster is to be avoided. In fact, quick reactand critically timed
control inputs by the pilots are required for a safe autdnsdanding B7—40]. The
autorotative flight maneuver is actually so risky that felu¢hdown autorotations
(i.e. including flare and landing), as a training scenarie, rrowadays very rarely
practiced by pilots. It is even reported ial] that both the U.S. Army and U.S. Air
Force have stopped practicing full autorotation flights tiude high level of injuries
and vehicle damage.

e As pointed out in Section.2.], small-scale unmanned helicopters have higher lev-
els of dynamics coupling and instability, when comparedargér size UAVs or to
full-size counterparts. Hence, for such small-scale unradrsystems, performing a
successful autorotation maneuver becomes even more pratite

The here-above observations and challenges have inspieddltowing central prob-
lem formulation, or research objective, for this thesis

For the case of a small-scale helicopter UAV in un-powereghf|ide-
velop a model-based automatic safety recovery system dlffiely Slies
and lands the helicopter to a pre-specified ground location.

1.5. ANALYSIS OF AVAILABLE OPTIONS

A general solution framework to the research objectivemidated here-above in Sec-
tion 1.4, is depicted in Figl.11 The 'Helicopter Dynamics’ block refers to the helicopter
experimental system, which is interfaced through varidwduators’ and 'Sensors’. Here,
signalu, refers to the output of the actuators, whereas measureiigeat g refers to the
output of the sensors, generally a subset of the helicoptemal state variables (or state-
vector)x. The aim of the 'Optimization’ block consists in generatsignalu, using the
measured signal, such that a cost function (i.e. the objective formulatedtkabove in
Sectionl.4) can be optimized, while enforcing various environmental gehicle physical
constraints. We also know, from previous research on ssealle helicopter UAVs{2-46],
that the feedback loop, in Fig.11, has to be run at a relatively high rate for good system
performance, i.e. at least 50 Hz or preferably higher.

11pye to cost factors, most small-scale helicopter UAVs arglsiengine.
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Cost
Function u | Uact L
& —#| Optimization |—— | Actuators HRE0R R
Dynamics
Constraints

Sensors |«

Figure 1.11: Small-scale helicopter UAV automatic autation: the feedback loop.

To this end, the 'Optimization’ block, in Fid..11, has to perform, at least, the follow-
ing three tasks47]: 1) Navigation by determining the current position, orientation, and
velocity of the helicopter, delivering the filtered stateetorxs; in Fig. 1.12 2) Guidance
by computing the trajectory or pdthto the destination point; and &ontrol by ensuring
that the helicopter stays on the computed trajectory or.paithough there is quite a bit
of synergism between these three disciplines, a naturaragpn does exist between the
Navigationtask on the one hand, and tGaidanceandControl tasks on the other.

Cost
Function Guidance Ugaet Heliconter
& —» and Actuators b PI
- Control ynamics
Constraints

Xsilt

Figure 1.12: Small-scale helicopter UAV automatic autation: Guidance, Navigation, and Control (GNC) feed-
back loop.

1.5.1.MODEL-FREE VERSUS MODEL-BASED OPTIONS

Now, as hinted upon in Fid..11, the goal of this thesis is set upon the design and evaluation
of the 'Optimization’ block. More specifically, the focusahbe upon theGuidanceand
Controltasks, as shown in Fig..12. Before discussing further the content of this thesis, let
us first briefly review what are, to-date, the various avédaptions, in terms oGuidance

12The termtrajectory denotes a route that a vehicle should traverse as a fundtiimey whereas @ath denotes
an obstacle-free route without temporal restrictioffd.[
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andControl, for our UAV application. First, th&uidanceandControl tasks, in Fig.1.12,
can be designed using

¢ A model-freeapproach. Various methods are here available, e.g. moekeffdizzy
logic*® [49)], with applications to UAV control in§0, 51]; model-free reinforcement
learning” [57], with applications to UAV control in §0, 53-55]; and evolutionary
and genetic algorithms[56-58], with applications to UAV control in§9-63.

¢ A model-basedapproach, where a model of the helicopter system is madé avai
able. There are threeftirent philosophies that form the basis of modeling, namely
the white-box modeling (also known as mechanistic or firgtgiples models), the
black-box modeling (also known as empirical models), ardgtay-box modeling
(also known as hybrid model$4]) which is a mixing of the previous two6f].
In the first case, a model is developed on the basis of detailddrstandings of the
generic underlying physical laws, that govern the systenthé second case, a model
is developed on the basis of empirical knowledge, i.e.fAcsently large number of
consistent observationst, 66]. In the third case, a model is developed by combining
the strengths of the previous two approaches. A rather vpedetaum of model-based
approaches exists, which will be discussed in more detdfiiérsequel.

1.5.2.INTEGRATED VERSUS SEGREGATED OPTIONS
Next, theGuidanceandControl tasks, in Fig.1.12 can be designed using

¢ Anintegrated approach, where theuidanceandControltasks are performed within
a single optimization process. Again, either a model-fremodel-based approach
can be applied. For model-free approaches, these areddkatithe ones listed here-
above. For model-based approaches, we distinguish bettheefollowing three
options

1. The first one is the so-calledodel Predictive Control (MPC) theory [67,
6d), also known as Receding Horizon Control (RHC)Starting with the early
works in [69-73], the MPC has become one of the most popular tools for con-
strained industrial control applications. Based upon aehotlithe system, an
MPC controller generates an optimal state feedback cosgigplience, by mini-
mizing, at each time step, an open-loop, quadratic perfoc@abjective, while
explicitly including input and state operating constraifit4—78]. Specifically,
for each new measurement, the MPC predicts the future dynbetiavior of
the system over a prediction horizdip, and determines the input sequence
over a control horizo, with Tc < Tp, such that the performance objective
is minimized. Then the first control input of the computedimjal sequence is

13Fuzzy control is a method based upon a representation ofiteledge, and the reasoning process, of a human
operator {19].

14Reinforcement learning is an area of machine learning, exmred with how a system ought to respond, in an
environment, so as to maximize some notion of cumulativearévjb2].

I5evolutionary and genetic algorithms use mechanisms iediiy biological evolutiong6-5¢).

16Thereceding horizorterminology corresponds to the behavior of the Earth’'sAuarji.e. as ones moves towards
it, it recedes, hence remaining a constant distance away.
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applied to the system, and the optimization is repeatedcht ®zbsequent time
step. Obviously, lowering the prediction horizdp allows to lower the compu-
tational time (at the cost of complications with respectttdoBity). This mech-
anism of having a new on-line solution at each time step Jt®8ua so-called
sampled-data feedback lawd, 80], hence bringing alongside the classical ben-
efits of feedback. Now depending on the nature of the modileelinear or
nonlinear, a corresponding linear or nonlinear MPC optation problem has
to be solved. An array of applications of linear MPC to vas&lAVs can be
found in [81-84], whereas specific applications of nonlinear MPC to helieop
UAVs can be found in§5-90], and to fixed-wing UAVs in §1-96].

2. The second option assumes that the nonlinear helicolatetr gan be modeled
as a Linear Parameter Varying (LPV) system. The latter cas lte used with
one of the manyMPC-LPV, i.e. MPC for LPV algorithms§7-113. This
MPC-LPV approach, most often resulting in a Semi-Definitegtam (SDP)
optimization, can be seen as a middle-way between the limedmonlinear
optimization paradigms.

3. The third option extends the framework of MPC, for the aafsefinitely long
horizonsT, and T, and naturally brings us to the field ebnstrained op-
timal control [114-11€. Here too, based upon a model of the system, and
given a performance objective (which need not be quadratia) suitable in-
put and state operating constraints, the solution to thiengpptontrol problem
yields the optimal input and state time histories. Agaime, finst control input
of the computed optimal sequence is applied to the systechitenoptimiza-
tion is repeated at each subsequent time step. Also, degeadithe nature of
the model, either linear or nonlinear, a correspondingglirar nonlinear con-
strained optimal control problem is solved. Applicatiorisionlinear optimal
control’ to helicopter UAVs can be found inl]7, 11, and to fixed-wing
UAVsin[119-123.

o A segregatedapproach, in which th&uidanceandControl tasks are split into two

distinctive optimization processes. This approach se¢partheGuidancetask, i.e.
the Trajectory Planning (TP), from theontrol task, i.e. the Trajectory Tracking
(TT)'%. Although potentially sub-optimal, this philosophyfers the advantage of
effectively exploiting the nonlinear nature of the system (émerate trajectories),
while also making use of the linear structure of the erroratyits (to stabilize and
control the helicopter)124. This divide-and-conquer strategy is also known as the
classical two-degree of freedom Flight Control System (F@B8adigm, as depicted
in Fig. 1.13 Here, the TP shall be capable of generating open-loopibleagnd
optimal autorotative trajectory references, for the small-scale helicopter, subject
to system and environment constraints, and additionatiygh not necessarily, the
feedforward nominal control inputsrp, needed to track these trajectories. On the
other hand the TT shall compare current estimated statesslu with the reference

1"Most often applied in open-loop, rather than in the closmplsetting described here.
18within this thesis, the terms 'Trajectory Planning’ (re§frajectory Tracking’) and 'Trajectory Planner’ (resp.
"Trajectory Tracker’) are used interchangeably.
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Figure 1.13: Two degree of freedom Flight Control SystemSJ&rchitecture, implemented on the true helicopter
system.

valuesxtp produced by the TP, and shall formulate the feedback canirgl to en-
sure that the helicopter flies along these optimal trajézso he additional feedback
path, denoted by a dashed line in Figl3 allows for updating the generated tra-
jectory based upon the current state. In Rid.3 the 'Helicopter Dynamics’ block
refers to the helicopter experimental system. The role®Ndwvigationtask, defined

as the 'Estimation Filter’ in Figl.13 shall be to estimate the helicopter unmeasured
states, the wind, and low-cost sensors characteristitsamiscale factors and biases.

THE SEGREGATED APPROACH: TRAJECTORY PLANNING (TP) AND TrRAJECTORY TRACKING (TT)

With regard to the segregated approach, let us now sepagatdtess the various options
available for theGuidancetask, i.e. Trajectory Planning (TP), and tBentrol task, i.e.
Trajectory Tracking (TT).

e Over the years, researchers have addressetr#tiectory Planning (TP) problem
through several techniques, namely: cell decompositiotergial fields, roadmaps
and hybrid systems, inverse dynamics arftedential flatness, Mixed Integer Linear
Programming (MILP), MPC, optimal control, and finally evbbnarygenetic algo-
rithms [125 126, with specific benefits and drawbacks for each method, s al
[127~=129. Some of the aforementioned planning techniques—celbahgosition,
potential fields, and roadmaps—either ignore thféedéntial constraints associated
with the vehicle’s dynamics (i.e. are model-free approagter use simplified kine-
matic models. With regard to the TP of a helicopter in autatioh, model-based
indirect optimal control methods have been used ii}135, whereas model-based
direct optimal control methods have been exploredin B8, 136-145. Aside from
these optimal control strategies, three other methods &laeebeen investigated for
helicopter autorotation: 1) a model-free learning-baggut@ach in p1, 144; 2) a
model-based parameter optimization scheme to find a badkwaachable set lead-
ing to safe landing in]47, 14g; and 3) and a model-free parameter optimization
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scheme generating segmented routes, selecting a sequistreéght lines and curves
in [149-157).

o With respect to thdrajectory Tracking (TT) , virtually any control methods can
be applied to a helicopter UAV. For instance, for the spedifise of TT for a heli-
copter with the engine ON, a vast array of technical avenags been investigated
over the years, with the application of: classical contfdiZ], gain-scheduling of
Proportional-Integral-Derivative (PID) controllersdd, Linear Quadratic Regula-
tor (LQR) [154, 155, Linear Quadratic Gaussian (LQG)45 156, LPV [157, H»
[159, He [43, 158160, u [157, 161], (nonlinear) MPC §7, 89, 159, feedback
linearization, (incremental) nonlinear dynamic inversend nested saturated con-
trol [20, 161-163, adaptive control [64-167]), backstepping 166 168-17(, and
model-based learning approach&s174. For additional results relative to fuzzy
logic-based controllers, artificial Neural Network (NNJ,\asion based controllers,
refer also to {8, 179. Conversely, very few papers have addressed the subject of
helicopter TT with the engine OFF (i.e. autorotation), whibncurrently validating
their results by experiments, or three-dimensional (3BhHidelity simulations. In
[146, a model-based Mierential Dynamic Programming (DDP)method is used;
in [15]1] a model-based Nonlinear Dynamic Inversion (NDI) with Piops is used;
in [51] a model-free fuzzy logic method is used; andid§, 177] a model-based.,
method is used. Finally, none of the previous results, exfoepl 77 which used a
2D lower-fidelity model, did consider a robust TT approach.

1.5.3.SUMMARY OF PREVIOUS ANALYSIS
Summarizing the previous discussion, wee make the follgwomments.

o Although very powerful and potentially very promising, neddree (machine learn-
ing) approaches have also some liabilities. First, the tdekmodel makes it dicult
to analyze their stability and robustness characteri§tieg Second, the compu-
tational complexity of the model-free approaches may ofterprohibitive for our
application (recall that the feedback loop in Figllhas to be run at a relatively
high rate, at least 50 Hz or equivalently 20 msec).

e From a conceptual viewpoint, an integrated model-basetbaph may potentially
provide the best answer to our helicopter autorotationlprabThis said, it is essen-
tially the linear MPC approach that has shown to be impleatdaton-line, even for
high bandwidth systemsif8-181]. As stated in Sectiofi.2.], a helicopter has an
intrinsically nonlinear behavior, which renders the apgtion of linear MPC rather
guestionable. For the case of nonlinear MPC or nonlineastcaimed optimal con-
trol, these methods are still time-consuming optimizatechniques, currently un-
likely to be run on-line, within a 20 msec time frame.

e Although potentially much faster than a nonlinear MPC apphp the integrated
model-based MPC-LPV approach, with todays SDP solvers,ldvaalikely run
within the 20 msec time frame. This said, this comment shawltibe taken as

19DDP is an extension of the Linear Quadratic Regulator (L@Rn&lism for non-linear systems 6.
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conclusive on the viability of the MPC-LPV method. Indeedjraat deal of current
MPC research is devoted to reducing the computational dési [L83. In fact, a
clear trend of the last ten years is to mov@lme as much computational burden
as possible. One such approach is the so-called explicit MB&-187), which has
shown to be an attractive solution, but so-far (and to thédfesur knowledge) only
for low-order systems. However, we do expect a bright fuforethe integrated,
model-based, MPC-LPV approach.

e For the Trajectory Planning (TP), model-free approachesalernatively model-
based approaches using a simplified kinematic model) malttemfeasiblé® plan-
ning results or, at best, conservative solutions. In agoldifiailing to incorporate some
(sufficiently) realistic vehicle dynamics, during the plannirtape, will increase the
on-line workload of the TT.

o For the Trajectory Tracking (TT), it is best practice to umb¢ some form of robust-
ness during the controller design.

o Only four publications have addressed the aggregatedipigand tracking function-
alities, for a helicopter in autorotation, with validatitmough either experiments, or
3D high-fidelity nonlinear simulation$|, 146 149, 151]. The contribution in {46
has shown successful experimental demonstrations, whtireather three contribu-
tions have been validated on 3D high-fidelity simulationke Thethods inq1, 146
use a model-free, learning-based TP approach. For thel 7, ises a model-based
DDP approach, whereas]] uses a model-free fuzzy logic approach. The methods in
[149 157 use a model-free, (modified) Dubin procedure (i.e. a seqaefistraight
lines and curves), for their TP algorithms. For the TI;]] uses a model-based
combined NDI-PID method, whereas]9 uses a model-basédl,, method.

e Theresults fromi1, 151] are for the case of a full-size helicopter, whereas theltgsu
in [149 involve a so-called short-rangectical size helicopter UAV (approximately
200 kg). Only the results inlfAq are for a small-scale helicopter UAV. As outlined
earlier, when compared to larger and heavier helicoptecies) the control of small-
scale helicopters (i.e. under 10-20 kg) represents a much challenging problem.

1.6. RESEARCH OBJECTIVES AND LIMITATIONS

Based upon the previous discussion, we define the followlijeptives for this thesis, refer
also to Fig.1.14

1. Amodel-based TP approach shall be selected, allowingrtgpate trajectories which
are potentially less conservative than the ones origigdtom model-free approaches.

2. A model-based, robust, TT approach shall be selecteddier do obtain a closed-
loop system which is less sensitive to modeling uncergsnti

20This is precisely the reason why nonholonomic constraites, constraints that not only involve the state but
also state derivatives, which cannot be eliminated by natémn, play a crucial role in the subsequent design of
feedback controllersip7].
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Figure 1.14: Helicopter autorotation: available optiomsthe Guidance and Control.

3. The combined TP and TT shall be computationally tractatde to be run within a
20 msec time frame.

We also limit the scope of this thesis, by adding the follagyfroundaries:

1. The combined TP-TT shall not be validated experimentallyrather on a 3D high-
fidelity helicopter UAV simulation, serving as a proxy foetheal helicopter system.

2. The dfects of sensors, actuatérsand the 'Estimation Filter’, are excluded from the
simulation environment.

With this in mind, the control architecture, defined in Figl3 becomes the one defined
in Fig. 1.15 where the output signglrepresents now a subset of the state-vector

1.7. SOLUTION STRATEGY
Here, we briefly introduce the research areas addresseih with thesis.

21The actuators are indeed not included in the simulation. é¥ew for a realistic control design, we do include
the actuators characteristics into the control designifpetions.
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Figure 1.15: Two degree of freedom control architectureépgdemented in this thesis, within a simulated envi-
ronment.

1.7.1.MODELING OF THE NONLINEAR HELICOPTER DYNAMICS

This section addresses the 'Helicopter Dynamics NonliS@aulation’ block in Fig.1.15

A wide range of small-scale helicopter simulation modelszeen developed in academia
[18, 19. For low to medium control input bandwidth, demonstratjonsimulation) of au-
tomatic helicopter flight, for the case of hover and low spéigtit conditions, has been
shown in [L88-196. On the other hand, for high bandwidth system specificatian still
these conventional flight conditions, model-based autanfizght results can be found in
[42, 43, 45, 197204, and model-free examples (in the areas of machine learmewngr
lutionary, and genetic algorithms) have been documentg@(ns3, 172, 209, whereas
vision based systems have been reported@®&f21(]. For the case of high bandwidth sys-
tem specifications, at non-conventional flight conditiomg ( aggressiyaerobatic flights),
model-based approaches have been describedlj2[ 1, 217, whereas model-free ap-
proaches have been reportedinf, 173 174]. However, and to the best of our knowledge,
none of the previous model-based results are applicabktdep descent flight conditions,
such as in the Vortex-Ring-State (VRS) or autorotationi¢ogiter flight with engine OFF).

Aside from these academic, white-box, helicopter modbkset also exists several ad-
ditional commercial, general-purpose, helicopter sitiotacodes. These latter are often
based upon the so-called multi-bédgoncept, and have been extensively used by industry,
research institutes, and academia. Examplesinclude CAMRA, FLIGHTLAB[214],
GenHel P15, and HOST P16, to name a few. These simulation codes, with a proven track
record, often stretching back three or four decades, arenemgl very reliable. They rep-
resent excellent tools for among others helicopter flightusation purposes, operational
analysis, crew training, flying qualities investigatioload prediction, vibrations analysis,
and control design. However, for all their benefits, thessutation codes have also some
(specific) drawbacks:

o First, these codes may be seen as third-party black-boxIsy@itece often one does
not have complete access to their detailed analytical esfmes, nor to the corre-
sponding software algorithms and implementations. Thig beaseen as a liability,

22A multi-body system is used to simulate the dynamic behadfiamterconnected rigid and flexible bodies, where
each body may undergo translational and rotational dispi@nts. The dynamic behavior of the complete sys-
tem, i.e. multi-body system, results from the equilibriufapplied forces and the rate of change of momentum
at each body.
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when the end-goal is model-based control design. In asdiéigphysical understand-
ing of the to-be controlled system is often necessary in rotolde able to make

judicious structural choices during the control desigmy.(eadequate model order
selection). This may become ratheffdiult if little is known about the system.

e Second, even when analytical expressions are availalelentiiti-body model struc-
ture adds a huge amount of detail, resulting in very higreodynamical systems,
effectively inhibiting any further manipulation of the anatyl expressions.

e Third, the black-box nature of these codes restrict the @afgcontrol techniques
that could potentially be used. For example, these modelsatebe used for con-

troller design when nonlinear control techniques, thatieitly require closed-form
modeling, are sought.

o Finally, for the specific case of FLIGHTLAB, which is availabat NLR, and al-
though it is now possible to configure it in an autorotationd@dor a small-scale
helicopter, it was unfortunately not possible to do so yeays, at the start of this
PhD project. The problem was related to the way FLIGHTLABItedth the main
rotor shaft inertia, engine drive-train, and gearbox

Hence, these aspects have led us towards the developmant@fio comprehensive,
white-box, flight dynamics model, particularly suited fonall-scale helicopter UAVs, and
valid for a range of flight conditions, including steep degdbght and autorotation. More
specifically, the model represents the nonlinear flight dyica of a flybarles$ helicopter
main rotor, with rigid blades. The complete model incorpesahe main rotor, tail rotor,
fuselage, and tails of a modified Align T-REX helicopter, &g 1.16

In terms of dynamics, the state-vectogiven in Fig.1.15is of dimension twenty-four.
The states include the twelve-states rigid-body motiod,tae dynamics of the main rotor.
The former include the three-states inertial position ttitee-states body linear velocities,
the three-states body rotational velocities, and the thtates attitude (orientation) angles.
The dynamics of the main rotor include the helicopter highequency phenomena, which
exist for both the engine ON or OFF (i.e. autorotation) flighhdition. These higher-
frequency phenomena include the main rotor three-stateardig inflow 218 219, and
main rotor blade flap-lag dynamics (each blade defined byatinedtates flafiag angles and
rotational velocities)§2(]. Regarding the main rotor Revolutions Per Minute (RPMijs it

23To be able to run the FLIGHTLAB simulation, the combined tigeof the rotor shaft, drive-train, and gearbox
had to be set to at least one third the main rotor inertia, vhépresents an unrealistically high value for the
case of small-scale helicopters.

24The flybar is a mechanical component of the helicopter’s niior system, and consists of a rod carrying small
aerofoils (paddles), with the Angle Of Attack (AOA) of thgsaddles being set by the main rotor cyclic control.
The AOA is the angle between a reference line on a body andtbeity vector representing the relative motion
between the body and the ait[7]. It is best to think of the flybar as a gyroscope that, whenstetred, tends
to maintain its rotation axis fixed relative to the earth. A#ly on a main rotor enhances the stability of the heli-
copter and hence, for a pilot using a Remote-Control (RCicdethe flybar system makes the helicopter easier
to fly. This said, small-scale flybarless (i.e. without thesecalled Bell-Hiller stabilizing paddles) helicopters
are becoming increasingly popular. Most RC helicopter rfemturers are nowadaysfering most of their RC
helicopter kits in flybarless versions as well, since flylssl rotors allow for increased helicopter agility and
performance, and reduced rotor mechanical complexity.
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Figure 1.16: NLR’s mini-UAV project (2012-2014) based on adified Align T-REX helicopter.

generally assumed fixed for the engine ON éasghereas for the engine OFF case it is not
fixed anymore. The main rotor RPM represents an essentiabptre autorotative flight
condition, and this additional state is also included in $kete-vectox when consider-
ing the engine OFF case. This MATLARBbased, nonlinear, continuous-time, High-Order
Model (HOM) is used as a realistic small-scale helicopteruation environment, for the
validation of the FCS.

1.7.2.THE TRAJECTORY PLANNING (TP)

This section addresses the 'Trajectory Planner’ block g Fil5 The TP aims at gener-
ating a feasible and optimal autorotative trajectory efieexrp, for the helicopter to fol-
low, and additionally, though not necessarily, the feedtord nominal control inputsarp,
needed to track this trajectory. The TP computes an opgmdptimal trajectory, given a
cost objective, nonlinear system dynamics, and contralsstates equality and inequality
constraints. The additional feedback path, denoted by hedblne in Fig.1.15 allows
for updating the generated trajectory based upon the dwstate and, if used, would result
in a closed-loop calculation of the reference trajectorythiis thesis, we investigate two
model-based TP options. The first is affi-line approach, whereas the second is on-line
feasible.

THE OFF-LINE APPROACH

From our previous discussion in Sectibry.Z, it became clear that the most natural frame-
work for addressing TP problems was probably through opticoatrol theory [14).
Hence, we choose to set thé-tine TP approach within the continuous-time, nonlinear,
constrained optimal control paradigm. Now, given that nromtlinear constrained opti-
mization problems are typically either computationallieimsive (real-time computation),
or memory intensive (@-line computation) 139, solving the TP optimization problem,
within the MATLAB environment, in the full vehicle state spa(including the higher-
order main rotor modes of the helicopter HOM in Sectiori.1) has shown to be rather

25Although this is a simplification, since in the engine ON ctts& main rotor RPM is being regulated by the
governor.
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costly from a computational viewpoint. The two, not mutyakclusive, options to mit-
igate such a problem are: 1) converting the helicopter HOMugtion, from a flexible
MATLAB code into a more constrained programming languagelisas the C language),
which does provide a highly optimized performance and mgmearironment; or 2) de-
velop a Low-Order Model (LOM) better suited for nonlineatiapzation problems. The
first option lives in the Information Technology (IT) realemd requires some desigfiat

at the interface of various softwaréswhereas the second option is more interesting from
a system and control viewpoint, and is more in line with thespeal interests of the author.
Hence, in this thesis, we opted for the development of a LOM.

Low-Order Model (LOM)  We discuss here the method used to construct such a small-
scale helicopter LOM, which combines the required modedioguracy with the computa-
tional tractability. In our case, the high computationastcof the HOM comes primarily
from the main rotor model. With this in mind, we considerea twmain avenues for the
derivation of a simplified model.

The first, and most straightforward one, consists in adggtie HOM, by replacing
all main rotor higher-order dynamics (i.e. rotor inflow, dvidde flaglag) by their corre-
sponding steady-state expressions. Although this rebirta cheaper simulation cost, the
complex, nonlinear formulations of the main rotor forcesl @amoments (and their corre-
sponding numerical integrations) had still a detrimenfida on the overall computational
cost. Hence, we opted for an alternative approach, whiclistad in retaining the low-
order dynamics of the HOM, i.e. the rigid-body dynamics arelrhain rotor RPM dynam-
ics, and then replacing the costly computations of the matiwor high-order dynamics, and
main rotor forces and moments, by closed-form 'textbodke-expressions: i.e. a static ro-
tor uniform inflow model from 218 221] with a VRS correction from27, a steady-state
rotor Tip-Path-Plane (TPP) model frora43 224, and rotor forces and moments expres-
sions from B6]. The remaining helicopter model components, i.e. taibrouselage, and
tail, are further re-used, as-is, from the HOM. To compen$at the modeling inaccura-
cies introduced by the use of simpler closed-form expressio this, so-far, white-box
model, we added a black-box component to it, in the form offieggnpirical coéficients,
set at specific locations’ within this simplified white-baxodel. Subsequently, simulated
input-output data, from the HOM, was used to fit these emgliGoeficients. The latter
have also been scheduled on helicopter horizontal anccaévielocities. Compared to the
HOM, the domain of validity of this gray-box model is much dlea since the data-set
used to estimate the empirical d¢heients is not representative of the full helicopter flight
envelope. However, this simplified model did provide a daseecin the associated CPU
time, per model evaluation, of approximately 60 %.

Once the LOM is obtained, the solution of the continuousetaptimal control problem
requires a discretization method. Here, we apply the pssefbdral discretization numer-
ical scheme}25-227] to the optimal autorotation problem. The pseudospectethod is
known to provide exponential convergence, provided thetions under considerations are
suficiently smooth. Once discretized, the problem is then tndimed into a NonLinear Pro-

26Although automatic MATLAB to C translation tools do exist.
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gramming problem (NLP)424, this latter being solved numerically by a well known and
efficient optimization technique, in our case a Sequential @imdProgramming (SQP)
method P23-231]. The knowledge of these optimally defined autorotativetiries, de-
fined through this fi-line approach, has proved to be useful. In particular, tierdase of
our Align T-REX helicopter, we found an existing bound on tbil flight time based upon
the initial altitude and the rotor induc&dvelocity in hover. Knowledge of this bound has
shown to be relevant for the subsequent on-line TP approach.

THE ON-LINE APPROACH

The TP can either be run once, just after an engine failurebbas detected, or can be
continuously recomputed (see the dashed line in Fiy). For both options, the TP op-
timization framework of Section.7.2 which combines an optimal control approach with
a LOM, would need to see its computational cost decrease psogimately four to five
orders of magnitude, in order to retain high computatioffadiency for on-line usé.

Hence, we present here an alternative TP approach, aplglfcalon-line use, and based
upon the concept of fferential flatness. The seminal ideas dfefiential flathess were in-
troduced in the early 1990s if $2-234] as part of a paradigm in which certairfiiirential
algebraic representations of dynamical systems are dgoivdn other words, a complete
parametrization of all system variables—inputs, stated cutputs—may be given in terms
of a finite set of independent variables, called flat outpats] a finite number of their
derivatives P35 236. This results in optimization problems with fewer varieblp37,
i.e. by the complete elimination of the dynamical constsirin this case the trajectory
generation problem is transformed from a dynamic to an afgelone, in which the flat
outputs are parametrized over a space of basis functioresgdimeration of optimal trajec-
tories is then reduced to a classical algebraic interpmiadr collocation problent0, 239).

Itis in general dificult to determine whether a given nonlinear system is flétpaigh
several methods for constructing flat outputs have beenrdented in the literature?35
238-241]. With regard to applications, it has been shown that sifigalidynamics of air-
craft and Vertical Take-@and Landing (VTOL) aircraft are flaRfi2-247), and simplified
helicopter dynamics is flalpB5 248 249, whereas more realistic vehicle models are in
general non-dferentially flat, e.g. 35 25(. In fact, high-fidelity helicopter models are
known to be non-dferentially flat. To circumvent this fliculty, a standard approach, by
the research community, has consisted in progressivelgli$yimg the model until it in-
deed becomes flat. Rather than generating optimal trajestbased upon such simplified
representations of the helicopter dynamics, we presehisnhesis an alternative approach,
consisting in using only the rigid-body dynamics, with taarodynamic forces and total
moments as the new plant inputs. Although the relationsitiptive helicopter true control
inputs’® is lost, the advantage consists in having a model which doesolude approx-
imations, while being exactly flat. Now, since the rigid-gatiynamics does not include

2"The main rotor induced flow corresponds to the flow field indiog the rotation of the main rotor blades.

28For on-line use in a hard real-time environment where serimgiming constraints exist (e.g. in our case the 50
Hz closed-loop update rate).

29Main rotor collective, lateral and longitudinal cyclic,dtail rotor collective.
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the main rotor and RPM dynamics, and in order to obtain féasibtorotative trajecto-
ries, we will constrain the trajectory flight time by the balsheduced using theflsline TP
approach.

COMBINING THE OFF-LINE AND ON-LINE APPROACHES
We summarize now the main idea behind our TP methodology:

o Step 1.Base the TP optimization on the concept dfgliential flatness, using a lower-
complexity model (in our case the rigid-body dynamics). ®armng the flatness with
a lower-complexity model allows for on-line tractable cartgtions.

e Step 2. Derive additional trajectory constraints (in our case ariban total flight
time), obtained from the analysis offdine optimization results, using a nonlinear
optimal control approach combined with a higher-compieriiodel (in our case,
either the HOM helicopter of Sectidn7.1, or the LOM of Sectiori..7.2).

e Step 3. Use the optimization framework of Step 1, combined with tddigonal
constraints from Step 2 (in our case a bound on total flight}jito generate, on-line,
feasible and optimal trajectories, for the original HOMibepter.

1.7.3.THE TRAJECTORY TRACKING (TT)

This section addresses the 'Trajectory Tracking’ block ig. E.15 The TT shall com-
pare current output valugswith the optimal reference valuesp produced by the TP,
and shall formulate the feedback controts aimed at decreasing the tracking error, hence
ensuring that the helicopter flies along the optimal trajgct The tracking error may be
due to a combination of model uncertainty (unmodeled higitder dynamics, unmodeled
static nonlinearities, parametric uncertainties, délaysd signal uncertainty (wind distur-
bances and noise). As stated earlier, very few papers havesmtd the subject of tracking
an autorotative trajectory, with validation through expemtal results or 3D high-fidelity
simulations p1, 146 149 151]. None of the previous results considered a robust TT ap-
proach. Hence, we select here a model-based, robust, THagprin order to obtain a
closed-loop system which is less sensitive to modeling daicgies.

RoBUST CONTROL BASED T T

Since the helicopter dynamics is highly nonlinear, the glesif the TT necessitates an
approach thatféectively respects or exploits the system’s nonlinear stinec To this end,
several control methods are available: from 1) robust cr) classical gain-scheduling,
and Linear Parameter-Varying (LPV) approaches; to 3) tndplinear control methods
(e.g. nonlinear MPC, Lyapunov based methods such as slidide and backstepping,
adaptive control, or even passivity-based approacheshidrthesis we choose to apply a
robust control: strategy. This method consists in using a nominal Linearefinvariant
(LTI) plant coupled with an uncertainty, and applying a dngain approach451, 257

to design a single robust LTI controller. This approach, wiraplemented on-line, is
computationally very ficient. Now, rather than modeling the uncertainty in a dethil
manner, an input multiplicative uncertainty is added hereampensate for the unmodeled
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plant nonlinearities and unmodeled higher-order rotoratyits®, by lumping all types

of model uncertainty together into a complex, full-bloakput multiplicative uncertainty.
Finally, the robust controller synthesis consists in abitaj a controller insensitive to this
multiplicative uncertainty at the plant input.

AFrFINE LPV MODELING

Rather than using a robust contgoktrategy, one could also consider some other control
method, as listed in Sectidn7.3 In particular, LPV systems have become celebrated as
they represent an attractive midway approach between bl nanlinear or time-varying
structures 253 254]. LPV systems allow to enclose nonlinear behaviors intonadr
framework, where LPV control methods can be seen as an ésteofthe standardH,
andH,, LTI synthesis technique&p5-267. The LPV method amends also the main draw-
backs of classical gain-schedulingg3 264): 1) by eliminating the need for repeated de-
signgsimulations in order to handle the global control problend 3) by guaranteeing both
stability and performance along all possible parametg@dtaries. In addition, LPV control
design problems ardieciently solved, by first expressing the problems as LineatriMin-
equality (LMI) optimizations P69—subsequently formulated as Semi-Definite Programs
(SDP) p6g—for which there are several powerful numerical solutipis7, 26d. This re-
sulted in a growing number of applications, such as in aaws63-274), wind turbines
[279, wafer steppers]76 277, Compact-Disk playersZ7€, and robotic manipulators
[279. Now, and for all its benefits, the LPV control paradigm tadly takes the exis-
tence of the plant, in LPV form, as a starting point. Howewesystematic formulation

of a nonlinear system into a suitable LPV model remains gftedlematic 8(. Hence,

the problem of simplifying a large scale, nonlinear modettsas our helicopter HOM of
Sectionl.7.], into a LPV representation is thus highly relevant.

With this in mind, and for the case where a plant’s nonlineadet already exists, we
presentin this thesis aiffane LPV modeling methodology. This LPV modeling method has
subsequently been applied to a modified pointmass pendalndito the helicopter HOM
of Section1.7.1 For the pointmass pendulum example, the LPV modeling ambravas
validated in open- and closed-loop (using robust and LP\Mrotlars). For the helicopter
HOM case, the LPV modeling approach resulted in a LPV modahigaa large number of
(more than thirty) scheduling parameters. Unfortunatehgcame impossible to synthesize
LPV controllers with such a high-order LPV model. In fact,istwell-known that the
numerical conditioning and solvability of LMI problems pla crucial role in LPV practical
design methods?7/5-27¢. A way to mitigate such problems would consist in applying
some LPV model reduction techniquess]l, 287, in order to obtain a LPV model having
fewer scheduling parameters, hence better suited for L alber synthesis.

1.8. OVERVIEW OF THIS THESIS

The development of an autonomous helicopter system rexjtorean elaborate synergy
between various engineering fields, including: 1) model)gsystem identification; 3)
estimation and filtering; and 4) optimization and controfj(gyuidance and control). In this

3%Unmodeled in the nominal LTI plant used for controller desigpe higher-order dynamics are however modeled
in the nonlinear HOM plant of Sectioh 7.1
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thesis, aspects of modeling, guidance and control for alssnale helicopter in autorotation
are discussed, and new solutions are presented. This thesganized as follows:

¢ In Chapter 2 we present a helicopter flight dynamics nonlinear model fihyltzar-

less, articulated, Pitch-Lag-Flap (P-L-F) main rotor witbid blades, particularly
suited for small-scale UAVs. This high-order nonlinear raladcorporates the main
rotor, tail rotor, fuselage, and tails. This model is furtapplicable for high band-
width control specifications, and is valid for a range of ftigbnditions, including
the Vortex-Ring-State and autorotation. The goal of thimprehensive nonlinear
model is twofold: 1) it serves as a nonlinear simulation esuinent on which the
flight control system can be tested; and 2) it provides a asimodel-based control
design.

e In Chapter 3 optimal engine OFF (autorotative) landing trajectories derived
through a model-based, direct optimal control frameworkede open-loop opti-
mal trajectories, generated by a trajectory planner, ssriethe solution to the min-
imization of a cost objective, given low-order nonlineastgym dynamics, controls
and states equality and inequality constraints. The optétion setting, developed
in this Chapter, allows to test and evaluate various costatives. Once the final
cost objective and constraints have been frozen, optiniatatative trajectories can
be computed fi-line, for a range of initial conditions, and could even berstl as
lookup tables on-board a flight control computer. Thesettayies provide both the
optimal states to be tracked by a feedback controller, atidrogdly the feedforward
nominal controls.

o In Chapter 4 we present a model-based, trajectory planning and tradiangework,
for a helicopter with engine OFF, anchored within the corelliparadigms of dif-
ferential flatness based planning and robust control bagekihg. The advantage of
this methodology is that it is model-based and real-timsifda, since: 1) it allows
for a computationally tractable determination of the opifitnajectories; and 2) it is
based upon an easy to realize and implement LTI trajectackér. A similar flight
control system, for the engine ON condition, is also progide

¢ In Chapter 5 the methodology of Chapter 4 is validated on the high-ordetinear
helicopter model of Chapter 2. To better illustrate the masichallenges encoun-
tered when designing a planning and tracking system fortigine OFF condition,
a comparison with some engine ON automated flight maneuveisa provided.

¢ In Chapter 6 we tackle the problem of approximating a known complex madr
model by an &ine LPV model. To illustrate the practicality of the presentéV
modeling strategy, we apply it to a pointmass pendulum exarapd provide exten-
sive analysis in, both, open- and closed-loop simulatidtingss. When applied to
the high-order nonlinear helicopter model of Chapter 2 tR¥ modeling approach
resulted in a LPV model having an excessive number of schegiphrameters, ef-
fectively impeding any LPV control design.

e Finally Chapter 7 summarizes the results of this thesis, and outlines daestfor
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future research, such as the experimental validation ohére-presented guidance
and control system.

1.8.1.CONTRIBUTIONS
o A comprehensive helicopter nonlinear high-order modefiagnework, valid for a
range of flight conditions including steep descent flights antorotation, and partic-
ularly suited for small-scale helicopter UAVs has been@nésd in P5, 283 284).

e The determination of optimal autorotative landing trageiets, by solving anf-line
nonlinear optimal control problem, for the case of a smedils helicopter UAV, has
been presented iRB5-287.

o The first demonstration—using a high-fidelity, high-oraemlinear helicopter simu-
lation—of a real-time feasible, model-based optimal trajey planning, and model-
based robust trajectory tracking, for the case of a smalestelicopter UAV in au-
torotation, has been presented #3§.

¢ A novel dfine LPV modeling framework has been presented#t].
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HicH-ORDER M ODELING OF THE
HELICOPTER DYNAMICS

All models are wrong, but some are useful.

George E. P. Box
Robustness in the strategy of scientific model building 9197

In this Chapter we present a high-order, helicopter flightamics NonLinear (NL) model
for a flybarless main rotor, with rigid blades. The model inmarates the main rotor, tail
rotor, fuselage, and tails. The novel part of this Chaptetwsfold. Our first contribu-
tion consists in deriving the coupled flap-lag equations ofiam, for a rigid, flybarless,
articulated rotor, with a Pitch-Lag-Flap (P-L-F) rotor hije sequence, particularly suited
for small-scale Unmanned Aerial Vehicles (UAVS). The séaamtribution is the devel-
opment of a comprehensive flight dynamics model for a sroaleshelicopter UAV, for
both ClockWise (CW) or Counter-ClockWise (CCW) main rotdation, applicable for
high bandwidth control specifications, and valid for a rarafdlight conditions, including
(steep) descent flight into the Vortex-Ring-State (VBS) autorotation. Additionally, the
Chapter reviews all assumptions made in deriving the mé@elstructural, aerodynamics,
and dynamical simplifications. Simulation results show th& high-order NL model is in
good agreement with an equivalent FLIGHTLABodel, for both static (trim) and dynamic
conditions.

Parts of this Chapter have been publishedLi].

1Briefly summarized, the VRS corresponds to a condition whieeehelicopter is descending in its own wake,
resulting in a chaotic and dangerous flight conditiah [

°FLIGHTLAB is a state of the art modeling, analysis and rémiet simulation tool, used world-wide to simulate
helicopter flight dynamics/].

47



48 2.HigH-OrpER MODELING OF THE HELICOPTER DYNAMICS

2.1.INTRODUCTION

I N this Chapter we develop a comprehensive, MATLAB-basedtesdx’, nonlinear,
continuous-time, High-Order Model (HOM), used as a reialisiall-scale helicopter
simulation environment, for the validation of the Flight@wl System (FCS). This heli-
copter model is applicable for high bandwidth control sfieafions, and is valid for a range
of flight conditions, including (steep) descent flight inbetVRS and autorotatior.] 5].
This HOM will, in subsequent Chapters, be used for contralididation. For controller
design however, and due to its complexity, only approxioratif this HOM will be used in
the upcoming Chapters.

The helicopter model, developed in this Chapter, replaoesrtie system, and is based
upon our work presented i2[3]. This model aims at simulating the helicopter flight dy-
namics for the case of a flybarless, articulated, Pitch-E&g-(P-L-F) main rotor with rigid
blades, for both ClockWise (CW) or Counter-ClockWise (COM8in rotor rotatiof. The
model incorporates the rigid-body dynamics, main rotakytdor, fuselage, and tails. The
complete simulation environment, i.e. including the colglystem, is sketched in the block
diagram of Fig2.1, which illustrates all internal subsystems.

RO AMBIENT
_’

HELICOPTER DYNAMICS NONLINEAR SIMULATION l t

(T MAIN TAIL
ROTOR ROTOR

ENGINE
CONTROL

( CLUTCH )—»CGEARBOX e

N R T S 1 1 1
> ( FUSELAGE )—p@omz. TAIL) CVERT. TAIL )
¥ I I ¥

SUM OF FORCES AND MOMENTS )

ESTIMATION RIGID-BODY
FILTER ] SENSONS ] EQUATIONS OF MOTION

Figure 2.1: Helicopter simulation environment (derivednfr[6]). The components of the helicopter simulation
are visualized in blue, whereas in yellow we visualize thichpter simulation components that are not relevant
for our autorotation application, and thus neglected (iat.modeled).

3Based upon first-principles.

4A CW or CCW main rotor refers to the main rotor blade rotationew viewed from above. CCW rotation is
common to American, British, German, Italian, and Japahe$eopter designs, whereas CW rotation is standard
on Chinese, French, Indian, Polish and Russian helicog&signs.
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In Fig. 2.1, the Main Rotor (MR) determines the aerodynamic lift forkattsupports
the weight of the helicopter, and the thrust that countsraetodynamic drag in forward
flight. It is also through the main rotor that vehicle roll é&agvehicle pitch angle, and ve-
hicle vertical motion are controlled, see also Sectich On the other hand, the Tail Rotor
(TR) provides torque balance, directional stability, amgvyangle (heading) control of the
helicopter. The role of the Vertical Tail (VT) is twofold: 1) forward flight, it generates
a sideforce and yawing moment, hence reducing the tail totoist requirement; and 2)
during maneuvers, and during wind gusts, it provides yawpiagnand stiftness, enhanc-
ing directional stability ]. The role of the Horizontal Tail (HT) is also twofold: 1) in
forward flight, it generates a load that reduces the mairr fote-aft flapping; and 2) dur-
ing maneuvers, and during wind gusts, it provides pitch daghand stifness, enhancing
pitch stability [/]. The Ambient Conditions defines the outside air densitytentberature,
whereas the Rigid-Body Equations Of Motion computes théipos, orientations, and ve-
locities of the vehicle in three-dimensional (3D) inersahce.

The remainder of this Chapter is organized as follows. Irti8e.2, our small-scale
helicopter modeling framework is outlined. In Sectidrs, model validation results are
analyzed. In SectioR.4, an analysis of the rigid-body dynamics, in open-loop, espnted.
In Section?.5, conclusions and future directions are presented. FuithAppendix A and
B the nomenclature and frames are presented. In AppendheQCigid-body equations of
motion are summarized. In Appendix D and E, main and tailrrotodels are discussed.
In Appendix F, the fuselage model is reviewed. In Appendix@nments are made on the
vertical and horizontal tail models.

2.2.HELICOPTER MODELING. GENERAL OVERVIEW

From Fig.1.15 and zooming on the 'Helicopter Dynamics Nonlinear Sinialatblock,
we obtain Fig2.2which gives additional insight into the model. We have thetod input-
vectoru of dimension four, and the state-vectoof dimension twenty-four. The states
include the twelve-states rigid-body motion (states givellue), and the dynamics of the
main rotor (states given in red). The former include thedbstates inertial position, the
three-states body linear velocities, the three-stateg butdtional velocities, and the three-
states attitude (orientation) angles, see Eig. The dynamics of the main rotor include the
helicopter higher frequency phenomena, which exist fohltbe engine ON or OFF (i.e.
autorotation) flight condition. These include the main rdtoee-states dynamic inflow
[8, 9], and main rotor blade flap-lag dynamics, derived through tiaigrangian method.[J]
(each blade is defined by the four-states/flgpangles and rotational velocities)]], see
Fig. 2.2. Regarding the main rotor Revolutions Per Minute (RPM) t&énerally assumed
fixed for the engine ON casgwhereas for the engine OFF case it is not fixed anymore.
Indeed, the main rotor RPM represents an essential paréafutorotative flight condition,
and this additional state needs to be included in the sedwx when considering the
engine OFF case, see Fig2.

5Although this is a simplification, since in the engine ON ctise main rotor RPM is being regulated by the
governor.
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Inputs States Measurements
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Figure 2.2: Helicopter Inputs (in green), States (in blue the rigid-body states, in red the main rotor states)l
Measurementyg (measured states).
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Other model components include: 1) the tail rotor, modeked atandard Bailey type
rotor [17]; 2) the fuselage, based upon aerodynamic lift and dragdficants, which are
tabulated as a function of airflow Angle Of Attack (AC23nd sideslip angles; and 3) the
horizontal and vertical tails, based upon standard flaeptaddels. Next, there is the vector
of measured outputg of dimension twelve. The measurements are givery By X(1:12),
with X(1.12) & shorthand for the first twelve statesxofi.e. the rigid-body states (see also
the nomenclature in Appendix A). Expressing the fundaméigatonian laws 14] in the
vehicle body framé-,, we get (refer also to Appendix B and Fig.16)

my.AR . = my.g° + F2
dHeg SGMb e (21)
a. — Mce

with AEG the inertial (i.e. relative to framé&, refer also to Appendix B and Fig.15
acceleration of the vehicle Center of Gravity (CGFig HgG the inertial angular momen-
tum of the vehicle CG irfry, FEG the aerodynamic forces experienced by the vehicle CG in
Fp, MgG the moments of aerodynamic forces experienced by the weBi@linFy,, my the
vehicle massgP the acceleration due to gravity iy, (refer also to the nomenclature given
in Appendix A).

Now, H2 ; is given by

H2g = Iv.QP, (2.2)

with Ty the vehicle inertia matrix itfry, andﬂgI the vehicle angular velocity with respect to
F| projected inF,. Combining Eq. 2.1) and Eq. £.2), we can express the helicopter flight
dynamics model as a set of first-order, Ordinarff&ential Equations (ODES) of the form

VE=0 X = f(x(t), u() (2.3)

with f(-) a continuous-time functiorn,the state-vector of dimension twenty-four, anthe
input-vector of dimension four. Appendices C through G pn¢sa detailed derivation of
the model given in Eq.4.3).

2.3.MODEL EVALUATION AND VALIDATION

The purpose of this section is to evaluate, and validateyplea-loop behavior of our white-
box helicopter mathematical model. Model validation cahezibe done by comparing the
model’s behavior with several recorded experimental detis (s e. flight tests), or by com-
paring the model's behavior with another simulation moadiich is often a third-party,
high-fidelity black-box model. In this thesis, since fliglattd is not available, we opted for
the second option, namely the use of the FLIGHTLAB ljelicopter simulation environ-
ment. For aerospace systems, the model validation taskabniavolves the validation
of, both, the static (trim) behavior as well as the dynamgpomse. A trim condition sets

6The AOA is the angle between a reference line on a body andelbeity vector representing the relative motion
between the body and the aird.
7Sideslip flight refers to a vehicle moving somewhat sidevasysrell as forward, relative to the oncoming airflow.
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the helicopter in some, user-defined, steady-state (igliledgum) flight condition, by sat-
isfying the system’s equations of motion. Trim settingsaften a prerequisite for stability
analysis, vibration studies, and control system desigm.ifstance, for linear control de-
sign, the linear models are generally obtained throughyéinal or numerical linearizations
of the NL model, around various trim conditions. Next, foe tvalidation of the dynamic
behavior, either time-domain model responses or frequesesyonses can be used.

We compare next trim and time-response outputs of our MATHABed model with
those from a FLIGHTLAB model, for the case of a small-scalicbheter UAV. This mod-
eled UAV is an instrumented Remote-Controlled (RC) AligREX helicopter, belonging
to the flybarless two-bladed main rotor class, with a totassnaf 7.75 kg, a main rotor
radius of 0.9 m, a main rotor nominal angular velocity of 1338M, a NACA 0015 main
rotor airfoil, and with fuselage aerodynamic lookup tatdbsained by scaling-down a full-
size Bo-105 helicopter fuselage aerodynamic model. The ABCL5 and fuselage lookup
tables are not reproduced here due to space constraintgvapihe remaining parame-
ters have been listed in Tabkel1®. For this helicopter UAV, the Reynolds numbers vary
approximately in the range 16-7.10°, and hence these Reynolds numbers do not induce
any particular limitations from an aerodynamic standpolfor example, The Pitt-Peters
dynamic inflow model (used in our main rotor model) has beateassfully applied on
systems with Reynolds numbers as low a$ [1i(3].

Our model is compared to an equivalent FLIGHTLAB model, tager having the
following options selected:

e Articulated main rotor.
¢ Blade element model and quasi-steady airloads.
o Peters-He three-state inflow model, with no stall delay.

o Bailey-type tail rotor.

2.3.1.TRIM RESULTS

A trim condition is equivalent to an equilibrium point of E@..3) [16, 17], which can be
thought of as a specific flight condition, in which the resuittorces and moments on the
vehicle are equal to zero. For helicopters however, theeotaf trim is more complicated
than that of fixed-wing aircraftslf], since a helicopter has components that rotate with
respect to each other and with respect to the air mass. Taneirent this problem we de-
veloped a trim module, in the form of a constrained, nonlineptimization problem. At
trim, the resultant forces and moments on the vehicle shoeikequal to zero, hence for the
engine ON flight condition, the objective of the trim modwded set to zero the three ve-
hicle inertial linear accelerations'l.ﬁ,\'/E, Vz) and the three vehicle rotational accelerations
(p, g,1). On the other hand for the engine OFF flight condition (ilgoeotation), the main
rotor RPMQyr is not fixed anymore as it is allowed to vary according to iteaynamics.
Thus, we consider here two cases for the engine OFF trim reodul

8In this table the acronymrt stands fomwith respect to
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Table 2.1: Align T-REX physical parameters for the enviramt) vehicle, and actuators.

| | Name | Parameter Value | Unit |
Air density o 1.2367 kg/nm®
Static temperature T 273.15+ 15 K
Environment Specific heat ratio (air) y 1.4
Gas constant (air) R 287.05 J/kg.K
Gravity constant g 9.812 m/ s
Total mass m 7.75 kg
Inertia moment wri, A 0.2218 kg.n?
Inertia moment wri, B 0.5160 kg.nm?
Vehicle Inertia moment wriz, C 0.3141 kg.n?
Inertia product wrix;, D 0 kg.n?
Inertia product wriy, E 0.0014 kg.n?
Inertia product wriz, F 0 kg.n?
X-pos. of Fus. CG wrttotal CG  Xgys 0 m
Y-pos. of Fus. CG wrt total CG YEus 0 m
Z-pos. of Fus. CG wrt total CQ Zrus 0.017 m
MR collective 6o [-13,13]x/180 rad
MR lateral cyclic O1¢ [-6,6].7/180 rad
Actuators MR longitudinal cyclic 015 [-6,6].7/180 rad
TR collective 1R [-20,20]7/180 rad
MR collective rate o [-52,52]7/180 | rad/s
MR lateral cyclic rate (}hc [-52,52]7/180 rad/s
MR longitudinal cyclic rate 615 [-52,52]7/180 | rad/s
TR collective rate 1R [-120,120]#/180 | rad/s

1. The objective of the first engine OFF trim consists in ggttio zero the previous
six accelerations, defined for the engine ON case, togetitaram additional ac-
celeration, namely the one related to main rotor RRMk. This allows to find the
steady-state autorotative flight conditions.

2. For low altitude engine OFF conditions, e.g. below 30-4nthe case of our
helicopter, as well as during the autorotation entry phasd,flaré phase, see Sec-
tion 1.3.1, we observed, through various simulation runs, that stestalg autorota-
tions was seldom reached. Rather, for those situation$eheopter is in a contin-
uous transition from one non-equilibrium condition to thexn Hence, the objective
of the second engine OFF trim consists in only setting to #eecsix accelerations
defined for the engine ON c&Se

9The flare refers to the landing maneuver just prior to toumld In the flare the nose of the vehicle is raised in
order to slow-down the descent rate, and further the pragigrde is set for touchdown.
10This second engine OFF trimming approach has shown to bibleasly for low-speed flight conditions.
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(Table 1 cont'd): Align T-REX physical parameters for theimiator.

ClockWise direction of rotation r -1
Main Number of blades Np 2
Rotor Nominal angular velocity OMRyo0% 141.37 rad/s
(MR) Rotor radius from hub Rrot 0.9 m
Blade mass M 0.2875 kg
Spring restraint coef. due to flap |  Ks, 162.69 N.m/rad
Spring damping coef. due to flap|  Kp, 0 N.m.s/rad
Spring restraint coef. due to lag Ks, 0 N.m/rad
Spring damping coef. due to lag Kb, 5 N.m.s/rad
Offset distance ep 0.03 m
Offset distance e 0.06 m
Offset distance er 0.01 m
Distance between hub and flap hinge Ae 0.1 m
Root cutout from flap hinge re 0.0 m
Blade chord Ch 0.064 m
Blade twist at tip Owash 0 rad
Y-pos. blade CG wrt flap hinge YGy 0.4 m
Swashplate phase angle Ypa 0 rad
Precone angle Bp 0 rad
Pitch-flap coupling ratio Kp) 0
Pitch-lag coupling ratio Koo 0
Tip loss factor B 0.97
Airfoil lift coef. G, NACA0015
Airfoil drag coef. Cdly NACA0015
Airfoil pitching moment coef. Cm NACA0015
X-pos. of MR hub wrt total CG XH 0.01 m
Y-pos. of MR hub wrt total CG YH 0 m
Z-pos. of MR hub wrt total CG ZH -0.213 m

Note that both of these engine OFF trim modules will be usethénsequel. Now,
the variables that the trim algorithm is allowed to manipailiaclude the four control in-
puts @o, f1c, f1s, 6TR), and the vehicle roll and pitch angles, §), since the latter two in-
fluence the projection of the gravity vector on the body frarBesides, the set-point at
which the equilibrium is computed has to be specified in tmfof additional constraints,
i.e. by assigning fixed values to the three vehicle inerii@ar velocities' (Vn, Ve, Vz),
and the three vehicle rotational velocitigs, §,r). Now regarding the dynamic inflow
states {o, 15, Ac), and the periodic states, i.e. blade flap and lag angles ahutities
(Boi» &bi, Bol» (ni), these states are handled by time-marching the NL hekcapbdel long
enough until the transients have decayed. Finally, the ildntafour states which include

H1The three vehicle inertial linear velocities may be assigary fixed values, hence for non-zero values this
implies that the vehicle position is not in trim. Seen frons therspective, not all the states are in equilibrium.
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(Table 1 cont'd): Align T-REX physical parameters for thi tator.

Number of blades NbTR 2
Tall Nominal angular velocity | Qrry,,, | 612.61 | rad/s
Rotor Rotor radius from rotor hub | Rot¢ 0.14 m
(TR) Pitch-flap coupling 03 0 rad
Preset collective pitch bias | 6piasq 0 rad
Partial coning angle wrt thrusf  So, 0 rad/N
Tail blockage constant by, 0.927
Transition velocity Vil 20 m/s
Blade chord CTR 0.0316 m
Tip loss factor Btr 0.92
Airfoil lift curve slope Clorn 592 | rad?
Blade drag coef. CDtr | 0.0082
X-pos. of TR hubwrt total CG xR -1.015 m
Y-pos. of TR hub wrt total CG|  yrr -0.0575 m
Z-pos. of TR hub wrt total CG  zrr -0.034 m

the three vehicle Cartesian positioxy(Xxg, Xz) and the vehicle heading are left free,
since the position of the helicopter does not influeéhdis dynamic behavior or stability.
Our trim optimization is further based upon a Newton itenatscheme, similar to that of
[19), which is simple to implement and has been widely us&d.[ The Newton method
guarantees quadratic local convergence, but is known tersitive to starting valués

We compare next our model trim results, with those obtaimechfFLIGHTLAB, for
the engine ON case only. Comparison of our model with FLIGABI_for the engine OFF
case, is presented within the context of dynamic resultseiti®n2.3.2 First, Table2.2
gives the maximum absolute trim deviations, as a functiomeitial linear velocitie§'
(Vn, VE, Vz), between our model and FLIGHTLAB, for the six trim variaklée. the four
control inputs o, 61c, 61, OTr) and roll and pitch angleg(6). Table2.2has to be read in
conjunction with Fig2.3-Fig. 2.8, where the trim results are plotted, along each motional
axis. These motional axes are: longitudinal aldfyg lateral alongvg, vertical climb along
Vz (Vz > 0), and vertical descent along (Vz < 0). Basically, Fig.2.3-Fig. 2.8 visual-
ize the trim results for each motional axis at a time, i.e. &iisg to zero the velocities
along the remaining motional axes, whereas Tablcompiles the worst-case data from
Fig. 2.3-Fig. 2.8 by reporting the worst-case trim deviation, for each of tixetsm vari-

2although strictly speaking this is not true in vertical fligliue to the groundféect when trimming near the
ground, and due to changes in air density when trimming wittorzero vertical velocity; however for the
case of air density variations, these may be neglected wdrsidering small-scale UAV applications, since the
maximum flight altitude is generally below 150m above graund

13Even with good starting values, it is well-known that the Newmethod may at times exhibit erratic divergence
due to for example numerical corruptiofi(]. Hence, several other trim approaches have been resdasebe
the past years, for a review of helicopter trim strategiesssaong others/[ 16, 18, 20-24].

14with V positive up.
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Table 2.2: Trim: maximum absolute deviations between oulehand FLIGHTLAB, for the engine ON case.

Name Maximum absolute deviations
longi- lateral climb descent
tudinal alongVz | alongV;z

alongVy | alongVe | (Vz>0) | (Vz<0)

Roll ¢ (°) 1.0 0.7 1.5 0.5
Pitché (°) 0.3 0.7 0.3 0.1

MR Collectivet, (°) 0.5 0.5 0.5 1.5
TR Collectivetrr (°) 0.9 0.9 1.0 2.1
MR Lat. Cyclic6yc (°) 0.4 0.04 0.04 0.05
MR Long. Cyclictss (°) 0.1 0.5 0.1 0.3
MR PowerPyr (W) 59 58 76 156

ables, along each motional axis. In addition, Tabléereports the results for the main rotor
powerPwg, as this latter gives extra insight into the fidelity of ourcdhed

We see that the maximum absolute deviations, between badels)dor roll and pitch
angles, are almost negligible, respectively below°land 0.7°, see Table2.2. For the
remaining variables, we also explore the relative devistioetween both models. Regard-
ing the control inputs, Tabl2.3 gives their relative deviations in %, namely the maximum
absolute deviations divided by the full actuator ranges.

Table 2.3: Trim: maximum relative deviations between oudei@nd FLIGHTLAB, for the control inputs in %
of full actuator ranges, for the engine ON case.

Name Maximum relative deviations (in %)
longi- lateral climb descent
tudinal alongVz | alongV;

alongVy | alongVe | (Vz>0) | (Vz<0)
MR Collectivety 1.9 1.9 1.9 5.8
TR Collectivetrr 2.2 2.2 2.5 5.2
MR Lat. Cyclic6;c 3.3 0.3 0.3 0.4
MR Long. Cyclict; 0.8 4.2 0.8 2.5

Overall, we see that theftitrences between both models are rather small, e.g. below 6
% for the Main Rotor (MR) collectivéy, below 5.5 % for the Tail Rotor (TR) collectivig g,
below 3.5 % for the MR lateral cycliéc, and below 4.5 % for the MR longitudinal cyclic
01s. From Fig.2.3, Fig. 2.5, and Fig.2.7, we also see that the maximum relative trim devi-
ation does not exceed 10 % for the main rotor poRigk, for the longitudinal, lateral, and
climb motions. However, we do notice, as can also be seentite a2, some higher dis-
crepancies between both models in descending flight (péatly inside the VRS), where
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for instance the maximum relative trim deviation reache®®tor the main rotor power
Pmr. This could probably indicate that both models are impletmerdistinct simulations
of the induced rotor flow inside the VRS. The plot of the MR eotlve inpu®y, on Fig.2.4,
reveals also the minimum power speed, sometimes calleolitieet spegdredicted to be
around 11-13 iis by both models. From the MR power plr, in Fig. 2.5, we can also
see that, as expected, for a CW main rotor for which the t&ilrihirust is oriented towards
port-side (i.e. to the left), it takes more power for vehisiarboard flight (i.e. to the right)
than for port-side flight. Finally, for our helicopter, th&® region atV{n, Ve) = (0,0)m/s
is approximately defined by6 < Vz < -3 nys (see also our discussion if]). Here,
we clearly see form Fig2.7 and Fig.2.8 that MR collectivedy and MR powerPyg, as
expected, start to increase inside the VRS, e.g. compairestiiees atvVz; = -4 m/svs. at
Vz = -3 m/s. Hence, more engine power is required from a VRS descenfttbanhover.
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2.3.2.DYNAMIC RESULTS

For the dynamic response comparison, we compare the tin@ribs of our model with
those of FLIGHTLAB. Basically, the tests are set to evaldh&open-loop response of our
helicopter model. Both models have a simulation time-stgpegual to 224" of a main
rotor revolutioni®. First, the rotor is allowed to reach a steady-state camuduring a time
period of 1 s. (this is a purely software initialization neaittsince the simulation starts with
all states at zero). Then, for the following 3 s. we simultarsdy apply sine-sweeps from
0 to 2 Hz on the four input channéls see Fig.2.9. Next, we evaluate the responses of
the following ten states: attitude angles{, ), body linear velocitiesy, v, w), body rota-
tional velocities f, g, r), and MR RPMQyr (the RPM is included for the autorotation case
only). For a quantitative evaluation we use the Varianceedated-For (VAF), defined as:
VAF = 100%ma>(1 — YarkXg O) with X, one of the ten states in our model, axgits

var(xg)
FLIGHTLAB counterpart, see Table 4. The VAF is a widely used metri¢in the realm
of system identificatiof?

Table 2.4: Vehicle dynamic response to sine-sweeps on therfput channels: Variance-Accounted-For (VAF)

by our model with respect to FLIGHTLAB.

Name VAF (%)
hover| Vy = | steady-state autorotatign
10m/s | (Vn,Vz) =(6,-6)m/s

Roll ¢ 51 76 86
Pitchg 73 84 59
Yaw ¢/ 61 50 96
Long. velocityu 79 84 84
Lat. velocityv 62 91 96
Vertical velocityw 93 28 92
Roll ratep 67 45 76
Pitch rateq 43 68 77
Yaw rater 95 70 97
MR RPM Qur N.A. N.A. 82
Average over all state§ 69 66 85

15The default value in FLIGHTLAB.

16The relatively short experiment time of 3 s. is explained g short time-to-double amplitude, found to be
in the range of 0.9-2.3 s, this latter being derived fromeigenvalues of local LTI models. Since the total
experiment time is rather short, we chose to focus the madielation on its low-frequency behavior, hence the
2 Hz limit on the applied input signal.

17VAF values above 75 % suggest a high-quality model, wherakges in the range 5075 % would indicate an
average—-to—good model quality.

18Note that, usually, the VAF is used in a parameter-estimatiintext where one tries to ‘match’ the outputs of a
model with the data gathered from various experiments,terratively when one tries to ‘'match’ the outputs of
a lower-order model with those from a more complex, ofternérgorder, model. In our case, we simply use the
VAF to compare two models, without any 'tuning’ or ‘fittingf coeficients. Hence, in our case, the obtained
VAF values tend to be lower than VAF values typically seen gystem identification context.
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Three test cases are presented, all starting at an altifud@ m. The first two with
the engine ON, and the third with the engine OFF. The firstdase is run from the hover
trim condition, see Fig2.10, where it can be seen that the overall fit with FLIGHTLAB
is good to very good (see also Taliel). The second test case is run to evaluate the high
speed flight condition, afy = 10 nys, see Fig2.11, where we can see that the overall fit
with FLIGHTLAB is again good, except for the low VAF value (88 %) reported fomw
(although the plot on thes channel is rather good, as can be seen in Figyl). Indeed, if
the to-be-compared values are close to zero (as is heresbhdarav), the VAF metric will
tend to artificially amplify any discrepancies.
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Figure 2.9: Vehicle dynamics: sine-sweep inputs for tesésd, 2, & 3 (-FLIGHTLAB, ——-Our Model)

The third test case is run to check the steady-state autiveoféght condition. In this
test case the helicopter is first trimmed ¥ (Vz) = (6, —6) m/sand at a MRQyr as near
as possible to the nominal (i.e. engine ON) value of 1350 Rihg the engine OFF trim
procedure, which also minimizes the MR RPM accelerafig. The results are shown in
Fig. 2.12 where we can see that the overall fit with FLIGHTLAB is agaiod.

Naturally our model does not perfectly match FLIGHTLAB. Tonse extent the ob-
served discrepancies, between both models, may origirate the fact that both models
are built upon distinct modeling philosophies. For insgrfor the derivation of the flap-
lag dynamics as well as the computation of the rotor forcesranments, our model is
based upon a white-box, first-principles approach, i.e oaezl-form representation of the
system’s behavior. On the contrary, FLIGHTLAB is based uffunso-called multi-body
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Figure 2.10: Vehicle dynamics (test case 1): response éessireep inputs (the inputs are given in Eig), from
an initial condition in hover. The visualized states arél angle ¢, pitch angled, yaw angley, body longitudinal
velocity u, body lateral velocity, body vertical velocityw, body roll velocity p, body pitch velocityg, and body
yaw velocityr (-FLIGHTLAB, ——Our Model).

concept®. For instance for the case of a FLIGHTLAB main rotor bladés thtter is split
into N smaller bodies. Each body is undergoing a translationatatadional displacement,
with the dynamic behavior of the complete system (here thepbete blade, or multi-body
system) resulting from the equilibrium of applied forcesldahe rate of change of mo-
mentum at each body. Thisftérence in modeling philosophies will inevitably result in
slight differences in, for instance, the magnitude of rotor forces aoohemts. Further, it
is well known that even small variations in the computatiériooces and moments will
be integrated, over time, to large errors in velocities aositppns’. Besides, this fect
gets exacerbated for highly unstable systémshich is generally the case of highly agile
small-scale helicopters (on the one hand due to their vevyriertia, and on the other due

19The multi-body concept may often be used to simulate themimbehavior of interconnected rigid and flexible
bodies.

20We note that the fit for test case 3 (autorotation) is bettan the fit obtained for the first two test cases (with
engine ON). The explanation being as follows: in autorotgtimain and tail rotor collective have much lower
values when compared to their engine ON values, and hencgetherated aerodynamic forces are as well
smaller in magnitude. Smaller aerodynamic forces alsoyiraplaller discrepancies, in magnitude, between the
forces computed by both models, resulting in smaller enrgelocities and positions when integrated over
time.

21This is also why system identification of unstable systenmsdst often done in closed-loog].
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Figure 2.11: Vehicle dynamics (test case 2): response éssireep inputs (the inputs are given in Eigf), from
an initial conditionVy = 10 nys (Vy is the vehicle inertial linear velocity in the direction ofue North). The
visualized states are: roll angfe pitch angled, yaw angley, body longitudinal velocityu, body lateral velocity
v, body vertical velocityw, body roll velocity p, body pitch velocityg, and body yaw velocity (-FLIGHTLAB,
——Our Model).

to the high rotor sffness resulting in high rotor moments). To conclude, as caseba
from the last row in Tabl€.4, the model’s average VAF (over all states) is relativelyhhig
i.e. in the range 66—85 %, and hence the realism of our modelisidered to be of good
quality.

24 PRELIMINARY ANALYSIS OF THE RIGID-BODY DYNAMICS

The objective here is to obtain additional insight into tledidopter rigid-body dynamics,
in open-loop, at two trimmed (equilibrium) flight conditisnone for the engine ON case,
and one for the OFF case. At these two trimmed flight conditiave first derive two
respective LTI plants by linearizing the NL helicopter mbd€&hese LTI plants describe
the small perturbation motion about these trimmed conaiitiand will later on (in Chapter
4) be used for controller design. Since our focus is prirgami the low-frequency model
responses, i.e. the rigid-body motion, we define each pwfdllows: the state-vector is
of dimension nine given bx = (uvw p qr¢ 8 ¢)7, the control input’ is of dimension
four given byu = (6p 01c 015 6rR)", the wind disturbance (given in inertial frame) is of

22The nomenclature, given in Appendix A, states that all wasctoe printed in boldface, hence the control input
vectoru should not be confused with the body longitudinal velocity
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Figure 2.12: Vehicle dynamics (test case 3): response &ssireep inputs (the inputs are given in Eig), from
an initial condition corresponding to a steady-state atétion at {/n, Vz) = (6, —6) mys (Vy is the vehicle inertial
linear velocity in the direction of True North, ai# is the inertial vertical velocity). The visualized states:aoll
angleg, pitch angled, yaw angley, body longitudinal velocity, body lateral velocity, body vertical velocityw,
body roll velocity p, body pitch velocityg, and body yaw velocity (-FLIGHTLAB, — —Our Model).

dimension three given by = (Vy, Vg, Vz,)T, and finally the measurements vector is given
byy = x. The state-space data of these LTI models is further repport&ppendix H. Next,
for these two LTI plants, we will analyze their pole maps ia tomplex plane, but first we
address the NL plant linearization issue.

2.4.1.LINEARIZING THE NONLINEAR HELICOPTER MODEL

The NL helicopter model is subject to periodic loads, duelamés rotation, that result
in a time-varying trim condition. Linearizing the NL helipter dynamics, around a trim
condition, can be done at each rotor position, to yield adeigiLinear Time-Varying
(PLTV) system, with a period equal to one rotation of the rotdow, for PLTV systems,
the classical modal analysis methodologies, based up@nitiaariant eigenstructures, are
not applicable anymore?f]. Hence, if one desires to apply the well-established aigly
and control tools for LTI systems, then a transformatiorhefPLTV system into a LTI one
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becomes necessary. There are roughly four main methodsftrpesuch a transformation
or approximation]7]. The first, and simplest one, consists in evaluating the\P&ystem
at a single rotor position (i.e. at a single blade azimuthtwrg, and thus obtain a LTI
system. Clearly, this approach may lead to poor results. IAgady better method would
consist in averaging the PLTV state-space matrices oveoomere rotor periods. The next
two methods provide LTI models with higher accuracy, buuregjadditional mathemati-
cal steps. The third method uses Floquet theafy 2], and the associated characteristic
exponents called Floquet multipliers, to obtain constéatiesspace matrices. The fourth
method uses the so-called Multi-Blade Coordinate (MBQO)dfarmation (also known as
the Coleman transformation) ¢, 29-31], i.e. by transforming quantities from rotating
blade coordinates into a non-rotating frame. Basicallg,MBC describes the overall mo-
tion of a rotating blade array in the inertial frame of refeze. The MBC transformation
results in a weakly periodic system, which is subsequertiwerted into a LTI system,
by averaging over one perio@J]. Now, for our application, the first and fourth methods
were deemed inappropriate. For the first, it is well-knowat tiis method may not pro-
vide an LTI model of high accuracy. The fourth is particufaxiell-suited for rotors having
three or more blades, and may involve significant inaccessair a two-bladed rotdt[37].
The third is potentially more interesting, since providifi models with good accuracy.
However, in this thesis, we opted for the second methodesimach simpler to use and
implement. Hence, the linearized models are computed wselgssical numerical pertur-
bation method, resulting in a first-order Taylor series agjmation of the NL model, with
an averaging over several rotor periods.

AVERAGING: CHOICE OF THE NUMBER OF ROTOR PERIODS

We compare here the dynamic response, i.e. rigid-body tisterfes, from the NL heli-
copter plant with the dynamic response from five LTI modeks, the latter obtained by
averaging from one to five rotor periods. Again, the rotorrist fallowed to reach a steady-
state condition during a time period of 1 s. Then, for thediwihg 3 s. we simultaneously
apply, on the four input channels, the same sine-sweepsdrthat were used during the
model validation, see Fi@.9. We further only analyze here the case for an engine ON in
hover (similar results have been observed for other flightidmns), see Fig2.13

For a quantitative evaluation we again use the VAF, with &&bb reporting the VAF
values, accounted by each LTI model with respect to the NLeha@drresponding to the 3
s. long experiment depicted in Fig.13 Interestingly, we see that the LTI model obtained
by averaging after only one period is rather poor, partidylan the pitchg, pitch rateq,
and longitudinal velocityi axes, where these LTI outputs are moving in opposite doesti
with respect to the NL ones. Increasing the number of averpgeiods was thus deemed
necessary. Obviously, a high number of averaged periotisand to filter out the helicopter
higher-order dynamics, resulting in a lower-quality LT| deb. Hence, some traddfanay
need to be considered here. From the last row in Talilggiving the LTI model's average
VAF (over all states), we see that averaging over three or p@niods may provide the
best compromise. Now, since an LTI model should describsitine| perturbation motion
about a trimmed condition, we also evaluated the VAF valoea Shorter experiment time

23As a reminder, our Remote-Controlled (RC) Align T-REX hefiter has a two-bladed main rotor.
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Table 2.5: Hect of averaging when linearizing the NL plant in order toaitLT| models. Vehicle dynamic
response to sine-sweeps on the four input channels: Varidncounted-For (VAF) by each LTI model with
respect to the NL model, for a 3 seconds long flight time.

Name VAF (%) when averaging over
1rotor | 2rotor | 3rotor | 4 rotor | 5 rotor
period | period | period | period | period

Roll ¢ 0 63 86 92 90

Pitché 0 80 75 63 63

Yaw ¢ 0 37 60 64 56

Long. velocityu 11 74 80 85 87
Lat. velocityv 63 78 74 72 78
Vertical velocityw 58 70 78 83 83
Roll ratep 0 67 49 12 12
Pitch rateq 0 74 74 70 73

Yaw rater 62 89 93 95 92
Average over all stateg 22 70 74 71 70

Table 2.6: Hfect of averaging when linearizing the NL plant in order toaittL Tl models. Vehicle dynamic
response to sine-sweeps on the four input channels: Varidncounted-For (VAF) by each LTI model with
respect to the NL model, for a 1.5 seconds long flight time.

Name VAF (%) when averaging over
1rotor | 2rotor | 3rotor | 4rotor | 5rotor
period | periods| periods| periods| periods

Roll ¢ 0 78 96 100 99

Pitcho 0 26 47 59 38

Yaw ¢/ 0 0 0 0 0

Long. velocityu 0 49 73 86 80
Lat. velocityv 0 57 82 89 85
Vertical velocityw 70 90 98 100 99
Roll ratep 0 87 71 46 52
Pitch rateq 0 92 99 96 99

Yaw rater 0 0 0 6 0
Average over all stateg 8 53 63 65 61
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Figure 2.13: Hect of averaging when linearizing the NL plant in order toaaL.T| models. The figure compares
the vehicle rigid-body outputs for the NL model, with thosenfi five linearized models. The responses correspond
to sine-sweep inputs from hover (black line is the NL modad, line is the LTI model by averaging over one rotor
period, magenta line is the LTI model by averaging over tviorrperiods, green line is the LTI model by averaging
over three rotor periods, blue line is the LTI model by averggver four rotor periods, and cyan line is the LTI
model by averaging over five rotor periods).

(as to better fit the helicopter linear behavior), by congideonly the first 1.5 s. of the
experiment depicted in Fig..12 This resulted in the VAF values given in Takiles. Based
on the last row of Tabl&.6, we finally settled on using four rotor periods, for the aging,
when computing LTI models from the NL helicopter model.
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2.4.2.THE ENGINE ON CASE

The hover trim was here selected as it is known to provide a gepresentation of heli-
copter behavior for hover and low-speed flight. Specifically consider a trimmed hover,
outside ground féect (at an altitude of 30 m), with a fixed and nominal main r&&M
value of 1350. The eigenvalues of thematrix are plotted in Fig2.14, for both the en-
gine ON and OFF cases (the engine OFF case will be discusS=ttion2.4.3. For each
eigenvalue we also give, in Fig.14, the associated dominant eigenvectors. For the engine
ON case, we note the following:

¢ An inherent dfficulty for control design will come from two, lightly-dampgdom-
plex pair of poles; one stable pair with a damping ef 0.53, at a natural frequency
of wy, = 1.07 rags, and one unstable pair with a dampihgf £ = —0.42, at a natural
frequency ofwn, = 1.05 rads. Their respective eigenvectors associate these modes
with a combined longitudinal-lateral-yaw motion, on they, r, andy channels.

e There is a pole at the origin (not visible in Fig.14), associated with the headigg
« The time-to-double amplitudeis rather fast, equal to 1.54 seconds.

« To stabilize the plant, the bandwidthof the input complementary sensitivity func-
tion Ti(s), defined in Sectiori.4.20f Chapter 4, needs to be at least twice the modulus
of the unstable pole3], hence in our case at least 2.1 fad
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Figure 2.14: Eigenvalues and associated dominant eigemseof the state (or system) matrix, of the LTI models
used for control design in Chapter 4, for the engine ON and GfSEs.

2%We use here the MATLAB convention, consisting in using niggatlamping values when characterizing a
complex pair of unstable poles.

25The time-to-double amplitude is equal t@93/|(wn)| [33).

26For MIMO systems this is done by checking the plot of the maxinsingular value of the input complementary
sensitivity function B4].
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2.4.3.THE ENGINE OFF casE

In the engine OFF case, i.e. autorotative landing, the ntdor RPM is not fixed anymore,
and hence main rotor RPM dynamics will impact the overaliefelflight dynamics. How-
ever, we choose here not to include the main rotor RB)4 to the state-vector, and hence
keep the same state-vector that was used for the engine @&\ The advantage is that it
becomes much easier to find equilibrium points of the NL syste Indeed, by using this
"quasi-steady" modeling approach, it becomes possibletbdiuilibrium points outside
of steady autorotation, e.g. while transitioning betwdsnihstant of engine failure into
steady autorotation, or alternatively during flare (the enawer just prior to landing). Ob-
taining these equilibrium points allows for subsequergdirizations of the NL model, and
consequently for control design in the LTI framework.

For the trimmed flight condition, we opt for a condition in owvith engine OFF
(note that now the main rotor RPM is not in equilibrium anyejoitChoosing such a flight
condition, with an associated initial velocity of zero, twpotentially provide the best
description of helicopter behavior during landing (whére lhelicopter velocity is also very
low). The state-space data of the LTI model is further regmbimh Appendix H. Again, the
eigenvalues of th& matrix are plotted in Fig2.14, where for each eigenvalue we also give
the associated dominant eigenvectors. For the engine Cdel wa note the following:

¢ An inherent dfficulty for control design will come from two, lightly-dampgdom-
plex pair of poles; one stable pair with a damping ef 0.54, at a natural frequency
of wy, = 0.99 rads, and one unstable pair with a damping’c —0.37, at a natural

frequency ofw, = 1.02 rads. Their respective eigenvectors associate these modes

with a combined longitudinal-lateral motion, on thandv channels.
e The time-to-double amplitude is also fast, equal to 1.88ds.

o To stabilize the plant, the bandwidth of the input completagnsensitivity function
Ti(s), defined in Sectiori.4.20f Chapter 4, needs to be at least 2.04sad

2.5. CONCLUSION

This Chapter has presented the first building-block, towdh& development of an au-
tonomous helicopter system, that may be characterizedlas/o a comprehensive model-
ing framework, particularly suited for small-scale flykesss$ helicopters. Comparisons with
an equivalent FLIGHTLAB simulation showed that our modeladid for a range of flight
conditions, and preliminary insight into the open-loop dprics was also given. This com-
prehensive helicopter nonlinear model will, in subsequ@mpters, be used for controller
validation. For controller design however, and due to itsptexity, only approximation of
this model will be used in the upcoming Chapters.

2This engine OFF trimming approach has shown to be feasitijefoniow-speed flight conditions.
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2.6.ApPPENDIX A: NOMENCLATURE

Vectors are printed in boldfacé. A vector is qualified by its subscript, whereas its super-
script denotes the projection frame: e\, represents the aerodynamic velocity projected
on frameF,. Matrices are written in outline typkel, and transformation matrices are de-
noted adli;, with the two sifices signifying from framé& ; to frameF;. All units are in the
S.1. system.

Positions and Angles

XN, XE, Xz Coordinates of vehicle CG in frantg,

) Vehicle bank angle (roll angle)

0 Vehicle inclination angle (pitch angle, or elevation)

v Vehicle azimuth angle (yaw angle, heading)

Ui Wind heading angle

Linear velocitiesv and their components v, w

Ve Kinematic velocity of vehicle CG

Vac Aerodynamic velocity of vehicle CG

ug = Vn x component oV on F,, North velocity

Ve = Ve y component oV s on F,, East velocity

W = Vz zcomponent oV g on F,, Vertical velocity

w=u x component oWy g on Fy,

vg =V ycomponent oW onFy

V\E =W zcomponent oV onFy

Uy Wind x-velocity inFg

Vi Wind y-velocity inFg

Wy Wind z-velocity inFg

Angular velocitie2 and their components, g, r

Q= Qe Kinematic angular velocity of vehicle CG relative to thetbar
p=p Roll velocity (roll rate) of vehicle CG wrt to the earth
q§ =q Pitch velocity (pitch rate) of vehicle CG wrt to the earth
rlt(’ =r Yaw velocity (yaw rate) of vehicle CG wrt to the earth
Main Rotor (MR) properties

a wake angle wrt to rotor disk

ap Blade section angle of attack

B Tip loss factor

Bl Blade flap angle

Bo Rotor TPP coning angle

Bic Longitudinal rotor TPP tilt

Bis Lateral rotor TPP tilt

Bp Rotor precone angle

Co = Mpi.Yg, Blade 1st mass moment
Chl Blade chord
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Main Rotor (MR) properties (cont'd)

CdbI
CI bl
Cm

ewash

XH, YH, ZH
Vi

Vref

Vr

Vi

Vio, Vic, Vis
YGy

ol

Blade section drag cdigcient

Blade section lift cofficient

Blade section pitching moment due to airfoil camber
Distance between lag and flap hinge

Distance between pitch and lag hinge
Distance between Hub and pitch hinge
Distance between Hub and flap hinge
=05R,/(1-(er + &L +€F))

=05R;/(1-(er + &)

MR rotation,CCW:T'=1. CW:T'=-1
Ground dfect corrective factor

Blade 2nd mass moment (inertia about rotor shaft)
Blade 2nd mass moment (inertia about flap hinge)
Shatft tilt-angle

Hub spring damper coef. (due to flap)

Hub spring damper coef. (due to lag)

Hub spring restraints coef. (due to flap)

Hub spring restraints coef. (due to lag)
Uniform, longitudinal, lateral inflows

Blade mass from flap hinge

Number of blades

Instantaneous angular velocity

Nominal (100%) angular velocity

Azimuthal angular position of blade

Blade radius measured from flap hinge

Rotor radius measured from hub center

Blade root cutout

Distance from flap hinge to elemeatin

Blade pitch outboard of flap hinge

Blade twist (or washout) at blade tip
Coordinates of MR Hub wrt vehicle CG i,
Mass flow parameter

= Qur.-Rot Reference velocity
Non-dimensional total velocity at rotor center
Rotor uniform induced velocity

Uniform, longitudinal, lateral induced velocities
Blade CG radial position from flap hinge

Blade lag angle
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Tail Rotor (TR) properties

Brr Tip loss factor, expressed as percentage of blade length
Borr Tail rotor coning angle
by, Talil blockage constant
CDrr Mean drag cofficient (profile drag)
Clorr Blade section lift curve slope
CTR Blade chord
031r Hinge skew angle for pitch-flap coupling
Adw Downwash
ATR Total inflow
HMTRx HTRy, MTRz X-, Y-, and z-component of advance ratio
Norg Tail rotor number of blades
Qrr Instantaneous angular velocity
Reotrr Rotor radius measured from shaft
OTR= NbTRﬂF(?I?TR Solidity
Obiasrs Preset collective pitch bias
XTR VTR ZTR Coordinates of TR Hub wrt vehicle CG H,
Vi Transition velocity (vertical fin blockage)
Fuselage (Fus) properties
QFus Angle of attack
Brus Sideslip angle
Lrefeys Reference length
Srefrye Reference area
XFus» YFus ZFus Coordinates of Fus aero center wrt vehicle C&jn
Control Inputs
o MR blade root collective pitch
O1c MR lateral cyclic pitch
01 MR longitudinal cyclic pitch
Orr TR blade collective pitch angle
Miscellaneous
g Acceleration due to gravity
my Vehicle mass
A -F -E
Iy = { -F B -D Vehicle inertia matrix
- -D C
M Mach number
P Air density
Blade angle conventions, according f&]
B Blade flap angle is defined to be positive for upward motiorheflilade
ol Blade lag angle is defined to be positive when opposite treetiin of rotation of the rotor

Opi Blade pitch angle is defined to be positive for nose-up rotatif the blade
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2.7.AprpENDIX B: FRAMES

The first five frames hereunder, i.E,—F, are the standard aircraft navigation frames, see
for example [4].

Frame names

Fi Geocentric inertial frame (see Fig.15

Fe Normal earth fixed frame

Fo Vehicle carried normal earth frame (see FEidgL6)
Fo Body (vehicle) frame (see Fig.16)

Fk Kinematic (flight path) frame

Fus Hub-Body frame (see Fi@.17and Fig.2.18

F1<i<s, Foi Main Rotor frames (see Fig.17and Fig.2.19

Frame origins

A Origin of frameF,, earth center

G Origin of framesF, andFy, vehicle CG
H Origin of frameFg

(@] Origin of framesFg andF,

THE INERTIAL FRAME F| (A, X,,Y1,2))

The inertial framd-, see Fig2.15 is a geocentric inertial axis system. The origin of the
frame A being the center of the earth, the axis south-nartis carried by the axis of the
earth’s rotation, while axes andy, are keeping a fixed direction in space. The angular
velocity of the earth relative tB, is Q.

NORMAL EARTH-FIXED FRAME Fg (O, Xg, Ve, Zg)

This frame is attached to the earth. The ori@ins a fixed point relative to the earth and
the axiszg is oriented following the descending direction of gravdaal attraction located
on O. The planeXg, yg) is tangent to the earth’s surface. The p@nwill be placed at the
surface of the earth’s geoid and the axiswill be directed towards the geographical north.

V EHICLE-CARRIED NORMAL EARTH FRAME F (O, Xo, Yo, Zo)

The axisz, is oriented towards the descending direction of the locavigy attraction, at
the vehicle center of mas&{ has the same origi® asFg), but contrary to the latter it
follows the local gravity as seen by the vehicle. The axgisvill be directed towards the
geographical north (thus, is not parallel tocg).

Boby rraME Fy, (G, Xy, Y, Zp)

This frame is linked to the vehicle’s body. The fuselage axiis oriented towards the front

and belongs to the symmetrical plane of the vehicle. Thezigsin the symmetrical plane

of the vehicle and oriented downwards relative to the vehighis definition assumes the
existence of a symmetrical plane.

KINEMATIC OR FLIGHT-PATH FRAME Fy (G, X, Yk, Zk)
The axisxy is carried by the kinematic velocity of the vehidlgc.
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Figure 2.15: Inertial framé&, . Figure from [L4].

symmetrical plane
of the aircraft
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the fuselage axis xy,

Zp= 4 vertical plane
containing the fuselage axis x},

Figure 2.16: Vehicle carried normal earth frafg and body framé-,. Figure from [L4].
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2.8. AppEnDIX C: RIGID-BODY EQUATIONS OF MOTION

Classical Newtonian mechanics and the fundamental raktiip of kinematics give the
standard twelve-states rigid-body equations of motioligifiong notations of 4] and the
nomenclature given in Appendix A):

XN o] VN o] VN o u b
[ XE J = [ VE J Ve ] = Tob-[ \' ] (24)
5(2 Vz Vz w
. \b b . b
[ U [ gw-r.v ] [ —sing J Foo®
V|=-|ru-pw/| +g.| cosfsing | + — (2.5)
W p.v-q.u C0sH cosg M

b\
q| = ]I\_/l'(M &~
r

g ]bx(ﬂv.[ ; ]b)) 2.6)

r

¢ 11 sing.2%  sing. 2% p\’
0 | =| 0 coxp —sing q (2.7)
] ing S0
v 0 &w co% r
cosfcosy  sindsing cosy — Sinyg cosg
with Top =| Sinycosd sindsing siny + CoSy COSp
—sind cosfsing 2.8)
cosy Sinf cosg + sing siny '
sind cosg siny — sing cosy
COSH COS¢

with FgG all external forces, excluding gravity, experienced by\khicle CG in the

body frameF;,, andM&; the moments of all forces expressed at the vehicle CG in frame

Fp. These total forces and moments include contributions tferMain Rotor (MR), Tail
Rotor (TR), Fuselage (Fus), Vertical Tail (VT), and Horitalrirail (HT), and are given by

b _pb b b b b
Feo=Furt Firt FRust Fur + Fir

Fus
b b b b
M +MVT+MHT

_ b (2.9)
ce = Myg + Mg+ M2 o

The derivation of the rigid-body dynamics, as given in Eg4-Eq. .9), is based
upon the following assumptions

e The vehicle has a longitudinal plane of symmetry, and hasteoh mass, iner-
tia, and Center of Gravity (CG) position, hence fuel constiompandor payload
pickuprelease are neglected. The vehicle is also a rigid systemit does not con-
tain any flexible structures, hence the time derivative efittertia matrix is zero.

e The vehicle altitude Above Ground Level (AGL) is very smalhtpared to the earth
radius, implying a gravitation independent of height angstbonstant.
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e The earth is assumed fixed and flat. There is thus no longettiadiisn between
the directions of gravitational force and the force of grgvience the external force
becomes the force of gravity

e We neglect the fect of buoyancy (Armichedes force).

28For further details on the geoid earth and gravity see }5].
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2.9.AprPENDIX D: MAIN ROTOR

For a single main rotor, and briefly summarized, helicopighfldynamics includes the
rigid-body responses (presented in Appendix C) combinetl e main rotor higher-
frequency modes3p, 37]. For flight mechanics and control development purposes, th
three most important aspects of these higher-order rotdesare: 1) blade flapping, which
allows the blade to move in a plane containing the blade aadhiaft; 2) blade lead-lag,
which allows the blade to move in the plane of rotation; ando®r inflow which is the
flow field induced by the main rotor. Now, for the purpose of mlaty a generic flybarless
small-scale helicopter main rotor (such as the Align T-RBXig. 1.16), we have chosen
to model it as an articulated Pitch-Lag-Flap (P-L-F) hingaagement. This chosen hinge
configuration is particularly well suited for the case of #rsaale helicopters. It allows to
keep the pitch and lag hingdfsets at their current physical values while replacing the ru
ber O-rings, see FidL..10 by a virtual flap hinge (having $fhess and damping) outboard
of the lag hinge. The (P-L-F) hinge arrangement is visudlind=ig.2.17and Fig.2.18

ASSUMPTIONS
The presented assumptions are valid for stability and obimvestigations of helicopters
up to an advance ratio linfit of about 0.3 $8-40).

Structural simplifications

e Rotor shaft forward and lateral tilt-angles are zero. Rptacone is also zero. The
blade has zero twist, constant chord, zero sweep, conkiakhess ratio, and a uni-
form mass distribution.

e We assume a rigid rotor blade in bending. We neglect highateamgharmonics),
since higher modes are only pronounced at high spéed]. Further, blade torsion
is neglected since small-scale helicopter blades are giynezlatively stif.

o Rotor inertia inboard of the flap hinge is also neglected.
Aerodynamics simplifications
« Uniform inflow is computed through momentum thetty

o Vehicleflies at a low altitude, hence neglecting air deresitgt temperature variations.
Blade element theory is used to compute rotor lift and dragef®'. Radial flow
along blade span is ignored. Pitch, lag, and flap angles aterasi to be small.

e Compressibility &ects are disregarded, which is a reasonable assumptioideons
ing small-scale helicopter flight characteristics. Vissdlow dfects are also disre-
garded, which is a valid assumption for low AOA and un-sefeatflow [13, 47].

29The advance ratio is the ratio of forward vehicle speed to & muor blade tip speed. The flight envelope of
small-scale helicopters is well within this limit.

30which states that the total force acting on a control volusnegjual to the rate of change of momentuif] |

31Blade element theory calculates the forces on the bladedditeemotion through air. It is assumed that a blade
section acts as a 2D airfoil producing aerodynamic for2€g [
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o Aerodynamic interferenceffiects between the main rotor and other helicopter mod-
ules, e.g. fuselage or tail rotor, are neglected.

e The presence of the fuselage just under the main rotor adssascalled pseudo-
ground dfect [43], resulting in some thrust recovery. This phenomenon is aks
glected.

Dynamical simplifications

» Dynamic twist? is neglected. Hence blade CG is assumed to be colocatedaith b
section quarter chord line.

o Unsteady (frequency dependenfteets for time-dependent development of blade lift
and pitching moment, due to changes in local incidence,garered; e.g. dynamic
stall, due to rapid pitch changes, is ignored.

COMMENTS ON THE MODELING ASSUMPTIONS AND MODEL SIMPLIFICATIONS

Helicopter simulation codes may be developed for a variégpplications, ranging from
flight dynamics simulation purposes, flying qualities irtigetions, auto-pilot design, oper-
ational analysis, crew training, load prediction, grd/ibrations analysis. In our case, the
desired objectives (i.e. the application domain) for oudelare: 1) flight dynamics sim-
ulation, in which the model can be used in a Hardware In Thp (68TL) environment to
simulate the helicopter dynamics, hence enabling the watifin and validation of a flight
control system (i.e. the embedded system); and 2) the mbdaldalso be useful for con-
troller synthesis, i.e. the so-called modeling for congratadigm. This sets the context of
the model presented in this Chapter.

Now once the intended model’s application domain has beénedk we need to ad-
dress the question of helicopter model fidelity. To this eand] according to44], the level
of model sophistication, to conveniently describe a hg@lieo model complexity, may be
formulated by two criteria, namelynodel dynamicsand model validity, defined as fol-
lows:

1. Model dynamicsqualifies the level of detail in representing the dynamicthefhe-
licopter. This criterium determines the fidelity of the mbideterms of the frequency
range of applicability, e.g. a model consisting of only thgd-body, actuators, and
main rotor RPM dynamics, versus a model which also includégianal main rotor
higher-frequency phenomena, such as blade flap-lag, rftoni dynamics, etc.

2. Model validity represents the level of sophistication in calculating théchpter
forces, moments, and main rotor inflow. This criterium deiees the domain of
validity in the flight envelope, e.g. a model which crudelpmeduces the associated
laws of physics, versus a model which accurately simuléeséehicle (aerodynamic)
forces and moments, including at high speed flight, desognidithe Vortex-Ring-
State (VRS), and the autorotation condition.

32Any offset in blade chordwise CG afad blade aerodynamic center position will result in a cauplof the flap
and torsion degrees-of-freedom in blade elastic modes [
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In terms ofmodel dynamics our model includes some of the main rotor higher-order

phenomena, such as blade flap-lag dynamics and main rotowidffnamics. Hence, for

its intended application domain, our model may be cons@layde of good quality. This
said, and as mentioned here-above in the assumptions, tiamilyal aspects related to
blade torsion, dynamic twist, and dynamic stall have begented. Thus, our model may
not be valid in the very high-frequency region, i.e. it prblyacan not be used for a de-
tailed analysis of vibrations ayat aeroelastic phenomena. However, as mentioned earlier,
these latter aspects do not belong to the intended applicdtimain of the proposed model.

In terms ofmodel validity, the dfects of compressibility and viscous flows have been
disregarded, since relatively negligible on small-scaéicopters®. On the other hand,
our model does include a sophisticated main rotor inflow rhoddid also for high-speed
descent and VRS flight, but does not include any aerodynan@déerence fects between
the main rotor and other helicopter components, althoughaispect is generally a minor
one on small-scale vehicles. In summary we conclude thahmdel may also have a
relatively high model validity for its intended applicatidomain.

POSITION AND VELOCITY OF A BLADE ELEMENT
With reference to the frame’s origiy, G, andH, see Appendix B, the inertial position of a
blade elemendm, located at positioPym, see Fig2.17and Fig.2.18 is given by

APgm = AG + GH + HPgn (2.10)

Projecting Eq. Z.10 onto the Hub-Body fram&,g we get

HB
Xdm
Ydm J (2-11)

HB
XH
APdeBzAGHB+{ Yh J +
Zdm

y

with (Xgm, Yams Zam) the position of blade elemeitm, with respect to (wrt) the main
rotor hub. Now the third term on the Right-Hand-Side (RHSEqf (2.11) is given by (see
Fig.2.17and Fig.2.19

0
HPgm™® = T(HB)G{T54 Tsz(Tl(bl)[ F'dm ]
0 (2.12)

0 0 0
+eF)+eL+ep}
0 0 0

with Tj; rotation matrice¥. The inertial velocity, i.e. relative to the inertial frarfe,
of a blade elemerdm located at positiofym, is defined by, p,.. Projecting it onto frame

33The blade tip Mach number is below 0.4.
34For exampleT(yp)s represents the rotation from frankg to the Hub-Body frameFyp, Ts4 represents the
rotation from frameF,4 to frameFs, andT1 ) the rotation from the blade frantg, to frameF, etc.




82 2.HigH-OrpER MODELING OF THE HELICOPTER DYNAMICS

Fng, and using Eq.4.10), we obtain

s _ (dAG! M8 dGH'\"®  (dHPgm'\"® 513
P =\ Tar | T\Tat ) T\ Tat (2.13)

where the superscripd{, such as iff2%, means that the derivative is taken relative to
inertial frameF,. For the first term on the RHS of EQ2.(L3, and assuming a flat and fixed

earth, we get (refer also to the nomenclature)

V

dAG'\"® N

(T) = TrepVis = THep| VE (2.14)
Vz

with VP ; the vehicle kinematic velocity projected onto the vehidered normal earth
frameF,, andT(HB)O the rotation matrix from framé&,, to frameFyg. For the second term
on the RHS of Eq.4.13 we obtain (using the kinematics rule)

dGH'\"® (deH®\"® . e
(T) :(T) +Qb| XGH (215)

wherex denotes the cross product, aﬂg',B the angular velocity of body framEy
relative to inertial framd-;, projected onto the Hub-Body frantg;z. Here the first term
on the RHS of Eq.4.15) is zero since the hub center H is fixed in the body frafgeThe
second term on the RHS of E@..( 5 gives

| XGHHB (T(HB)me) (T(HB)bGHb) (2.16)

Since the earth is fixed we haﬁgI = QEE (see nomenclature), and EG.15 is now
equivalent to

b
p
q ] X | THe)b

b
dGH'\"® H
r

—) =|THep
dt Zu
Finally, for the third term on the RHS of E2 (L3 we have

HB He\HB
dHPgm' _ (dHPy4 HB HB
(Tm) = gd—tm) + Q(HB)I X HPgm

d Xdm m (2.18)
= gi| Ydm + Q(HB)I Ydm
Zdm Zdm
We can also expreﬁ(H B) @s
Q?HBB)I = Q(HB)b + QP (2.19)

The first term on the RHS of Eq2 (19 is zero since fram&yg is fixed wrt frameky,.
The second term on the RHS of Ed.19 can be re-written as

b

]
q (2.20)
r

HB b b b
Q)" = THppldy = Qp = Qpe =
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where we have us€fg), = I since rotor shaft longitudinal and lateral tilt-angiesre
assumed to be zero on our helicopter UAV. Regrouping terors f£q. ¢.14), Eq. .17,
Eq. .19, Eq. 2.19, and Eq. £.20), we can express the inertial velocity of a blade element

dmin Fyg as
HB b HB
Ui Pym u Xdm
V:—fPBdm = Vl,Pdm = \ + dgt Ydm
i P o i (2.21)
p XH Xdm
+ g | X|| WH +| Ydm
r Zy Zdm
where we have used
VN ° VN ©
Teyo| VE | = THeyp-Too- [ VE (2.22)
VZ VZ 2

b
AN © u
together withTgp = I, andTbo.{ Ve J = { v ] from the nomenclature. Now
Vz W
plugging Eq. £.12) into Eq. ¢.21), and using any symbolic math toolbox, we can obtain
an expanded expression fgf'$ , as follows

U, = U+ QMR(sinwm[eL + €p + COSLbI(EF + Iam COBp1)]

— COSYrp [0SO SINpi(EF + FamCOSBhI) + FamSINBp Sin9b|])

+ {.b|(e|: + I'dm COSBh1)[COSYp SINp — SNy COSHy COSCh]
+ Boil dm[COSYp1 COSLpi SINBoi + SiNYp (COSp SiNEhi SINBoi — COSBpi SiNb)]
+ o1 SINYp[SiN Oyl SiNgbi(€F + dmCOSBui) — I'dm SiNBui COSHy(]

+ Q(ZH — I'dm COSh) SiNBoi + (EF + Idm COSBp) SiNdh Sin9b|)
- r(yH — I" cosypi(COShhl SiNdbi(EF + rmCOSBh)

+ I'dmSiNBpi SiNGp) + I sinypi(eL + ep + COSLpi(EF + r'dm COSﬁm)))
(2.23)
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Ve =v+ QMRF((Q_ + €p) COSYp| + FqmSiNYp) SINBy SiNby;

+ (er + rgmCOSBu) (COSYp COSLp + SiNYp COSH sin§b|))

- {.b|r(e|: + I'dm COSBh1)[COSYp COSLh COSHp + SiNYry SiNdy]
+ Boildml (COSYpbl COSAp| SiNby SINBbl — COSYb COSByl SiNG) — SNy COSLp SINPBpi)
+ O COSYrpI[SIN Oy SINgbi(€F + I'dm COSBhI) — F'dm SiNBui COSHy(]

- p(ZH - (rdm COSHh SiNBui — (EF + Idm COSBo) SiNdhi Sin9b|))
+ f(XH - (COSl//m(eL + €p + COSLpi(EF + r'dmCOSBhI))

+ SiNYpi(COSby SiNdoi(EF + 'dmCOSBhI) + Fdm SiNBi Sin@bl)))

(2.24)

W = W+ ol COSLpr SINGhi(EF + T'4m COSBo)
— Boif dm(COSBp COSHp| + SiNBp SiNdp SiNBy)
+ Gol[F dm SiNB1 SINBoi + (EF + I'dm COSBoi) SINbi COSHyi]

+ p(YH — T cosyrpi(COSHo SINLbi(EF + Idm COSBuI) + I'dm SiNBpl SiNby)
+ T sinypi(eL + ep + coshi(er + ram COSﬂbl)))
- Q(XH — COSYpi(€L + €p + COSLhi(EF + I'am COSBh))

— SiNYp(COSAY SiNpi(EF + rgmCOSBui) + Fgm SiNBp sin9b|))

(2.25)
with the total blade pitch angle given by/1]
Bl = 6o + O1c COS{pl + Ypa) + 015 SINWbI + YpA) + Ot rgn — Kipo)Bol — Kz doi  (2.26)

and the blade pitch component due to blade twist given by

6,
Orrgm = Tdm VF:abT“ (2.27)
Note also, as stated in the assumptions here-above, wechagledfects due to rapid
pitch changes, e.g. dynamic staffexts. Hence, we will assume th@t < Bo, 6o < o,
andd, < Qur. Consequently, in the sequel we will also assume to t#gve: O in
Eq. 2.23-Eq. ¢.25.
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FLAP-L AG EQUATIONS OF MOTION

Since the early 1950s it is known that including flapping dyits in a helicopter flight
model could produce limitations in rate and attitude fee#tgmins [15]. Further, for heli-
copter directional axis control, blade lead-lag dynamieghd to be considered for control
system design/[6]. Indeed, it is well known that blade lead-lag produceséased phase
lag at high frequency, in the same frequency range whereiflgmfects occur47], and
that control rate gains are primarily limited by lead-lagdly coupling {17, 48]. Now, in
terms of blade flap-lag modeling, a foundational contriutivas given in 11], where
derivations of the coupled flap-lag equations of motion fagal articulated rotor, for the
(F-L-P), (F-P-L), and (L-F-P) hinge sequences, was laid dine purpose of our work is
to present a model for a new hinge arrangement, i.e. the FPdequence, which is much
more useful for modeling the rotor dynamics of a small-sdedbcopter. The equations
presented in the sequel (obtained by the Lagrangian mettdydre valid for a single
articulated rotor with hinge springs and viscous dampemng@ared to ]1] our approach
retains all three hinges physically separated and worksfatshoth ClockWise (CW) and
Counter-ClockWise (CCW) rotating main rotors. Furthel| éoupling between vehicle
and blade dynamics is modeled. Now from Lagrangian theogyhawve

d (9Ke) oKe

d (9K _ 2.2
dt( %l) T (2.28a)
d (0Ke)\ OKe

d (9Ke) IKe _ 2.28b
dt(aﬁbl) OB Qb ( )

with Kg the kinetic energy of a bladgy, ¢w, blade flap and lag angles, a@,,, Qx,.
the generalized forces. These latter include tiect of gravity, aerodynamics, and spring
damping and sfiness, and are given by

Qib\ = QZb\.G + Q{bhA + QZb\.D + Q{bhs (2.29&)
Qﬁb\ = Qﬁb\:G + QﬁbhA + Qﬁb\:D + Qﬁbhs (2.29b)
The kinetic energy of a single rotor blade is given by
1 Fo HB T \/HB
Ke = > j; Vibw Vip,dm (2.30)

with V}*F‘? computed in Eq.4.21), and the limits of integration are from the flap hinge,
to the blade" t|p The kinetic energy inboard of the flap hirsgeaglected in our model since
assumed small in the case of small-scale UAVs. We providé thexprocedure for the
blade lead-lag equations EQ..£89, the blade flap equations E@.28H) follow a similar
reasoning and are thus omitted. Now we rewrite the first tere Left-Hand-Side (LHS)

of Eq. (2.289 as

d 6KE d o 1 HE T HE

dt\agy )~ atl\ag 2 Jy ViR Y 231

dt ( Ol ) dt (6§b| 2 f I.Pam |,Pdmdm (2.31)

And since the limits of integration are constant, Ef3() is equivalent to (using Leib-
niz’s integral rule)

1 Roi d 6 HB T HB
3 ) d—t%(vI g VI Ydm (2.32)
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Next using the chain rule, Eq2 (32) is equivalent to

Roi g HB T _ \/HB
2 Jo d_t(2V| Pam 5[b|v| Pam

Roi |\/HB T (d _a \/I
Jam= R [vi8, (G (2.33)
HB '
+(dt | Pann ) .a—?;v:jgdm dm

with again the following convention for the time- derlv&mz(dt e \% Pan )HB signifies

the time-derivative, wrt inertial framg,, of vector—b—V| P.» SUDSEquently projected onto
frameFyg. Using Eq. £.19, these derivatives can also be expanded as follows

(4 HB d HB
d_t b | Pdm d_ﬂ_([jjvr,'gdm
P (2.34)
a I Pdm
r
b
d HB T\HB p HB
( dtV. N ( View )t X (Vip,) (2.35)
r
Next, for the second term on the LHS of EG.489 we get
OKe o 1 (F HB T y\,HB
5 = T5 5 \ Y 2.
Adpi 0lpi 2 fo Pan ~V1pyndM (2.36)

Again since the limits of integration are constant, and gishe chain rule, Eq.2(36)

reduces to -
6KE f e T 0 \mB
= - Vv —V dm 2.37

a(bl 0 1,Pdm 6{ 1,P4m ( )

Now, through the use of a symbolic math toolbox, an analypression for the LHS of
Eq. (2.289 may readily be obtained, i.e. by utilizing the expressibtamed forV|'? _in

Eq. (2.21) and inserting it, together with the derivativg&/['s, | 52-VI'8, | 3¢ V}*Ed into
Eqg. 2.39, Eq. 2.39), Eqg. (.39, and Eqg. £.37). The blade flap equation Ec.¢80) fol-

lows a similar procedure, and will also require the compateof ;-8 and ‘9b Vg .

Finally, using a symbolic math toolbox, the combined equratiEq. £.289 and Eq. £.280)
may be re-arranged as the following four-states nonlinagrlig equations of motion

lg:bl ,B:bl Qg, — F1
d| Z 1 ol Qu — F2
— =A"".|-B. ol 2.38
dt| Bo Bol "l o (2.38)
ol ol 0
with the following A andB matrices
g 0 00
_ 0 (eIZ:.Mb|+2€|:.C0+|/;) 00
A= 0 0 1 0 (2.39)
0 0 0 1
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0O By 0O

| Ba O 0 O
=11 o0 oo (2.40)

0O -1 0O

with Mpi, Co, andlg defined as (refer also to the nomenclature)
Mb| = ORbl dm Q) = fORbI rdm.dm: Mb|'be| (2 41)
2 .
|5 = ORM rgm.dm: Mm.%

We stress here that E®.39) is a nonlinear representation since the scdbagandB;;
in Eq. (2.40), andF1, andF; in Eq. (2.39) are (nonlinear) functions ofi, Boi, {b). Space
restrictions preclude a reprint of the lengthy expressB®nsB,;, F1, andF,, these can be
consulted in Appendix E of{[9].

FLAP ANGLE AS A FOURIER SERIES

Blade motion is 2 periodic around the azimuth and may hence be expanded afirdtein
Fourier seriesj6, 41]. Now for full-scale helicopters, it is well known that theagnitude of
the flap second harmonic is less than 10 % the magnitude ofgh &bt harmonic41, 50].

We assume that this is also the case for small-scale hedicoanhd hence we neglect second
and higher harmonics in the Fourier series. This gives

Bol(W1) = Bo + Bic COSYp + Bis SiNYp (2.42)

with ) the blade azimuth angle. This harmonic representation@bthde motion
defines the rotor Tip-Path-Plane (TPP), resulting in a dled¢daone-shaped rotor. The
non-periodic ternBy describes the coning angle, and theffiogents of the first harmonic
B1c andBys describe the tilting of the rotor TPP, in the longitudinabidateral directions
respectively. All three angles may readily be obtainedulgtostandard least-squaré€]
Now in steady-state rotor operation, the flap fie&entsgo, Bic, B1s may be considered
constant over az2blade revolution. Obviously this solution would not be adatg for
transient situations such as maneuveriag,[hence in our model we compute, for each
new blade azimuth, the instantaneous TPP angles. WithddagafPP dynamics, three
natural modes can be identified, i.e. the so-called coniidarecing, and regressing modes.
In general, the regressing flapping mode is the most relavhah focusing on helicopter
flight dynamics, as it is the lowest frequency mode of thegheand it has a tendency to
couple into the fuselage mode&) 47, 53].

VIRTUAL WORK AND VIRTUAL DISPLACEMENTS

The determination of the generalized for&@g, Qg, in Eq. (2.299 Eq. (2.290) requires
the calculation of the virtual work of each individual extef force, associated with each
respective virtual flapping and lead-lag displacemehis [Let Fx,, Fy,, Fz be the compo-
nents of the'? external forcé;, acting on blade elemedin frameF g, then the resulting
elemental virtual work done by this force, due to the virfilegping and lag displacements
0Bp andd(y, is given by

dW = Fx, dxam+ Fv,dYam + FzdZym (2.43)
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with

OXdm OXdm

dXgm = 6ﬁlaﬁbl+ e —— 0| (2.444a)
ydm 6yd

dygm = 6,8|6ﬁ 6{ =3¢ (2.44b)
azdm

7y = Mg O%dm, 2.44¢

Zim P Bol + o b ( )

Now summing up the elemental virtual work, over the appmtprblade span, results in
the total virtual work\, due to external forcE;, as

. OXdm 0Ydm 0Z4m
W = Ry (aFXI OBl +(!:Y' ﬁﬂm ) ﬁﬁm)a’gbl (2 45)
| OXdm OYdm 0Zdm ’
+ 0 (F Xi 301 +Fy, Yi 0% + FZ‘ 0l )6&"

Which is set equivalent to

Wi = Qg,.i-0B8n1 + Qgy.i-04b (2.46)

The virtual displacement, in franteyg, of a blade elemerdm, located at a distance
rqm outboard of the flap hinge, is obtained using Eq4() and Eq. £.12) as follows

HB
i HB
dyam | = ram-dPg.0Bui
dZum ' (2.47)
[dPH + I'qm. dP ] 0lpl
with
COSYrb COSLpi SINPh
dP};’f‘ = Fco&//b|(coseb| SiNgyi SiNBpl — COSBy sin9b|)
— COSBp COSB (2.48)
+ sinwm( COSHy) SiNdy SiNBp — COSBy, sin0b|)
—T SNy COSLp SinB
— SiN{p SiNdy SiNBy
(COSlﬂm Singp — SiNyYp COSBy COS{m)
HB _
dpfsr = 6F —F( COSYrp) COSHy COSCp + SNy, sin(m) (2.49)

COSCp SinGy

HB
pHB

dng,F' = COSBi (2.50)
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GENERALIZED FORCES (GRAVITY)
The gravity force acting on a blade element with mdsecan be expressed g as

O (o]
F&> = THeypo| O (2.51)
g.dm

with T(ug)o the transformation fronfr, to Fyg. Substituting Eq.4.51) and Eq. £.47)
into Eq. .45, the desired generalized forces due to gravity, outboBtfidflap hinge, are
obtained as follows

Qume = g'(eF-Mbl +Co COSBbl).(Al COSYrp SiNdp)

—A1 Sinyp) COSPp COSLp
— Aol cosyrp COSHy COSLh

—Aol" sinyp SiNgpy + Az COSEp Sin9b|)

(2.52)

Qpuc = g-CO-(Al COSY/b| COSLbl SINBp
+Ay SNy COSYy SiNdy) SiNBp
—A; Sinyp OBy SiNbp,
+AoI" COSYrp) COSAY SiNdhy SINBp (2.53)
—Aol" cosyrp 0SBy SinGy
— Ao SinYp| COSEy SINBh

—Agz COSBp COSBp — Az SiNdy SiNGp, Sinﬁm)

using
A; = —sind
A, = cosdsing (2.54)
A3z = Cc0SH cosp

andMp andCy as defined in Eq.A41).

GENERALIZED FORCES (AERODYNAMIC)
The aerodynamic velocity, i.e. velocity relative to the afra blade elemerdm located at
positionPym, is defined by ,p,,. Projecting it onto the blade frantg, we get

HB E
0 Uw
Vo = T(bl)(HB)~(Vﬂ§dm [ 0| -Tree| W ) (2.55)
Vi Wy

with V'8 defined in Eq.£.27), vi the rotor induced velocity from Eq. €.70), (Uw Viw W) "
the components of the wind velocity vector usually avagahlframeFg, andT g the
rotation matrix from framé-yg to frameFy,. Now the section AOA of a blade elemeadh

S5strictly speaking the induced velocity is perpendiculathe Tip-Path-Plane (TPP). However since we make the
assumption of small tilt angles, as to simplify the model,asasider here an induced velocity perpendicular to
the Hub-Body framéd-g.
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is defined byuy, in the interval Fr, +7] rad and, for each of the four quadrants, is readily
computed from the arctangent of the x- and z- componer\@g{}‘m. Further, the elemental
lift and drag forces of a blade segment of lendth,, are given by

1

dL = 5.,o.||V§"Pdm||2.c.m.cb|.drdm (2.56)
1

dD = é.,o.||vgjpdm||2.co.b|.cb|.drdm (2.57)

with the blade section lift and drag ddieientsc,,, andcg, given as tabulated functioits
of blade section AOA and Mach numbigr, and all other co@cients defined in the nomen-
clature. The elemental lift and drag forces can now be esprem the blade framigy;, for
each of the four AOA quadrants. For example, for the case d®@@nain rotor, with the
AOA quadrantyy, € [0, +7/2] rad, we have

sinam
dLb' = dL.[ 0 (2.58)
— COSayp)
COSayp|
dD® = —dD.[ 0 (2.59)
Sinap

Coming back to the generalized aerodynamic forces, we canempress them as the
sum of two contributions, one due to lift and one due to dragr the lead-lag case in
Eq. 2.299 we haveQg, a = Qu,.a + Quay- Similarly for the flap case in Eq2(290 we
haveQg, a = Qg,.a + Qs,.a,- Now keeping in mind Eq.4.45 and Eqg. £.47), and using
Eq. 2.59 and Eq. £.59, we obtain

B.Roi T
Qg =f (T(HB)(m)dLb') .(dPZr'—3 + rdm.dPZrB).drdm (2.60)
e
o bl u HB HB
Q{m,/-\o = f (T(HB)(deD ) ~(dP§,F + rdm.dPU ).dl’dm (2.61)
e
B.Ry b T
Qﬁm,/-\L :f (T(HB)(b|)dL ) .dPZf‘.rdm.drdm (2.62)
e
o bl U HB
Qpure = f (T(HB)(b|)dD ) APHE g (2.63)
e

For the lift contributiong), a, andQg, a, , the integration is performed from the blade
root cutoutr¢ to a value denoted &Ry, this latter accounts for blade tip loss]. Next by
plugging Eq. £.49, Eq. 2.50, Eq. .49, Eq. 2.59,and Eq.2.59, into Eq. €.60—Eq. .63,
one can derive final expressions for the generalized aeerdigrforces. Providing analyti-
cal expressions for Eq2(60—-Eq. .63 represents a rather tedious task, even more so for

36Where we neglect sideslip influence.
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twisted blade$ for which the blade pitch will also be function of the bladetsen length
rqm- Therefore, we opted for a numerical evaluation of theseesgions, as is often done in
flight dynamics codessf]. Here Gaussian quadrature integration was implemengidgu
alow order (3 order) Legendre polynomial scheni&] 56].

(GENERALIZED FORCES (HLTB DAMPING AND SPRING RESTRAINT S)

The flap and lag hinges are modeled as springs with viscoupeiam The generalized
forces corresponding to the spring dampers can be obtainectly from the potential
energy of the dampers dissipation functions, [L1] as

Qa0 = —Ko, o Qgyp = —Kp, Bol (2.64)

Similarly the generalized forces corresponding to thengpréstraints can be obtained
directly from the potential energy of the hub sprin@s,[11] as

Qus = —Ks..lo Qpy.s = —Ks, Bl (2.65)

ROTOR INFLOW

At the heart of the helicopter aerodynamics are the indueéstities, i.e. the induced flow
due to rotor blade motion, at and near the main rofof.[ These induced velocities con-
tribute to the local blade incidence and local dynamic presssand can be divided into two
categories, static and dynamic inflow models. For low-badtdwmaneuvering applica-
tions, such as trim calculations or flying-qualities invgations, the dynamicfeects of the
interaction of the airmass with the vehicle may be deemedigiklg, hence static inflow
models may be acceptabler]. But for high bandwidth applications, dynamic interacso
between the inflow dynamics and the blade motion must bederesdd. Conjointly dynamic
inflow models can be divided into two unsteady categoriesRitt-Peters dynamic inflow
[8, 58-60)], and the Peters-He finite-state wake modgd, 64, 65). The finite-state wake
model is a more comprehensive theory than dynamic inflowlimited in harmonics and
allowing to account for nonlinear radial inflow distributi® This sophisticated model is
particularly attractive when rotor vibration and aero8tity need to be analyzed@f]. But
with respect to flight dynamics applications, we assumeithatsuficient to consider the
normal component of the inflow at the rotor, i.e. the rotomuioed downwash/]. Further,
for such applications, it is reported iif] that the Peters-He model is not remarkably better
than the Pitt-Peters formulation. Since our primary irgeigflight dynamics, we choose to
implement the more straightforward Pitt-Peters moégbf], with a correctiori® for flight
into the Vortex-Ring-State (VRS) frontf]. The VRS corresponds to a condition where
the helicopter is descending in its own wake. It is often eisded with the following symp-
toms: excessive vibrations, large unsteady blade loadssitiorque fluctuations, excessive
loss of altitude, and loss of contrdfectivenessq9. Its boundaries, in terms of helicopter
velocities, are well-known, see Fig.19

37Although in our case the helicopter UAV blades have zerottwis

38Although recent advances in computing power and methogidiage made it foreseeable to add a third category,
namely that of detailed free-wake models that may be runahtimme for flight dynamics application${—63].

3Note that, if required, additional enhancements could hisanade by including a pseudo-harmonic term to
model VRS thrust fluctuations as ifi7).
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— — Drees (region of roughness)
® Yeates (vibration)
€ Reeder (control and vibration)
— — — Washizu (AT/T =0.15. 0.30)

—— Newman (wake breakdown)
— - ONERA VRS model (V, drop)
— VRS model (flight dynamics)

I l I I I I
.0 02 04 06 08 L0 L.z

\A

Figure 2.19: Vortex-Ring-State (VRS) boundaries. The is-agpresents the helicopter horizontal velocity nor-
malized by the induced velocity in hover (nameagdin this figure), whereas the y-axis represents the helicopte
vertical velocity normalized by the induced velocity in leavFigure from 0].

Concerning wake bending during maneuvering flightve choose at first not to imple-
ment it, as to lower model complexity. For the aspect of gtbeffect, only a static ground
effect has been accounted for, by a correction factor applighetmon-dimensional total
velocity at the rotor disk center.

Now, the induced inflow model implemented in this Chapterasda upond], and
is assumed to have the following variations in the TPP wikxid-aoordinates (se€] for
further details on TPP wind-axis coordinates)

d /10 /lO
—| s |=QurM ™ [-(L1Ly) ™| As [+ Caero (2.66)
dt

lc /lC

where the main rotor RPM2yr has been added here in front of the RHS of Eq66)

40wake bending may significantly change the inflow distributiver the rotor, resulting in a sign reversal in the
off-axis response/[l—73], for which interesting implementation results can be fbim[74-76].
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since the original expressions of the Pitt-Peters modelrar@n-dimensional time (see
also [p4]). The subscript {aero in the forcing functionC,ero indicates that only aerody-
namic contributions are considered, WMihero = (Ct — CL.  — Cm)Zere @ndCr, Ci, Cy,
the instantaneous main rotor thrust, roll, and pitching raohtodficients respectively, in
the TPP wind-axis systemCr is readily obtained from Eq.2(71), whereasC_ andCy
are simply derived from the forces E®@.(1) times their respective moment arms. Next
matricesM andL; are defined fromd] as

2 0
M=| 0 £ 0 (2.67)
o 0 22
1 =157 1-sina
3 0 = \/Tsine
Ly = 0 T 0 (2.68)
157  [1-sina 0 4 sina
64 1+sina 1+sina

wherea represents the wake angle with respect to the rotor diskurther matrixL,
is given by

(Get f~VT)_l 0 0
L, = 0 Vit 0 (2.69)
0 0 Vi

with V¢ the total velocity through the rotor diskfy the momentum theory mass flow
parameter, an@.:; the static groundféect factor added as a correctionMg. The expres-
sions forVr andVy can be found inqd], although simpler expressions also exist i [
However the former include a correction for flight into the ¥Bnd hence are more attrac-
tive. TheGe+¢ codiicient is based upon the expression foundhif] [ Finally the main rotor
induced velocity; is computed as follows/[7]: 1) solve Eqg. £.66); 2) rotate the obtained
inflow from the TPP wind-axis to the TPP axis (sé&§]and 3) use these expressions to
computev; in Eq. (2.70

r . r
Vi = Vref.(/lo + /ls.% SINYy + /lc.$. COS!,0b|) (2.70)

ot ot

FORCES AND MOMENTS

For the rotor forces, the procedure consists in simulatieddrces of each individual blade.
This process is repeated at each new blade azimuth positather than averaging the
results over one revolution—in order to recreatefggRevflapping vibratiori’. The rotor
forces are subdivided into three contributions: 1) aeragyic lift and drag; 2) inertial;
and 3) centrifugal forces. The aerodynamic forégg are obtained by integrating the
elementary lift and drag forces EQ..69) and Eqg. £.59 over the blade span

B.Ry Rol
Fip, = f T(HeybydL™.drgm + f Te)bydD”.dram (2.71)
e

e

4Iwhich may be useful when validating a complete auto-pilatey in a hardware in the loop simulation envi-
ronment.
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where the integrations are done numerically as in Eqi(J—Eq. £.63. The inertial
forcesFHE | due to flap and lag, are approximated, from expressiorzinds follows

MR;?
1 00 ~Moim: bl
Figr =| 0 1 O |.Tnee.| O i} (2.72)
0 0O —Mui75801
Centrifugal forces}% are approximated, fron®f], as
1 00 0
Fir = 0 1 0|.Tnes.| 3MuQZsRE (2.73)
0 0O 0

Finally, for the total main rotor forces we ha#, = Towe).(Fiya, + Fiia + FiR.):
with Tyre) = I, since, as mentioned earlier, rotor shatft tilt-angles are on our helicopter
UAV. For the rotor moments, they include contributions freixdifferent sources: 1) aero-
dynamicsM {3 ; 2) inertial loadsM ;2 ; 3) centrifugal load$v ;2 ; 4) flap hinge stiness
MR..; 5) lag hinge dampingy/ ',\*,lgdamp; and 6) due to airfoil cambevijj2 . The last
two are neglected since assumed very small for small-sedieopter rotorglades. The
first three are simply computed by considering the force £q1)—-Eq. ¢.73 times their
respective moment arms. For the flap hingérstiss, it is derived fromt] as

l—‘ﬁls

1 Np.Ks

Ki/l%suf = _1 et 5 > P1c (2.74)
Riot 0

Roror RPM pynamics
The main rotor RPM dynamics is related to the available agdired power by43]

Nb-lb-QMR-QMR = Pshaft— Preq (2-75)

with Pshaft the available shaft power, aRleq the required power to keep the vehicle
aloft. This latter is the sum of main rotor induced and profitaver, tail rotor induced
and profile power, power plant transmission losses, velpatasite power (i.e. drag due
to fuselage, landing skids, rotor hub, etc), and finally nraior, tail rotor, and fuselage
aerodynamic interference losses. In case of engine fadufiest-order response Pynaytis
generally assumed to represent the power decay, we have

Pshaft
Tp

|f’shaft == (2-76)
with 7, a to-be-identified time constant. For the required polRgg, we simplify the

model by only considering the contributions from the maitor@sPyr = M'P e Qur,

with M}%, being the z- component of the aerodynamics morhgfj§ (this latter being
referenced in the previous paragraph). Now if, at engirleriaj we were to assume an
instantaneous power lo§%ha1t = 0, then from Eq.%.75 we obtain

MHB

Qup = ——2 % 2.77
R =~ @.77)
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2.10.AppPeNnDIX E: TAIL ROTOR

The talil rotor is a powerful design solution for torque balandirectional stability and
control of helicopters. We have implemented here a stanBaildy type model12], as is
done, among others, in, 51, 78].

ASSUMPTIONS
Structural simplifications

e The blade has zero twist, constant chord, zero sweep, anddmssant thickness
ratio. The blade is also rigid, hence torsion is neglected.

Aerodynamics simplifications

o Linear lift with constant lift curve slope, and uniform incked flow over the rotor are
assumed.

o Aerodynamic interferencefects from the main rotor is neglected, although this may

well be an oversimplification, for some flight conditions9] 80]. Similarly, the
aerodynamic interference from the vertical tail (due tacklige) is also neglected.

e Compressibility, blade stall, and viscous floffiets are also disregarded.
Dynamical simplifications

o Blade dynamics is disregarded, and simplified inflow dynansoconsidered. Un-
steady #ects are neglected.

FORCES AND MOMENTS

The theory we apply here is based on the work done by Bailey/dh jmplemented among
othersin p1, 78]. The model given here is a simplified approach of the Bailegel. First,
the total tail rotor blade pitchrr is given by

1Y)
PO tanSa,, + s (2.78)
0TTR

brr = brr— T1R
with 6rr the tail rotor control input, and all other ddieients defined in the nomen-
clature, except foiftr defined in Eq. £.83. The Bailey coéficients are given next by

2
_ Blr, Hry
2 4
2
Bir  Breitryy

t2 = ? + —2 (279b)

(2.79a)

with Brrthe tip loss factor anglrryy defined in the sequel. Now, assuming zero twist

for the talil rotor blades, the downwash at the tail rotor iswa& using momentum theory
as follows
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(2.80)

_ Clorg0TR HTRAL + éTth
Adw = 2 2 2 2
2\/IuTRx+/1TRy+/lTR+ t

CI(DVTR>U'TR
2
with Atg the total tail rotor inflowurrxy = ‘/ﬂ$RX+y$Ry and utr, Non-dimensional

velocities in the tail rotor frame (seé7] for details of the tail rotor frame and the Bailey
model), and the remaining cfiients defined in the nomenclature. The total tail rotor
inflow AR is further given by

ATR = Addw — HTRz (2.81)

where it is common practice to iterate between EGre@ and Eqn. £.81) until con-
vergence within a reasonable tolerance. Then, the taif tbtast is given by $1]

0
Foo = [ I.Trr ] (2.82)
0

with

2
Trr = 2.Aaw Ky + B ( QR (2.83)

Next, the tail rotor moments are primarily due to the rotaicéotimes the respective
moment arms (where we neglect any sidewards rofsebin they— direction). For com-
pleteness, we also add the rotor torque acting on the pitieH 23

0 b

XTR
Mo =| 0 ] X Foo+ (TTR.CDTR/S.(1+4.6u$RXQ.p.n.Q$R.R,50tTR] (2.84)
ZTR 0
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2.11.AppenDIX F: FUSELAGE

In the general case, the flow around the fuselage is ratheplesmand is characterized
by strong nonlinearities, unsteady separatifiaas, and distortions due to the influence of
the main rotor wake7]. For low speed sideways flight, the important fuselage atter-
istics are the sideforce, vertical drag, and yawing momehgreas in forward flight, the
important characteristics include drag, and pitching aadigg moments variations with
incidence and sideslip]. The fuselage rolling moment is usually small, except fanfiy-
urations with deep hulls where the fuselage aerodynamieceray be significantly below
the vehicle CGT], see also§1, 87] for additional information.

ASSUMPTIONS
Aerodynamics simplifications

o Fuselage aerodynamic enter is collocated with vehicle G@&hEr, only steady air-
loads éfects are considered.

o Effect of rotor downwash on fuselage is neglected. It can hommyenodeled as in
[83], using a polynomial in wake skew angle, where the polyndogefficients need

to be fit from flight data$4].

FORCL'S AND MOMENTS
The fuselage aerodynamic velocity, at its aerodynamicseeint frameFy, is given by

b

U+ §.ZFus — IYrus WS

Vore=| V= Pzrus+rXeus | —Tiee| Vw (2.85)
W+ P.Yrus — 0-XFus Wiy

Now the fuselage model is based upon aerodynamic lift anglabveficients, which are
tabulated as a function of airflow AO&¢,s and sidesligBr,s angles [ 4]. These angles are
readily computed from the x-,y-, and z- components@f:us. The fuselage forces in the

body frameF, are
Orus-C US(aFus,ﬁFus)
Fll;us =| grusC Fus(aFus,ﬁFus) (2.86)
uns-C?Eus(aFus,ﬁFus)
With rus = 1/2.0.Sre e IV £ dI>. The moments are

uns-beus(aFus,ﬁFus)-Lrefpus
MEUS: Orus-M |:us(a’Fus,ﬁFus)~|—ref,:uS (2.87)
qFUS'MZF:US(Q/FUS’ﬁFUS)'LI’efFUS

with the six aerodynamic céiécientsCxeus(-), CYrus(-), CZus(-), MXeus(+), MYeus(®),
andMzrs(-) being tabulated as a function of airflow AQ#:s, and sideslip anglBrys. In
our case, these lookup tables are obtained by scaling-ddulhrsize, Bo—105 helicopter,
fuselage aerodynamic model.
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2.12.AprPENDIX G: VERTICAL AND HORIZONTAL TAILS

The role of the vertical tail is twofold: 1) in forward flighit, generates a sideforce and
yawing moment, hence reducing the tail rotor thrust requ@st, in order to increase the
fatigue life of the tail rotor 7, 43]; and 2) during maneuvers, and during wind gusts, it
provides yaw damping and ftiess, enhancing directional stability].] The role of the
horizontal tail is also twofold: 1) in forward flight, it gersges a trim load that reduces the
main rotor fore-aft flapping; and 2) during maneuvers, andnguwind gusts, it provides
pitch damping and dtiness, enhancing pitch stability][

ASSUMPTIONS
Aerodynamics simplifications

e The dfect of main rotor downwash on both vertical and horizontid fa neglected.
It can however be modeled by using flat vortex wake the&g} (valid for small
sideslip angles), as presented i,[86], or it may be modeled as a polynomial in
wake skew angled3].

e We neglect the erratic longitudinal trim shifts that may pap when the helicopter
is transitioning from hover to forward flight'[ 43] (as the main rotor wake impinges
on the tail surface).

e The dfect of the main rotor downwash on the tail boom is neglectetljrosome
cases may need to be considered during low speed flight, isimagy influence yaw

damping [/].

FORCES AND MOMENTS

The vertical and horizontal tails, for the case of smallesd®licopters, can simply be
viewed as flat plate representations. The force equatian®mitted since very similar
to those of the fuselage, and the moments are simply deriosd the forces times their
respective moment arms.
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2.13.AprpEnDIX H: PROBLEM DATA

The LTI state-space data used to design the inner-loogtaajetrackers is as follows: the

state-vector is of dimension nine given ky= (uvw p qr¢ 8 ¢)", the control input is

of dimension four given byl = (6 61 615 f1r)", the wind disturbance (given in inertial
frame) is of dimension three given lay= (Vy, Vg, Vz,)", and the measurement vector

y =X

For the engine ON case, we have:= AX + BU + Byjngd with

[ —0.0682
—-0.0528
—-0.0146
—-0.4980

A =| 0.5505
-0.0101
—0.0445
0.0639

| 0.0031

00480 -0.0154 -0.1718 -0.4815 00443
-0.1671 -0.0022 01405 -0.6382 00424
-0.0086 -1.3800 00308 Q0191 -0.1012
-0.3992 -0.1785 -4.3091 -0.9452 -0.0176
-0.6741 00988 04298 -7.4087 00185
08748 -0.1435 00250 -0.0764 -1.0801
—-0.0868 -0.0066 01002 -0.4218 -0.0006
-0.0418 00207 01610 03185 -0.0517
00777 -0.0166 0009 00118 (08997
[ —2.1874 80268 -151285 Q3544
—2.0942 188510 192744 -4.4702
-1567810 -0.5916 -5.7372 -1.1758
-184143 957742 237919 -0.5969
B =] 10.0410 -46.1074 1576934 -1.0295
-1408456 -1.7584 24157 948389
—-0.8650 141785 147893 -0.1586
2.7890 -101952 125716 -0.5578
| -13.0429 -0.7975 (09591 86268

[ 0.0679 -0.0514 00130

0.0443 01652 00200

0.0137 -0.0778 13745

0.4986 03890 01970

Bwing = | —0.5507 06765 —-0.0542

0.0101 -0.8816 00897

0.0445 00862 00119

—-0.0639 00429 -0.0179

| —0.0031 -0.0786 00118

00188
96314
-0.4957
-0.8271
—-0.3565
08012
-0.0610
-0.0158
00446

-9.7039
-0.0010
00025
04340
—-0.6686
00023
00195
—-0.0390
-0.0024

[cNeoNeoNoNoNoNeoNeNe]
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For the engine OFF case, we have= AX + BU + Byjngd with

[ -0.0719
-0.0501
—-0.0140
-0.5237

A =| 05442
—-0.0040
-0.0471
0.0659

| —0.0000

00496
-0.1312
00001
-0.3795
—-0.6969
00307
-0.0874
—-0.0395
00019

-0.0160
—-0.0033
—-1.3528
-0.1763
00885
—-0.0007
-0.0077
00195
00001

[ —1.6301
-2.4421
-1088939
—6.9530

B =| -6.5422

Buwind =

—-0.2745
-1.4126
1.0822

| —0.0188

[ 0.0861
0.0601
0.0052
0.4814
-0.2975
0.0046
0.0466
-0.0631

| 0.0001

—-0.1855
01424
00406

-4.4032
03366

-0.0185
01006
01624

—-0.0031

105701
207349
28097
893397
-0.2979
06763
130013
—-8.6290
00336

-0.4800
-0.6648
00077

—-0.7445
—7.5403
-0.0128
-0.4271
03063

—-0.0019

-19.1335
161411
-1.7489
—20.1506
1120576
03975
99099
137359
01177

—-0.0549 00168
01340
00011
01950
06132
-0.0901
00745
00431

00288
12366
00751
00888
-0.0031
00172
-0.0129
—-0.0066 —-0.0003 |

00002
—-0.0003
-0.1111
—-0.0257

00116
-0.0270
—-0.0025
-0.0014

09976

00245

-0.9442
-0.2639
-0.1560
—-0.2480
202439
—-0.0353
-0.0262
21705

00183
96806
—-0.0294
—-0.8290
-0.3720
00172
-0.0622
-0.0137
00007

-9.7018
—-0.0003
00026
04559
-0.6812
00020
00209
—-0.0408
—-0.0001
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OFF-LINE T RAJECTORY PLANNING

In preparing for battle | have always found that plans arelass, but planning is
indispensable.

Dwight D. Eisenhower
Quoted in Six Crises, 1962

In this Chapter, we focus on the 'optimal’ nature of the aotative trajectories, gener-
ated by the guidance module, or Trajectory Planning (TP)this end, we use aryjline
approach to compute open-loop autorotative trajectorigbich represent the solution to
the minimization of a cost objective, given system dynamasrols and states equality
and inequality constraints. We further analyze and compamous 'optimally’ defined,
power-gf (i.e. autorotative), landing trajectories. The novel pafithis Chapter is as fol-
lows. First, we define a new optimal cost functional, for tasecof helicopter autorotation,
that maximizes helicopter performance and control smagghywhile minimizing roll-yaw
cross-coupling. Second, we include a trajectory constramthe tail rotor blade tip, to
avoid ground strike just before touch-down. Third, we aphb/ recently developed Pseu-
doSpectral (PS) collocation discretization scheme, toesalur optimal control problem
through a direct method. The advantage of the PS method,arechpo other direct opti-
mal control approaches, lies in its exponential converggmeovided the functions under
considerations are gficiently smooth. Finally, we conclude this Chapter by a dss@n of
several simulation examples.

Parts of this Chapter have been publishedLirs].
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3.1.INTRODUCTION

ONTROL OVer position and velocity is a primary objective of an awmous system.
CAn essential aspect resides in the design of an optimal toajectory planning, i.e.
a guidance system, that enables it to plan and execute gtrajgetory in a particular
environment. Developed originally to meet the specializedds of the robotics commu-
nity, routgtrajectory planning has been an important research topteifield of artificial
intelligence and robotics for several decadés?]. One typically distinguishes between
two routétrajectory planning paradigms, namely motion planninghods that attempt to
generate a feasible roytejectory without accounting for obstacles explicitlyydapath
planning methods, where obstacles are included withindh&strajectory planning 10].
Both can be generated in real-time, on the basis of senstings or generated in advance
(e.g. dt-line), on the basis of a-priori knowledge.

One class of rouferajectory planning problems, which has seen consideraisiearch
activity over the years, is related to the case where a UAMdaavel from pointA to point
B, while optimizing a cost objective. This topic is also a meaimmponent of our research
project. The goal of this thesis, indeed, consists in dgietpa model-based automatic
safety recovery system, for a small-scale helicopter UnmadrAerial Vehicle (UAV), in
un-powered flight, that safely flies and lands the vehiclefioesaspecified ground location.
A conceptual design solution, for this research objectias already been formulated in
Sectionl.7 of Chapter 1, in the form of a guidance and control logic. Héne philoso-
phy of the chosen architectural solution decouples theaguad module from the control
module. The guidance module, or Trajectory Planning (Tijll $e capable of generating
open-loop, feasible and optimal autorotative trajectoreferences, subject to system and
environment constraints, whereas the control module, ajettory Tracking (TT), shall
ensure that the helicopter flies along these optimal trajmst. Over the years, researchers
have addressed the TP problem through several techniqae®lyt cell decomposition,
potential fields, roadmaps and hybrid systems, inverserdigzaand diferential flatness,
Mixed Integer Linear Programming (MILP), Model Predict®entrol (MPC), optimal con-
trol, and finally evolutionarjgenetic algorithmsI[1, 12]. Perhaps the most natural frame-
work for addressing TP problems is the use of optinsahtrol [L]. Hence, optimal control
is the method adopted in this Chapter. We further evaluatewsoptimal autorotative tra-
jectories for the case of a small-scale helicopter. Thenmgdtcontrol inputs (and optimal
states), associated with these optimal trajectories,uathdr obtained using a direct opti-
mal control method, as follows.

First, the constrained, nonlinear, continuous-time,ropticontrol problem formulation
is discretized, using a PseudoSpectral (PS) numericahselfie3-21]. PS discretization
methods exhibit a number of advantages when compared to didwetization methods,

1The termtrajectory denotes theoutethat a robot or vehicle should traverse as a function of time.

2As a historical note, it is perhaps worth noting that one effinst accounts of constrained optimization dates
back to theDido Problem ca. 850 B.C. [3], where the legendary founder and first queen of Carthage,imo
modern-day Tunisia, solved the isoperimetric problem. ©Gfrthe first publications in the field of optimization
can be traced back to the year 1696, and the brachystochroblem by Johann BernoulliLE, 15], whereas the
first numerical methods for solving optimal control probkedate back to the 1950s and 19605]] with the
work of Bellman in the United States ], and Pontryagin in the Soviet Unioa T].
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even when compared to the popular spline parametrizatiff]]. PS methods are indeed
known to provide exponential convergence, provided thetions under considerations
are stificiently smooth. PS methods have been extensively usedlfongdluid dynamics
problems L9, 25]. However, only recently have these methods been used feingoa
variety of optimal control problems, e.g. in space and l&neentry applications]6-473],

in aircraft applicationsd1, 44-47], in helicopter applications/[d], in fixed-wing UAV ap-
plications B3, 43-52], and in helicopter UAV applicationsB, 54]. This said, the work
presented in this Chapter represents the first applicafittred®S collocation discretization
scheme towards the helicopter optimal autorotation cbptablem. Second, and once dis-
cretized, the optimal control problem is transcribed to @aNoear Programming problem
(NLP) [55], this latter being solved numerically by a well known arffiicent optimization
technique, in our case a Sequential Quadratic Programr8i@&) method[60-63].

The remainder of this Chapter is organized as follows. IntiGed.2, the nonlinear
optimal control problem is formulated. In SectiGrB a solution strategy is presented. In
Section3.4, the direct optimal control method is reviewed, togethehwhe pseudospectral
discretization approach. In Secti@rb, simulation results are analyZedrinally, conclu-
sions and future directions are presented in Sectién

3.2.PROBLEM STATEMENT

In this Chapter, we focus upon the 'optimal’ nature of theoaoiiative trajectories, gener-
ated by a TP. To this end, we use ditline approach to compute open-loop autorotative
trajectories, which represent the solution to the minittidzreof a cost objective, given sys-
tem dynamics, controls and states equality and inequalitgttaints. We compare various
'optimally’ defined, power-€ (i.e. autorotative), landing trajectories, and we pregérat

we believe to be the 'best’ one.

To start, we need a mathematical model describing the hécalynamical behavior.
This model (briefly addressed in the sequel) is, to a large garived from first-principles,
and hence set-up in a nonlinear, continuous-time framewbdiw, analytical solutions,
through the calculus of variation§4-66], of constrained, nonlinear, continuous-time op-
timal control problems, can only be derived in the realm tdtieely simple mathematical
models. Unfortunately, this is not the case of our helicofiight dynamics application.
Consequently, our constrained optimal control problenoissolved analytically, but rather
through a numerical algorithm. Now it is well known that satyoptimal control problems,
numerically, is considered to befficult, mainly due to the twin curses of dimensionality
and complexity. In addition, this fliculty gets exacerbated in the presence of state equal-

3Although Interior Point (IP) methods could also be uses-p9).

“Note that the modeled UAV, used in the simulations of thispiiéain SectiorB.5, corresponds to an instrumented
Remote-Controlled (RC) Bergen Industrial Twin helicopteelonging to the flybarless two-bladed main rotor
class. This helicopter is filerent from the one used in the simulations of Chapter 2 (ireinstrumented RC
Align T-REX helicopter), although both are very similar erins of size and mass. The reason is here historical:
the research described in this thesis started several ggarand, over the years, the focus of the application at
NLR had shifted from the larger-size 100 kg Geocopter hptieoUAV, towards the small-scale Bergen Industrial
Twin, and finally towards the small-scale Align T-REX helter. The latter will also be used in the simulations
of Chapters 4 and 5.
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ity and inequality constraints. This means that the sofutiothe optimal control problem
may potentially be expensive to compute, and hence sefpatiuitable numerical method
becomes primordial.

We consider now the following nonlinear optimal control Iplem, consisting in min-
imizing the cost functional(x(t), u(t), To, T), with the state-vectox, and control input-
vectoru, both defined on compact sets= X € R™, u € U C R™, denoting the feasible
state and control spaces respectively. Here the contrat igctoru, of dimension four,
has been defined in Secti@r?, see Fig2.2, as follows

u =( 6o 6ic 61s OrR )T (3.1)

with the Main Rotor (MR) blade collective pitaly primarily controlling vertical helicopter
motion together with MR Revolutions Per Minute (RPM); the MRde lateral cyclic pitch
01 primarily controlling lateral and roll motion; the MR bladtengitudinal cyclic pitchss
primarily controlling longitudinal and pitch motion; anlad Tail Rotor (TR) blade collective
pitch 6rr primarily controlling directional (yaw) helicopter motioThe full state-vectox,

of dimension twenty-four, has also been defined in Secti@nsee Fig.2.2 for the heli-
copter High-Order Model (HOM) of Chapter 2. Unfortunateiging the HOM of chapter 2
resulted in optimal control problems having a high compatet! cost. Hence, to lower this
computational cost, we developed a simplified model, alsmknas the Low-Order Model
(LOM) see Sectionl.7.2of Chapter 1, which combines the required modeling accuracy
with the computational tractability. The LOM uses a stagetor of dimension thirteen,
containing only the lower-frequency states, i.e. the teelgid-body states together with
the main rotor RPM, giving

x=(xn X xzuvaqrqﬁerMR)T (3.2)

with the nomenclaturegiven in Appendix A of Chapter 2. Here, we have removed the
higher-order MR phenomena, i.e. dynamic inflow and bladgl#igpdynamics, from the
state-vectok. The bandwidth of the neglected dynamics is generally hitiren the band-
width of the vehicle flight mechanics and TP systems. Henceé,am the grounds of this
time-scale separation principléq, the lack of high frequency modeling detail becomes
typically justifiable and acceptable for vehicle guidanpplecations pg]. The advantage
here is in terms of computational savings, with a minimas lmsaccuracy and fidelity. We
discuss next, in more detail, the 'optimal’ nature of theoaotative trajectories generated
by our TP.

3.2.1.CoST FUNCTIONAL

Over the last four decades, researchers have addressqutithal@utorotative flight prob-
lem through several optimization techniques. We start bytioring the successful autoro-
tative flight demonstration in the case of a small-scalecbetier, through the use of rein-
forcement learning method in§, 70]. Other approaches have also focused upon reinforce-
ment learning in 71, 77], and fuzzy-logic concepts in/B, 74]. Next, for the case of first

5In our nomenclature all vectors are printed in boldfaceckame should not confuse the control input-vector
printed in boldface, with the vehicle body longitudinal ety u, printed in regular font.
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principles based models, we briefly review thée@hent optimization strategies that have
been investigated. Indirect optimal control methods haenbused in15-80], whereas
direct optimal control methods have been exploredjr3[ 68, 81-91]. Aside from these
optimal control strategies, three other methods have aem Investigated: 1) a nonlin-
ear, neural-networks augmented, model-predictive conteghod in PZ]; 2) a parameter
optimization scheme, repeatedly solved, to find a backwarashable set leading to safe
landing in P3, 94]; and 3) a parameter optimization scheme generating setgoheoutes,
selecting a sequence of straight lines and curveS5irJ7].

For the definition of the cost functional, most of the herenablisted contributions
have focused upon the minimization of vehicle kinetic eyeeg the instant of touch-down.
Some have also considered using a running cost over timehvrgludes criteria involving
either: 1) the minimization of control rate§d, 84, 86, 90]; or 2) the minimization of
main rotor RPM deviations from its nominal value, while Itmg the excessive build-up
of vehicle kinetic energy during the descefit[98]. None of the previous results have
considered the definition of a cost that includes all of thageria, while also adding the
minimization of vehicle sidewards flight, and maximizatwfrflight into the wind.

3.2.2.BOUNDARY CONDITIONS AND TRAJECTORY CONSTRAINTS

The minimization of the cost functional has to be done whiltoecing the system dynam-
ics, and various additional equality and inequality caaists on the controls and states.
Specifically, a final-time boundary condition, i.e. at towddwn, is being added in order to:
1) set the vehicle on the ground; and 2) provide tight boumdhe vehicle kinetic energy
and attitude angles, in accordance with technical spetidita for safe landing. On the
other hand, with regard to trajectory constraints, thegeat in order to: 1) account for the
vehicle’s inherent physical and flight envelope limitagde.g. bounds on speeds, attitude,
and main rotor RPM); 2) account for environmental constsafa.g. the helicopter cannot
descend below ground); 3) check for actuators dynamic amgerémitations; and finally
4) avoid ground strike by the tail rotor blade tip, just beftsuch-down. In the sequel, we
formalize our TP problem statement.

3.3. THE OPTIMAL CONTROL PROBLEM
In the general optimal control problem formulation, thetdosictional J(-) has contribu-
tions from a fixed cosb(-), and a running cost over tirﬁ% Y(-)dt such that

J(X(E), u(t), To, T) := (X(To), X(T+), Tt) + L Y(x(t), u(t), t)dt (3.3)

The solution to the optimal trajectory planning gives theiropl control inputs and
associated optimal stat@¥t), X(t)}, which minimize this cost functional(-)

(@) %(0) = arg,_min  Ix(0.u(): To. T1) (3.4)

8The vehicle kinetic energy is defined as followlany, (U? + V2 + w?) + 3(Ap? + B + Cr?), with A, B, andC the
diagonal elements of the inertia matfix

“With the independent time variablelefined over the time domaid = (T,, T), where the final tim&; may be
free or fixed.
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while enforcing the following constraints:

e The control inputs and states have to satisfy the vehiclauhyes, i.e. a set of first-
order Ordinary Diferential Equations (ODESs), of the form

(1) = f(x(1), u() (3:5)

As stated earlier, the vehicle modd}), in Eq. (3.5), does not refer to the helicopter
HOM, defined in Eq.Z%.3) of Chapter 2. Rather, for the specific purposes of Chapter
3, and in order to reduce the computational cost, we devdladeOM, which was
briefly reviewed in Sectiof.7.20f Chapter 1. The modeling process and associated
LOM equations are not reprinted here, but can be found]in [

¢ An initial-time boundary condition which corresponds, ir @ase, to the initial val-
ues of the control inputs(T,) and stateg(To).

¢ A final-time boundary inequality condition, of the form

Br(x(Te),u(Ts), Tr) <O (3.6)

e An algebraic trajectory inequality constraint, of the form

TX(),u) <0 teQ (3.7)

where, for generality, the boundary and trajectory coigiseEqg. 3.6) and Eq. 8.7)
have been expressed as inequality constraints (equatistreants can simply be enforced
by equating upper and lower bounds). Further, in Eq®)(and Eq. 8.5-Eq. 3.7), the five
functions®d(-), ¥(-), f(-), B¢(-), andT(-) are all assumed to be iciently smooth.

We consider now optimal autorotative trajectories, cqroesling to initial conditions
for which feasible solutions do exist (this issue will fugtibe addressed in SectiGrb. 1).
We also choose to set the fixed cost to zero, i) = 0. Indeed, since the poweffo
landing trajectory is feasible, the cab{-) may equivalently be replaced by tight bounds,
adjusted for safe landing, on the final values of vehicle tkinenergy and attitude angles.
This in turn simplifies the optimization process, and lowlescomputational time. Next,
we present what we believe to be the best autorotative tomjeamely our cost functional
J(-) defined, from engineering judgment, as a running cost awves, tas follows

JX®), u(t), To, Ts) = leP(x(t_), u@.ndt
= fQ [WU(G% + eic + eis + G%R) + WQ(QMR - Q'\”Rmo%)2 (3-8)
FWLUZ + W2 + W2 + W, (3 — 1) dit

The termé? + 62, + 62, + 62 is added to: 1) minimize the battery power consump-
tion®; and 2) encourage smoother control policies, hence awidéng-bangtype so-
lutions, that might excite undesirable high frequency dgita or resonances. The term

8Actuators on small-scale helicopter UAVs are electricaltyvered by batteries.
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(QmR — QMRyy)? IS added to penalize any large deviations in MR speed fromaitsinal
(power on) valueur,,. INdeed, a rotor over-speed would increase, beyond addepta
values, the structural stresses on the MR hub and hingesh&uther hand, a rotor under-
speed would be unsafe for the following two reasons: 1) itaases the region of blade
stalP, increasing rotor drag and decreasing rotor lift, henceltieg in a higher helicopter
sink rate; and 2) it lowers the stored rotor kinetic enétgyhich is a crucial element for a
good landing flar€" capability P9, 10(]. The termu? + w? is added to limit the excessive
build-up of vehicle kinetic energy during the descent. Intigalar, a high kinetic energy
complicates the flare maneuver, since more energy needgliedipated, i.e. the timing of
the control inputs becomes increasingly critical f]. The termv? is added to limit vehi-
cle sideslip? flight. Large sideslip decreases the flight performancenbgeiasing vehicle
drag, increasing rgiyaw coupling, and hence increasing the workload of any feekld T
controller. The termy ¢ refers to the wind heading angle (known through either oartho
measurements, or data-uplink from a ground-based wintsgrand the termy — y¢)?

is added to encourage flight and landing into the wind. Thesllte in better flight perfor-
mance, and lowers the vehicle kinetic energy at touchdownrallly, the additional weights,
i.e. Wy, Wo, Wy, Wy, Wy, andW,,, have been added to allow for the evaluation of various
trade-dfs within this cost objective.

TAIL ROTOR GROUND CLEARANCE

Here we specifically address the constraint on the tail rbkade tip, just before touch-

down, during the flare landing maneuver. For the Tail Rotadg! Tip (TRBT) ground

clearance, we define the smallest distance between the TRBBtha ground by the distance
Xz:q5 IN the vehicle carried normal earth frarkg, see Fig3.1, with the TR radius given

by Rt Note that both the z-axis of frant&,, and body framd-y,, are oriented positive

downwards. Thd-y, position of the TR hub is given byx{r, ytr, Zrr), hence the lowest

position of the blade tip, for a positive vehicle pitghs given inF, by

0 XTR — Rrotyg- SING
XZrger = Xz + 0 Tob. VTR (3.9)
1 TR+ RrotTR' cosd

andXz; pgr < Zsafety< 0, With Zsaterya safety margin, antly, the transformation from body
Fy, to the vehicle carried normal earth frafggiven in Eg. £.9).

34 DIRECT OPTIMAL CONTROL AND DISCRETIZATION METHODS

We choose to solve our optimal control problem through aadted direct method. In this
context, the continuous-time optimal control problem oft®m 3.2 s first discretized and
the problem is transcribed to a NLP5, 107, without formulating an alternate set of opti-
mality conditions as done through indirect metho®§ [ The resulting NLP can be solved

9Stall corresponds to a sudden reduction in lift.

19The main rotor kinetic energy is defined as follows, 1,Q2 -, with N, the number of blades, arigthe blade
inertia about the rotor shaft.

11The flare refers to the landing maneuver just prior to tounivd In the flare the nose of the vehicle is raised in
order to slow-down the descent rate, and further the prdgigrde is set for touchdown.

12gideslip flight refers to a vehicle moving somewhat sidevasywell as forward, relative to the oncoming airflow.
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Figure 3.1: Tail rotor ground clearance.

numerically, by well known andfBcient optimization techniques, such as SQP methods
[61] or Interior Point (IP) methods [103. These methods in turn attempt to satisfy a set
of conditions called the Karush-Kuhn-Tucker (KKT) condits [55].

Regarding the discretization of the continuous-time optioontrol problem, the three
most common discretization approaches to solve an indiratitect method are: 1) Single-
Shooting (SS)104; 2) Multiple-Shooting (MS) [L05; or 3) State and Control Parameter-
ization (SCP) methodsLD6 107]. This latter is sometimes known as transcription in the
aerospace community, or as simultaneous strategy in thmichkeand process community.
Here SS and MS approaches are so-called control paranatenizechniques where the
control signals alone are discretized, whereas in SCP,disaited by its name, both state
and control are parameterized.

Briefly summarized, in shooting techniques the dynamicssatisfied by integrating
the diferential equations using a time-marching algorithm. Theaathge of direct SS is
that it generates a small number of variables, while its ndéadvantage is that a small
change in the initial condition can produce a very large gedn the final conditions?3].
Further, the issue of stability is a major concern. Indeietkg integration over a relatively
large shooting segment may lead to erroneous results feahiessystems, and this is why
SS generally fails to get a converged solution for such sys{@0d. The SS has been most
successful in launch vehicle trajectories and orbit trangfoblems, primarily because this
class of problems lends itself to parameterization withlatikeely small number of vari-
ables [L09. On the other hand, direct MS breaks the problem into sheteps, greatly
enhancing the robustness of the shooting method, at theo€dstving a larger number
of variables. It is then primordial to exploit matrix spaysio efficiently solve the NLP

B3Note that the solution to Eg3(4) is often a local minimum, and is also highly sensitive toitiigal guess value
given to the solver.
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equations [09. Despite the increased size of the problem, the direct M#hatkis an
improvement over the standard direct SS method, becaussetis#ivity to errors in the
unknown initial conditions is reduced, since th&eliential equations are integrated over
smaller time intervals. Further, MS have shown to be suibedpplications of high com-
plexity, having a large number of states.[]. However, an additional éficulty exists with
the shooting techniques, namely the necessity of definimgtcained and unconstrained
sub-arcs for problems with path inequality constraiftsd. This latter issue does not exist
with SCP methods, which is one of the reasons why SCP metraasdctively being in-
vestigated. In addition, SCP methods are known to be v@egtive and robustl[1(], and
SCP techniques have been applied to solve various nonlipianal control problems.

In the realm of SCP methods, several discretization praesdhave been studied,
namely local Runge-Kutta methods ihi[1], local orthogonal methods iri]L7, Global Or-
thogonal Approaches (GOA) or spectral methodip P1, 113-116, and recently hybrid
localglobal methods in117. Of these four procedures, the GOA have received much at-
tention in the last decade, since they have the advantagewtiing spectral convergence,
i.e. at an exponential rate, for the approximation of analye. suficiently smooth, func-
tions [L1g. Thus, for a given error bound, GOA methods generate afggnily smaller
scale optimization problem when compared to other methdli is an important aspect
since the #iciency and even convergence of NLPs improves for a problesmatler size
[119. In a GOA, the state-vector is expressed as a truncategssexpansion

M
X(t) ~ xu(t) = Z a.O(t) teQ=(ToTy) (3.10)

k=1
characterized by thigial functionsOx(t), or BAsis (BA), anda the Expansion Cd&cients
(EC) determined frontestfunctions, which attempt to ensure that the ODESs are oplymal
satisfied. The choice of BA is what distinguishes GOA methioals finite-difference or
finite-element methods. In both finite-type methods, the 8fcal in character, while for
GOA methods the BA consists of infinitelyftBrentiable global functions, such as orthog-
onal polynomials or trigonometric functions. Further, € distinguish the three most
common types of GOA methods, namely Galerkin, Tau, and cation. In the sequel, we
briefly introduce the GOA collocation method, or Pseudo8pé¢PS), used for the dis-
cretization of our continuous-time problem. In the collib@a approach, the EC are Dirac
delta functions centered 8 support pointdy, defined by the sef = {Pyk € {1, ..., M}}.
The EC are determined such that: 1) the initial and final-timendary conditions are met;
and 2) the ODEs given by Eq3.() are exactly satisfied o& by

Xm(t) — F(X(t), u(ty), tx) =0 Yk e{d,.., M} (3.11)
In addition, the BA is described dhby Lagrange interpolating polynomialg(r) [12(]
Xm(t) = Zml ay.L(7)
. M -1, h(z) (3.12)
Ld(®) = ik v = oothe

where the time variablehas been mapped to the pseudospectral interea[-1, 1], via

the dfine transformation = sz_tTo - Iﬂ We also defind(r) = (1 + 7).Pu(r) [21],




116 3. OFrF-LINE TRAJECTORY PLANNING

wherePy (1) is often related to Legendre or Chebyshev polynomialsuincase, we use a
Mth-degree Legendre polynomial given by
1 M
2MM! d7M
Note that Lagrange polynomials are helpful for collocatiois straightforward to show
thatvk € {1, ..., M}

Pu(7) = [(+* - )] (3.13)

1 k=j
Li(rj) = 6kj ={ 0 ki} (3.14)

Hencexwm(ty) = ax on €, satisfying Eq.$.11). In a similar way, the input control vector
is approximated with a basis of Lagrange polynomials, aigfhonot necessarily identical
to the previous ones. Besides the choicefpfanother set oK points Qx, defined by
Q = {Q«k € {1,...,K}}, is required for the discretization of the cost functional .3
and the ODEs in Eq.3(5). HereQ is chosen such that the quadrature approximation of an
integral is minimized. We have

K
f ' g(r)dr ~ Zwk.f(-rk) re[-1,1] (3.15)
-1 k=1

with wy the quadrature weights. Now, it is well known that the higlaesuracy quadrature
approximation, for a give®, is the Gauss quadrature. In this caSeis defined by the
roots of aK"-degree Legendre polynomiBk (), where the corresponding Gauss weights
wg are given from {20 as
W = 2 Yke{l,.., K 3.16
k -— (1_ TE)(dPg‘f_Tk))z € { 9 ey } ( . )
PseudoSpectral methods have been extensively used fangdllwvid dynamics prob-
lems [L9], but only recently have these methods been used for sobviragiety of optimal
control problems.

3.5. SIMULATION RESULTS

Our MATLAB-based simulation software uses the helicop®®M.presented in Sectioh 7.2
of Chapter 1, for the case of a small-scale helicopter UA¢ todeled UAV is an instru-
mented Remote-Controlled (RC) Bergen Industrial Twin dagter, belonging to the fly-
barless two-bladed main rotor class, with a total mass & 8@ a main rotor radius of
0.93 m, a main rotor nominal angular velocity of 1450 RPM, amdACA 0015 main rotor
airfoil, see Table3. 1.

To solve the nonlinear control problem, the PS numericahodtas described in Sec-
tion 3.4, is used. This numerical discretization framework is aldé in a MATLAB
environment, through the open-source General Pseudoap&timal control Software
GPOP® [114, 121]. In order to use GPOPS, the optimal control problem must fies
reformulated into a GPOPS format, as a set of MATLAB m-filég]]. Second, the he-
licopter model must also be expressed in a vectorized sireicimplying that each model
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variable is a time-dependent vector. Third, (cubic) B-&gdi interpolating functions ought
to be used, when querying lookup tables, since the speairalecgence of PS methods
only holds when the functions under consideration are smfidi. Finally, it is best
practice to non-dimensionalize and scale model variabielsqauantities, in order to im-
prove conditioning of the numerical problem. Once the aaniroblem is discretized, it
is then transcribed into a static, finite-dimensional NLErojzation problem. An NLP is
generally sparse, and many well-knowffigent optimization techniques exist to numeri-
cally solve large-scale and sparse NLPs. In our case, wehesSNOPP software p2],
which solves finite-dimensional optimization problemstigh SQP. Finally, finite dier-
encing has been used to estimate the objective gradienbastraint Jacobian. We present
next simulation results for several case studies, but fiestwil review the Height-Velocity
(H-V) diagram.

3.5.1.TuE Heigar-VELocity (H-V) DIAGRAM

For certain combinations of altitude Above Ground Level (A@Gnd airspeed, the capa-
bility of a helicopter to perform a safe autorotative larglia limited by the structural and

aerodynamic design of the helicoptéP[. In fact, power failure within the dangerous or
unsafe regions, defined by these combinations of AGL angdes, may result in high risk

of severe damage or loss of vehicle. These limiting comkinatof AGL and airspeed are

often expressed as the Height-Velocity (H-V) diagramKnowledge of these dangerous
regions is important for safety procedures and operati@asons’.

In Fig. 3.2, atypical H-V diagram for a small-scale helicopter (of dansize to the one
considered in this Chapter) is shown. The H-V diagram shawsAvoid’ zones (in gray),
namely: 1) a low-speed zone on the left, containing flightdittons where, if an engine
failure were to occur, execution of a safe landing would bié&aly, because of indticient
initial energy; and 2) a high-speed zone on the right whéem engine failure were to oc-
cur, safe landing would also be unlikely, because the helerovould possess infiicient
altitude to perform the flare (necessary to reduce the kirgiergy).

Now H-V diagrams can either be compiled from flight test87, or by solving opti-
mal control problems. The latter is the approach adopteti;m@hapter, where the H-V
diagram becomes the solution of an optimization problemilar to the general one pre-

Also called thedeadman'szone.

15|deally, one would like to eliminate these unsafe regiotsgaither, or at least reduce their size. H-V studies can
be traced back to the late 1950s and early 1960¢{12€]. For example, eliminating the H-V restrictions was
demonstrated with thi€olibrie helicopter, built by théederlandse Helikopter Industrie (NHf the late 1950s.
It was designed by Dutch helicopter engineers and pioneer] Drees and Gerard F. Verhage. The helicopter
was ram-jet powered, these latter being positioned at #eltips, resulting in very high main rotor inertia. The
H-V subject was also investigated ih3), where flight-test data was used to derive semi-empirigatfions
of a generalized non dimensional H-V diagram, independédepsity altitude and gross weight variations. In
[127 it was pointed out that high rotor inertia, low disk loadjrand a high maximum thrust cfieient could
reduce the size of the unsafe zone. 18§ 129, the concept of the so-called High Energy Rotor (HER) was
studied, using blades with high rotational inertia. Thelgdahe HER was to eliminate the unsafe regions, but
also to allow for less demanding autorotation maneuvers fiaally use the rotor kinetic energy as a source of
transient power for better maneuverability. Additionauks can also be found in B0, 131] where recent flight
tests, related to the H-V subject with the Bell 430 and 40itbpters, have been presented.
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Figure 3.2: Typical Height-Velocity (H-V) diagram for a sthscale helicopter UAV. Figure fromi[32, 139 (the
numbers on the axes are indicative only).

sented in Sectiofi.2. To find the H-V curve, two approaches may be pursued, eittjea:
minimizatiorymaximization of altitude problem subject to safe landing2)ossimply testing

a feasibility problem in terms of safe landing. The minintiaa/maximization (former) ap-
proach often led the solver to run into numericdfidulties. These diiculties were caused
by: 1) the inclusion of highly nonlinear lookup tables whiclespite B-Splines interpola-
tion, have shown to have a detrimenté&keet on problem smoothness; and 2) the possible
existence of a large number of solutions that all yield agjpnately the same value of the
cost objective. In other words, the objective index is rathsensitive to the solution tra-
jectory in the neighborhood of the optimal solution. On thieeo hand, for the feasibility
approach, the cost objectivi-) in Eq. (3.3 is set to zero, and one only requires to check
whether a safe landing is possible, for a range of initialditons. This method was suc-
cessfully applied, based upon specific flight envelope batied given in Tabl&.2, with
results shown in Fig3.3, for a relatively coarse grid having steps of 1 m in AGL and/s m
in airspeed. We found that our helicopter UAV exhibited otfilg so-called low-speed un-
safe zone. We further subdivided this unsafe zone into twezsumnes: 1) one zone, shown
in red, which always resulted in unsafe landings, indepetiglef the initial guess condi-
tions given to the solver; and 2) one zone, shown in magerthwesulted in either safe
or unsafe landings, depending on the initial guess conditi@lues given to the solver.

3.5.2.EVALUATION OF COST FUNCTIONALS
In this section we evaluate and compare our cost functiatedined in Eq. £.8) and ref-
erenced ad, in Table3.3, to three other cost functionals referencedasl, in Table3.3,
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Figure 3.3: Height-Velocity (H-V) diagram for the Bergerdumstrial Twin.

which can be found in the literature. In Talile3, J; is a final-time only cost, which pur-
pose is to minimize the vehicle kinetic energy (as well asrigaa horizontal attitude) at
the instant of touch-downJs is a running cost over time, minimizing actuators activity.
J, is also a running cost over time, which objective is to keeprttain rotor RPM in the
neighborhood of its nominal value, while minimizing the e kinetic energies in the
longitudinal and vertical channéfs
For the comparison of these cost functionals, we considémniial condition, outside
of the H-V diagram, defined as follows: steady-state hotelQan altitude, in a zero-wind
environment. Here for the analysis of each cost functibj]ﬁzl, we consider the following

power metricqP; }:j}j‘l‘, of the vector-valued discrete-time sigra(n)}?2 ,, defined as

z(n) = [6o )rr BMic B()as|

z(n) =[u(n) v(n) w(n)]’

z(n) = [v(n) ¢(M]"

Py = gIAMIE = & Sy Iz (I3
with N; the number of data points of the optimization problems,esponding to the cost
functionaI{Jj}‘j‘:l, and|| - ||, the norm on the square-summable sequence spacé
Eqg. (3.17), the power metridP1j, based upon signal, shows the control rates, i.e. the
level of input control activity. This information is relen since a higher level of actuator
dynamics means a higher power consumption from the batteai® a higher likelihood
of exciting undesirable high frequency dynamics or resoran Next, the power metric
P,;, based upon signaj, reflects the amount of stored kinetic energy, during thétlign
the combined three linear channeélsFinally, the power metri®s;, based upon signas,

(3.17)

16The channels with most energies.
17In general the kinetic energy, stored in the rotational oleis) is much smaller than the one stored in the linear
channels.
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mirrors the amount of vehicle lateral motion. For each costfional test casa]j}‘j‘zl, the
signal power metric®;; are reported in Tablé.4. They are obtained by solving nonlinear
optimal control problems, based upon 29 nddesscretization, and yielding a NLP having
607 variables and 506 constraints. Now, an analysis of Tablshows that:

e Our cost functional, defined in Eq3.¢), considerably reduces lateral control activ-
ity, e.9. compard®s; to P3,, P33 andP34. The benefits of reduced lateral motion are
increased flight performance, and decreased roll-yaw aoyplThis aspect is par-
ticularly relevant when repositioning the current diséoisswithin the, two-degree
of freedom, guidance and control logic, formulated in Smtii.7 of Chapter 1. In-
deed, the chosen flight control architectural solution detes the guidance module
from the control module. The guidance module shall genespén-loop feasible
and optimal autorotative trajectory references, whereasontrol module shall en-
sure that the helicopter flies along these optimal trajgetoHence, a decrease in the
amount of cross-coupling of the planned trajectories,lteslso in a decrease of the
workload of the feedback controller.

e J; andJ;z display the lowest level of input control activity, confirthby the power
valuesP;; = 0.06 andP;3 = 0.008, since both costs include the input rates. Note
that excluding the control rates from the cost functionayead to the excitation of
unmodeled or undesirable high frequency modes, potentiggllting in closed-loop
instability. This is particularly relevant when the subseqt synthesis of a feedback
controller is based upon low-order model representations.

e If a running cost over time is to be used, versus a final-tinlg oast (such asl,),
then: 1) minimization of control rates ought to be includgdce we hav®;4 = 1.87
much higher thai®1, = 0.27; and 2) lateral motion should also be included, compare
the high values oP33 and P34, to the lower value oP3,.

o Better performance can be achieved from the use of a fina@-timy cost, such as
Jo, than from a poorly defined running cost over time, suchi;as

o Finally, the last column in Tabl&.4 gives the total signal poweEf:l Pij, for each
cost functionaI{Jj}‘j‘zl, where we can see that our cost functional provides the best
autorotative trajectory. This said, this experiment, ¢stivgy in comparing various
cost functionals, was only conducted for a single initiahdition, namely steady-
state hover, at 40 m altitude, in a zero-wind environmenthdugh this condition
is representative enough of a typical initial condition éosmall-scale helicopter, it
would indeed be interesting to obtain additional signal @ovalues, corresponding
to a wide spectrum of initial conditions.

18Based upon simulation results, the choice of 29 points geavia good compromise between accuracy and
computational tractability. We do acknowledge that this iather empirical justification. In fact a more rigorous
analysis of the following tradefb accuracyvs. computational tractabilityis here desirable.
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3.5.3.0OPTIMAL AUTOROTATIONS: EFFECT OF INITIAL CONDITIONS

In this section, we use our cost functiordal defined in Eq. §.9), to briefly evaluate the

effect of variations in initial conditions, i.e. initial altile and initial speed only. Further,
we consider only a limited number of initial timmed flightratitions, in a zero-wind en-

vironment. In these simulations, the final landing spot imteof North and East position
is left completely free, hence not prescribed or consthinea specific location. Finally,

the problem discretization is based upon 33 négeselding a NLP problem having 691
variables and 578 constraints.

EFFECT OF INITIAL ALTITUDE

We analyze here thdfect of three dierent initial altitudes Above Ground Level (AGL),
see Table3.5, all starting from hover, in a Southbound path (i.e. with tleading oriented
towards the South pole). From Figdwe see the MR collectiv&, going full-down, as soon

as the maneuver initiates (in all figures the magenta hotdatdines display hard bounds
on variables). As expectéd this is necessary in order to minimize the decay in MR RPM
Qur. Indeed, from Fig3.6, we see that at a time of approximately 1.5 seconds into the
flight, the MR RPMQugr does not drop more than 10% of its nominal value. We also
clearly see the MR collectivé, sharply increasing as the helicopter nears to the ground,
to prevent rotor over-speed, while reducing the sink rateaddition, the MR longitudinal
cyclic 615, given in the lower plot of Fig3.5, is used to: 1) manage vehicle and MR kinetic
energies; 2) reduce forward airspeed; and 3) level theudé#ifor a proper landing. For
instance, this can be checked on the pitch aAgilt, in Fig.3.7, where for a low altitude
AGL initial condition, we see the vehicle pitch-up and pidbwn during the flare (i.e. the
maneuver just prior to touch-down). Fig.8 presents the trajectory body velocities, where
we note that, for hover initial conditions, the higher thigiah altitude AGL, the more the
optimal trajectories resemble a pure vertical motion (véh minimal horizontal motion),
confirming thus the earlier results irq].

EFFECT OF INITIAL AIRSPEED

We analyze here theffect of three dierent initial airspeeds, see Takiles, all starting at
40 m AGL, again in a Southbound path. Here, we only discussdtient features of these
three cases. For the control inputs, in BigOand Fig3.11, the behavior is comparable to
the one observed in the preceding paragraph. We also dohmotiertited displacement of
the MR lateral cycliddy, and TR collectivédrg, consistent with the anticipated behavior
of reduced lateral motion. Next, from Fig13-Fig.3.15 we notice that, despite clear dif-
ferences in initial kinetic energy, the flight time (and rafelescent) show little variations.
This could potentially indicate that the flight time, in axgtation, is only lightly correlated
with the initial vehicle velocity.

On the other hand, the traveled distance does slightly aseres a function of initial
kinetic energy, see upper plot in Figl5 Also an increase in initial kinetic energy does
seem to impact the flare maneuver, e.g. for d@6ethe MR longitudinal cycliddss, in

19Based upon simulation results, the choice of 33 points demlia good compromise between accuracy and
computational tractability. We do acknowledge that thisiather empirical justification. In fact a more rigorous
analysis of the following tradefb accuracyvs. computational tractabilityis here desirable.

20This is also what helicopter pilots do at the beginning of aeotation maneuver.
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Fig.3.11, and the helicopter pitch, in Fig.3.13 exhibit almost a 'double’ flare approach
in the last two seconds of the flight. In addition, we see thdifferences are to be noted,
between on the one hand the hover and low-speed ca3é4sndC5—and on the other
the high-speed ca€es, then they would tend to primarily appear on the longitatirand
RPM Qur channels, during the initial flight phaSesee Fig3.11-Fig.3.13

3.6. CoNCLUSION

In this Chapter, we have addressed the autorotative Teaje&lanning (TP) problem,
for the case of a small-scale helicopter UAV, and we have tbated the technologi-
calengineering TP problem into a mathematical, model-basexljmrear optimal control
problem. The latter was numerically solved, through a diogtimal control framework.
The main benefits of this Chapter are threefold. First, waddhat for fixed initial altitude,
increasing the initial velocity had only a relatively lirait dfect on the optimal trajectory
flight time. On the other hand, the flight time showed a stromgetation with the initial
altitude. This aspect, together with the knowledge of amugity defined autorotative tra-
jectory, will prove useful in the following Chapter. Secofal a range of initial conditions,
optimal autorotative trajectories could potentially benguted, @-line, by this TP, and
stored as lookup tables, on-board a flight control compdUikese trajectories would then
provide, both, the optimal states to be tracked by a feedbaskcoller, and optionally the
feedforward nominal control inputs. Third, the optiminatiframework, developed here,
could allow to study theféects of some particular factorgfecting the optimal trajectories.
These factors include wind, but also some helicopter spea#fipects, such as helicopter
mass, number of main rotor blades, main rotor blade masanairdrotor inertia.

21approximately the first second into the flight.
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Table 3.1: Bergen Industrial Twin physical parameters.
| | Name | Parametef Value | Unit
Air density 0 1.2367 kg/m®
Static temperature T 273.15+ 15 K
Environment Specific heat ratio (air) v 1.4
Gas constant (air) R 287.05 J/kg.K
Gravity constant g 9.812 m/s?
Total mass m 8.35 kg
Inertia moment wrix, A 0.338 kg.n?
Inertia moment wriy, B 1.052 kg.n?
Vehicle Inertia moment wri, C 1.268 kg.n?
Inertia product wrix, D 0.001 kg.n?
Inertia product wrty, E 0.002 kg.n?
Inertia product wriz, F 0
Direction of rotation r -1
ClockWise (CW) Cw
Main Counter-ClockWise (CCW)
Rotor Number of blades Np 2
(MR) Nominal angular velocity OMR106% 151.84 rad/s
Rotor radius from hub Riot 0.933 m
Blade mass M 0.218 kg
Spring restraint coef. due to flap Ks, 271.16 N.m/rad
Distance between hub and flap hinge Ae 0.094 m
Tall Number of blades NbTR 2
Rotor Nominal angular velocity QT Ryo0% 709.11 rad/s
(TR) Rotor radius from rotor hub Rrotre 0.17 m
MR collective 6o [-2.8,13.7]x/180 rad
MR lateral cyclic O1¢ [-6.8,6]x/180 rad
Actuators MR longitudinal cyclic 015 [-7.8,5]2/180 rad
TR collective OrR [-27,32.8]x/180 rad
MR collective rate o [-52,52]7/180 rad/s
MR lateral cyclic rate O1c [-52,52]7/180 rad/s
MR longitudinal cyclic rate .é)ls [-52,52]x/180 rad/s
TR collective rate OrR [-120,120]#/180| rad/s
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Table 3.2: Flight envelope boundaries for the Bergen Inmélstwin.

| Definition | Parametef Range | Unit ]
Roll angle ¢ [-48,48]7/180 rad
Pitch angle 0 [-48,48]7/180 rad
Yaw angle W [0,360]7/180 rad
Body longitudinal velocity u [-5,20] m/s
Flight Body lateral velocity % [-5,5] m/s
Envelope Body vertical velocity w [-5,20] m/s
Body roll angular velocity p [-200,200]7/180 | rad/s
Body pitch angular velocity q [-200,200]7/180 | rad/s
Body yaw angular velocity r [-400,400]#/180 | rad/s
Main rotor RPM QMR [70%,110%]QMR,, | rad/s

Table 3.3: Comparison of cost functionals.

Test Cost
Case Functional
J1 Our definition

as givenin Eq.§.9)

Jo J:=®(xX(Ty), Ty)
similar to [76-78,91] || = u(T¢)? + W(T¢)? + W(T)?
+p(T1)? +q(T1)? +1(Tr)?

+¢(T1)? + 6(T+)?
J3 J:= [, P(um)dt
similar to [68,89] || = [(63 + 65 + 62, + 62))dlt
J4 J:= [ W(x(t)dt
similar to [3¢] = [, (Qur = Qurye)?

+(U? + WZ)]dt
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Table 3.4: Comparison of signal power for various cost fiometls.

Test || Control rates| 3D linear motion| Lateral motion| Total power
Case Plj sz P3j Zi3:1 Pij
N/ 0.06 50 0.06 50.12
Jo 0.27 62.3 1.7 64.27
N 0.008 46.2 14.9 61.108
Js 1.87 46.2 16.5 63.57

Table 3.5: Initial trimmed flight conditions: autorotat®mvith variation of initial altitude Above Ground Level
(AGL).

Test || Airspeed| Altitude (AGL) Line Color
Case|| (m/s) (m) in Figures

C1 hover 25 Red (solid line)

c2 hover 40 Blue (dotted line)

C3 hover 110 Black (dashed line

Table 3.6: Initial timmed flight conditions: autorotat®with variation of initial airspeed.

Test || Airspeed| Altitude (AGL) Line Color
Case|| (m/s) (m) in Figures

C4 hover 40 Red (solid line)
C5 5 40 Blue (dotted line)
C6 15 40 Black (dashed line
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ON-LINE [ RAJECTORY PLANNING AND
TRACKING: SYSTEM DESIGN

Linear systems are important because we can solve them aadbethe fundamental
laws of physics are often linear, e.g., Maxwell’'s equatifmilectricity, the laws of
gquantum mechanics, and the approximations when displattsraee small.

Richard P. Feynman
The Feynman Lectures on Physics, Addison-Wesley, 1963

The design of high-performance guidance and control sysfemsmall-scale helicopter
Unmanned Aerial Vehicles (UAVS) is known to be a challeng@sg. In Chapter 3, we

presented a Trajectory Planning (TP) approach, for the argDFF condition (i.e. au-

torotation), for gf-line use. The purpose of Chapter 4 is to present a combinedntP

Trajectory Tracking (TT) system, for the engine OFF cowditihaving on-line computa-
tional tractability. The presented system is anchored iwithe aggregated paradigms of
differential flatness based optimal planning, and robust cditased trajectory tracking.

A similar flight control system, for the engine ON conditi@mlso provided in the Appen-
dices.

Parts of this Chapter have been publishedLirs].

141
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4.1.INTRODUCTION

HApTER 3 used an fi-line approach to compute open-loop, optimal, autorogattie-

jectories. In Chapter 4, we compute these autorotativedtajies through an on-line
approach. In addition, the purpose of Chapter 4 is to premedtdescribe the design of
a guidance and control logic, that enables a small-scaleanned helicopter to execute a
completely automatic landing maneuver, for an engine O @utorotation4, 5]) flight
condition’. The guidance module, or Trajectory Planning (TP), shaltégable of gen-
erating optimal trajectories, on-line, whilgectively exploiting the rigid-body nonlinear
dynamics. On the other hand, the control module, or Trajgcloacking (TT), shall have
the duty to ensure that the helicopter flies along these aptirajectories. In Chapter 5,
this complete Flight Control System (FCS) will be evaluataedhe high-fidelity helicopter
simulation model, developed in Chapter 2, for the engine @id-ON conditions.

A full review of previous contributions, for the engine OFIP &ind TT (respectively
engine ON TP and TT), has already been presented in Sedtidriand 1.5.30f Chapter
1, and in Sectio®.2.1, of Chapter 3. Most notable is that very few papers, Ge9], have
addressed the aggregated planning and tracking fundtiesafor the engine OFF case,
with validation through either experiments or 3D high-filehonlinear simulations. The
authorsin B, 9] apply their FCS to the case of a full-size helicopter, whsrhe application
in [7] involves a so-called short-ranfactical size helicopter UAV (approximately 200 kg).
Only the results inq] are for a small-scale helicopter UAV. As outlined in Chagtewhen
compared to larger and heavier helicopter vehicles, théraoof small-scale helicopters
(i.e. under 10-20 kg) represents a much more challengirggro

In this Chapter we choose to base our TP on the concepftefelntial flatness. This
approach allows to exploit the rigid-body nonlinear dynesnivhile retaining a high com-
putational éiciency, e.g. for on-line use in a hard real-time environnvemére stringent
timing constraints may need to be met (especially for highetwidth systems). Compared
to the df-line TP of Chapter 3, the advantage of the TP module predenténis Chapter,
is its on-line computational tractability. The seminaladeof diferential flatness were in-
troduced in the early 1990s in(~12] as part of a paradigm in which certainfidirential
algebraic representations of dynamical systems are dgoivaln other words, a com-
plete parametrization of all system variables—inputgestaand outputs—may be given in
terms of a finite set of independent variables, called flgpatist and a finite number of their
derivatives [ .3, 14]. This results in optimization problems with fewer varieb[L5], i.e. by
the complete elimination of the dynamical constraintshia tase the trajectory generation
problem is transformed from a dynamic to an algebraic onghith the flat outputs are
parametrized over a space of basis functions, and wherestiergtion of feasible trajecto-
ries is reduced to a classical algebraic interpolation docation problem {6, 17].

Since the helicopter dynamics is nonlinear, the designeoTthcontroller shall necessi-
tate an approach thaffectively respects or tries to exploit the system’s nonlirstaucture.
To this end, several control methods are available: fronodist control; 2) classical gain-

1in the Appendices of this Chapter we present a guidance amiiotdogic that allows to execute a variety of
engine ON automatic maneuvers, e.g. takelanding, and cruise.
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scheduling, and Linear Parameter-Varying (LPV) approagctee3) truly nonlinear control
methods (e.g. nonlinear MPC, Lyapunov based methods susldasy mode and back-
stepping, adaptive control, or even passivity-based ampres). In this thesis we select an
approach that combines both simplicity and computatigaatability, namely a robust con-
trol u strategy. The selected strategy consists in using a singtainal, low-order, Linear
Time-Invariant (LTI) plant, coupled with an input multipitive uncertainty, and applying
a small gain approach B, 19 to design a single robust LTI controller. The uncertairgty i
added here to compensate for the unmodeled plant nonlilesasind unmodeled higher-
order rotor dynamics

Finally, the nomenclature is fairly standard. For appratgly dimensioned matricés
M1z Mg
Mz1 Mz
Transformation (LFT) is defined & (M, K) = M11+ MK (1 = M2oK) M,y and the upper
LFT is defined ag (M, K) = M2, + M21K(l = M1;K)"tM31, under the assumption that the
inverses exist. FOM € C%P, the structured singular valyga (M) of M, with respect to an
uncertainty seA c CP9, is defined ag,*(M) := minaca{c(A) | det( — MA) = O}

andM, where the latter is partitioned &4 =

}, the lower Linear Fractional

4.1.1.MAIN CONTRIBUTIONS
The novelty of this Chapter can be stated as follows.

o First, we design the first, real-time feasible, model-baBBdand TT system, for
the case of a small-scale helicopter UAV with an engine OFfditmon. Indeed,
the results in§—9] are based upon a model-free TP. Our flatness planning agproa
effectively exploits the rigid-body nonlinear dynamics, tleasnputing trajectory so-
lutions which are feasible and optimal.

e Second, with regard to the TT, the method @) i based upon a model-free fuzzy
logic approach. The method iB][uses a model-based fBerential Dynamic Pro-
gramming (DDPjJ approach. The method ig]Juses a model-based combined Non-
linear Dynamic Inversion (NDI) with Proportional Integri2krivative (PID) loops,
whereas the method i uses a model-basdd., approach. For the three model-
based approaches, the TT controllers are synthesized angla siominal model, that
does not include uncertainties, whereas our TT contrdleynthesized on the basis
of a nominal model, coupled with additional uncertaintiesorder to enhance the
robustness properties of the closed-loop system.

The remainder of this Chapter is organized as follows. Irti8ec .2, the two-degree
of freedom control architecture, as implemented in thispg@ém is first reviewed. In Sec-
tion 4.3, the flatness-based trajectory planning is described. dtide! .4, the main aspects
of the robust control approach are reviewed and discusseBedtion/.5and Sectiont.6,

the synthesis of the inner- and outer-loop controllerstHferengine OFF case, are presented.

2Unmodeled in the low-order nominal LTI plant used for cohttesign, these are however modeled in the high-
order nonlinear plant of Chapter 2.
3DDP is an extension of the Linear Quadratic Regulator (LQ@Rnilism for non-linear systems(.
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Conclusions and future directions are presented in SeétiorFinally, the first three Ap-
pendices present the trajectory planning and trackingey$br the engine ON case (using
an architecture which is identical to the one developedferangine OFF case).

4.2. GENERAL CONTROL ARCHITECTURE

We present here the conceptual FCS design solution, chossoive the helicopter UAV
guidance and control problem. We make use of the classicabizgree of freedom con-
troller design paradigm, in which the philosophy decoufiesguidance module from the
control module, see Chapter 1. The guidance module, or Bi,lhcapable of generating
open-loop, feasible and optimal (autorotative) trajecteferencesp, for the small-scale
helicopter, subject to system and environmental condtragee Fig4.1. This TP com-
putes open-loop optimal trajectories, given a cost ohjeciystem dynamics, and controls
and states equality and inequality constraints. Thesenaptrajectories may be computed
off-line*, through the use of nonlinear optimal control methods swcmaChapter 3, or
alternatively, such as in this Chapter, may be computedrentising the concept of dif-
ferential flatness. Compared to the architecture outlinefig. 1.15of Chapter 1, the TP
of Chapter 4 does not generate any feedforward nominal @oinfputs, nor is there any
additional feedback path into the TP.

On the other hand the control module, or Trajectory TracKifif), compares current
measured valueg i.e. a subset of the vehicle stateswith the reference valuesp pro-
duced by the TP, and formulates the feedback contr@lsned at decreasing this tracking
error. This latter may be due to a combination of model uncertajatynodeled higher-
order dynamics, unmodeled static nonlinearities, paramatcertainties, delays), and sig-
nal uncertainty (wind disturbances and noise). In Big, the 'Helicopter Dynamics Non-
Linear Simulation’ block refers to the high-fidelity, naméiar, High-Order Model (HOM),
simulation of Chapter 2, serving as a proxy for the real loglier system.

Cost
Function
&
Constraints

Helicopter
Dynamics
NonLinear
Simulation

Figure 4.1: Two-Degree of freedom control architecture.

4.3.FLATNESS-BASED TRAJECTORY PLANNING (TP)

The seminal ideas of fierential flathess were introduced in the early 19904.ikr-]7] as
part of a paradigm in which certainfiérential algebraic representations of dynamical sys-

“4The trajectories are stored as lookup tables, on-boardta dintrol computer.
5The nomenclature, given in Appendix A of Chapter 2, statas ali vectors are printed in boldface, hence the
control input vectou should not be confused with the body longitudinal velocity
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tems are equivalent. Flatness can be seen as a a subclassef ttf controllable nonlinear
systems P1], or as a system’s geometric properiyo] independent of coordinate choice,
or as a Lie-Backlund equivalence properiyl[27], in which a complete parametrization
of all system variables—inputs, states, and outputs—mayiy@n in terms of a finite set

of independentvariables, called flat outputs, and a finitelmer of their derivativesi[3, 14].

Flatness comes with two important benefits. Firstfies a particularly well adapted
framework for solving inverse dynamics problenis,[23]. Indeed, flatness implies the
absence of so-called zero dynamics, allowing for a onea®-@rrespondence between
trajectories of the input-state system and trajectorighefflat output (in which case the
nonlinear system can be feedback linearized using endogetymamic feedback?p)).
This allows the trajectory generation and tracking for meimimum phase systems by ex-
act linearization 24, 25. Second, and perhaps more importantly, flat parametéesizat
result in optimization problems with fewer variablés], i.e. by the complete elimination
of the dynamical constraints. In this case, a trajectoryegation problem is transformed
from a dynamic to an algebraic one, in which the flat outputsp@rametrized over a space
of basis functions, for which the generation of feasiblgettories is reduced to a classical
algebraic interpolation or collocation problefrs[ 17]. This allows, in principle, for signif-
icant computational benefits Seminal application of flatness towards trajectory plagni
can be found in 12, 28] for the case where the motion is not subject to inequality-co
straints, and inf9-31] for the case where inequality constraints have been added.

Itis in general dificult to determine whether a given nonlinear system is flétpaigh
several methods for constructing flat outputs have beenrdented in the literaturel[,
32-34]. As an example, it is known that a system’s Huygens centersofilations may
qualify as a flat output]1, 24, 25. Additional rules, to find such flat outputs, include
the following: 1) all linear systems are flat; 2) all nonlinegstems which are static and
dynamic feedback linearizable are flat; 3) fully actuatestems are flat; and 4) finally
under-actuated systems may or may not be flat. With regargglications, it was shown
that simplified dynamics of aircraft and Vertical TakéE@nd Landing (VTOL) aircraft are
flat [23, 35-39], simplified helicopter dynamics is flai., 40, 41], simplified quadrotor
dynamics is flat{42—4€], simplified planetary lander dynamics is flat7], and simplified
reentry vehicle dynamics is also flatd], whereas more realistic vehicle models are in gen-
eral non-dfferentially flat, e.g. 13, 21] for the helicopter case.

Since high-fidelity helicopter models are known to be noffiedéntially flat, a standard
approach in the literature, to circumvent thifidulty, has consisted in progressively sim-
plifying these models until they become flat. The drawbadkét the domain of validity,
of these simplified representations of the high-order belier dynamics, becomes ques-
tionable. Hence, rather than generating optimal trajéztdrased upon such questionable
models, we choose here an alternative approach, consistiaging only the rigid-body

6Note that, in the presence of constraints, flatness parsesten implies a path constraint on the flat outputs,
resulting from complex transformations of the control /andtate regions. These transformations may lead to a
loss of convexity, which may be detrimental to real-timeimad control computationslp, 26, 27]. However, it
is our experience that for complex, high-order, highly imesr plants, the benefits from the elimination of the
dynamical constraints outweigh the disadvantages duetogeastraints on the flat outputs.
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dynamics as the model for the TP, with total aerodynamic forces anal tobments as
the plant inputs (rather than the vehicle control inputshpviusly, this corresponds also
to a simplification of the helicopter HOM of Chapter 2, since are replacing the HOM
with the low-order rigid-body dynamics. However, if the bandth of the control inputs is
kept low, then replacing the helicopter HOM with only theididgpody dynamics becomes
acceptable for planning purposes. The main drawback ofjukmrigid-body dynamics, as
a substitute for the helicopter HOM, comes from losing tHatienship between the total
aerodynamic forcgmoments and the vehicle control inputs. In our case, thisilshoot
represent a major drawback since, as stated in Se¢tipthe TP module does not feedfor-
ward the control inputs. On the other hand, the advantagsinfjuhe rigid-body dynamics
(as the TP model) is that it can be shown to be exactly flat.

We recall next the ideas offtiérential flatness in conceptual forfi’F-12]. We suppose
here that a plant’s nonlinear model, derived from first-gipkes, is available and given by

VE>0  X(t) = f(x(t), u(t)) (4.1)

with f(-) a continuous-time, partially fierentiable (sfiiciently) smooth function, with
x(t) € Px c R™ the plant stateu(t) € £, c R™ the control inputt the time variable,
and (P, £,) some compact sets. We give next the following definitiomrfij.4].

Definition 1 The system given by Edt.() is diferentially flat if there exists a flat output
Z(t) € P, ¢ R™, n, = n, two integers r and s, a mapping-) : R™ x (R™)$*! — R of
rank n,, a mappingpo(-) : (R™)"*1 — R™ of rank ny, and a mapping(-) : (R™)"*2 — R
of rank n,, with all mappings in a suitably chosen open subset, sudh tha

2(t) = y(x(t), u(t), U(t), -~ -, ud(1)
X(t) = go(z(t), 2(0), -, 2(1)) (4.2)
u(t) = ¢a(2(0), 20, -+ , 2" (D)

Remark 1 If such mappings can be found then thgatential equatiorﬁ—t¢o(~) = f(¢o(-), p1(°))
is identically satisfied4].

Remark 2 In some caseg is in fact a subset of the state-vectar The functions(-) is
then obvious.

Now, simplified aircraft dynamics was shown to be flat #%t][ whereas simplified
helicopter dynamics was also shown to be flat4i]][ In the sequel, we show that the
rigid-body dynamics, expressed in the body-axis frame fggmendix C of Chapter 2), is
flat when choosing the following six specific states as flapotgt

4.3.1.FLat outPUTS
Recall that the twelve rigid-body states have been defin&hapter 3 &5

x=(xn X xzuvaqrqﬁezp)T (4.3)

Now we give the following result.

"The rigid-body dynamics has been presented in Appendix Chap@r 2.
8Refer also to the nomenclature given in Appendix A of Chapter
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Lemma 1 Let real scalars g and n,, of Definition 1, be chosen such that & 12 and
n, = 6, then by selecting the following six body states as flat datpu

ZZ(XN Xe Xz ¢ 0 lﬁ)T (44)

we can express the remaining six body states

(u vV W p g r)T (4.5)

together with the forces inpu2, = (F&; Feg F2s,)", and moments inputsl2, =
(Mg M2 M2g )", as given in Eq.1.4)-Eq. ¢.9), in terms of the flat outputsand their
derivatives.

Proof 1 See Appendix E.

4.3.2.FLAT OUTPUT PARAMETRIZATION

To transform the trajectory planning problem from an inérdimensional one to a finite
one, a parametrization of the flat outpats= ( Xy Xe Xz ¢ 0 ¥ )T over a space

of basis functions is required. Here numerous alternativesvailable, e.g. generic poly-
nomial parameterizations have been addresse3inL, 49, 50], spline parameterizations
have been applied ir8], 43, 51-55], whereas pseudospectral parameterizations have been
used in pP6, 47]. In this Chapter, and with a view on using a computationaifctable
approach, we apply elementary polynomial parametrizatiag was also done ing, 14].

Using Eq. ¢.4), we can express the flat outputs as

20 =( 0 X 0 60 o) w0 ) =(dar Zo]at) (4.6)

with t the time variable, anth,, }E:jgz‘.j;) the to-be-determined polynomial dfieients.
From this flat output definition, and grom the rigid-body dymas, we infer that integer

r = 1 in Definition . Now, from [14] we need to choose such thah > 2(r + 1)+ 1 =

n > 5. In order to increase the likelihood of finding feasiblgectories, especially for the
autorotation case, the integershould be chosen much higher than its lower bound, i.e.
n > 5. However, choosing a highwill inevitably increase the computational cost of the
optimization problem, hence a tradé-needs to be considered. Based upon simulation re-
sults, we choose = 7 as this provided a good compromise between trajectory gmess

and computational cost

4.3.3.0OPTIMAL TRAJECTORY PLANNING FOR THE ENGINE OFF cASE
The TP optimization problem, as in Chapter 3, consists osafomctionall(-), with contri-
butions from a fixed cosb(-), and a running cost over timﬁ Y(-)dt, with the independent

%Here the integes in Definition 1 is not defined since the flat outpatslepend only on a subset of the states
and not on the model inputs

10We do acknowledge that this is a rather empirical justifiratin fact a more rigorous analysis of the following
trade-dt: trajectory smoothnesss. computational tractabilityis here desirable.
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time variablet defined over the time domai® = (T,, T¢), where the final tim& '+ may be
free or fixed. This cost is given by

J(X(E), u(t), To, T) == D(X(To), X(T+), Tt) + L P(x(t), u(t), t)dt 4.7)

and from Definition 1 here-above, this cost is equivalenkgressed as a function of
the flat output as follows

I(Bo(z(1), 2(1)), pa(2(1), 2(1), 2(1), To, T1) = D(Po(Z(To), «(To)), $o(2(T1), 2(T1)), T1)
+ [, W(Bo(2(0), Z(1)), g1 (z(1), 2(1), (1)), t)dt
(4.8)
with the mapping®o(-) and¢1(-) given by Eq. {.39-Eq. ¢.44). The solution to the
optimal trajectory planning gives the optimal polynomiabﬂﬁcients{a,j}SZS:}Z;;) which
minimize the cost functional(-)

@0y = arg minJ(¢o(z(0). 20). ¢1(2(0). 2. 20). To. Tr) (4.9)

while enforcing the following constraints (which are siamito the ones of Chapter 3)

¢ An initial-time boundary condition which corresponds, ir @¢ase, to the initial val-
ues of the control inputgy(z(T,), z(To), 2(To)) and statedo(z(T,), Z(To)).

¢ A final-time boundary inequality condition, of the form
Br(po(z(T1), 2(T1)), p1(2(T1), 2(T¢), (T¢)), Tr) <O (4.10)
e An algebraic trajectory inequality constraint, of the form
T(¢o(z(t), z(1)), pa(z(t), 2(1). 2(1))) <0 teQ (4.11)

Remark 3 Notice that, contrary to the optimization problem of Chaf3ehere are here no
Ordinary Differential Equations (ODESs) constraints that need to be ex&dr This allows
for significant computational benefits.

Now, computing a numerical solution to the continuous-tprablem formulation,

Eq. 4.8-Eq. ¢.17), requires first some form of problem discretization. Agaith an eye

on computational tractability, in this Chapter we chooséngpke discretization scheme,
involving K collocation points, evenly spaced on dom&Qifi.e. resulting in the discretized
domainQg = {To t1... tk_2 T¢}). We use here a simple rectangular discretization approach
using 16 evenly spaced points Obviously better discretization methods exist, however,
our objective, in this Chapter, is also to keep the compartati cost to a minimum. Once
discretized, our problem is transcribed into a NonLineasgPamming problem (NLP)

11Based upon simulation results with initial altitudes belb®0 m, the choice of 16 collocation points provided
a good compromise between accuracy and computationahlvibit \We do acknowledge that this is a rather
empirical justification. In fact a more rigorous analysighué following trade-€: accuracyvs. computational
tractability is here desirable.
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[56, 57], this latter being solved numerically by well known arfi@ent optimization tech-
nigues. In our case we use the MATLAB functitminconof the Optimization Toolbox,
based upon an Interior Point (IP) methd@9-62. This nonlinear optimization takes a
few seconds to complete in a MATLAB environment (and mayliikee one or two orders
of magnitude faster, once programmed in the C language) ddieas next, in more details,
the various elements of our optimization problem EqS-Eq. ¢.11).

COST FUNCTIONAL

First, we choose to set the fixed cd) to zero. Indeed, this fixed cost may equivalently
be replaced by tight bounds on the final state values (assfisdun Chapter 3). In turn
this simplifies the optimization process, and lowers the patational cost. Next, the cost
objective for the un-powered flight case, i.e. autorotat@ning, is defined as a running
cost over time, and is given by

Jorr(x®.u®) = [ [(FRe )2 + (FBg,)2 + (F26,)% + (MBg )2 + (M2g )2 + (M2, )?
+WLU2 + W2 + WoW? + W, (y — wf)z]dt
(4.12)
This cost is identical to the one of ERR.{) in Chapter 3, except for the following

e The cost in Eq. §.9) of Chapter 3 encourages smoother control policies, by min-
imizing the rate of control inputé? + 62, + 62, + 62, These control inputs rep-
resent the true inputs to the helicopter system. SimildaHg, cost in Eq. 4.12)
also encourages smoother control policies, however, dimedrue control inputs
do not appear in the model of SectiérB.1(in this model the forces and moments
are the inputs), the cost in Egt.(2 minimizes the rate of all forces and moments
(FRs,)? + (F2s )2 + (F&5,)? + (MRg, )% + (M2 )? + (M@g )%

e The main rotor Revolutions Per Minute (RPI®)yr is not included here, since this
state does not belong to the rigid-body states, and hencedw@ppear in the model
of Section4.3.1 The issue will further be addressed in Sectios. 3

FINAL-TIME BOUNDARY CONDITION

Now, with respect to the final-time boundary condition, apressed in Eq.4. 10, the
aim is here twofold: 1) set the vehicle on the ground, pogsabh specified location; and
2) provide tight bounds on the vehicle kinetic energy andualé angles, in accordance
with technical specifications for safe (i.e. successfuijllag. We specifically address the
definition of a 'successful’ autorotation landing.

Definition 2 A successful autorotation landing is defined as follows

« Final values for the body horizontal velocitigg < 0.5 mys, andjv| < 0.5 ms'®,

12Note that numerical methods for solving NLPs fall into twaegmries, namely heuristic methods and gradient-
based methods. The main idea behind a heuristic optimizatiethod is that the search is performed in a
stochastic manner rather than in deterministic . [ Heuristic optimizations, e.g. genetic algorithms, are
known as global techniques, i.e. converging towards thbagloptimum. On the other hand gradient-based
methods, such as Sequential Quadratic Programming (SQRbeoior Point (IP) methods, are known as local
methods in that, upon convergence, a locally optimal swhutvill generally be obtained>f].

13Non-zero horizontal velocities allow for a so-called shinfeskids landing.
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e Final value for the body vertical velocitw| < 0.25nys.
o Final values for the roll and pitch anglég| < 10°, and|g] < 10°.

Since roll and pitch angles will not be controlled by the THigtissue will further be dis-
cussed in Sectiofi4), we also derive, in Appendix D of Chapter 4, the maximumgtetde
roll (or pitch) angle, for a successful landing, and hencgtify the chosen attitude bounds
|#| < 10°and|g] < 10°.

Bound on total flight time  In Chapter 3, we found that for a fixed inittalheight above
ground, increasing the initial helicopter velocity hadyoarelatively limited &ect on flight
time and hence stabilized rate of descent. This potentiatlicates that the flight time,
in autorotation, is only lightly correlated with the initigehicle velocity, whereas it is
primarily influenced by the initial height above ground. Jt&d us to consider an empirical
boundTorr onflight timeTs, Tt < Togg, with Torr deduced from simulation experiments
as follows: Letxz, be the initial height above ground at the instant of engiilari, and
recall vi, to be the helicopter induced velocity in hover, then the loblig:r is set, after
several simulation experimentswithin the range:

Xz, Xz,

<T <
1.75vn — °7F = 150w,

(4.13)

Remark 4 The reason for bounding the flight time £ Togr is discussed next. Although
the main rotor RPM dynamics is used in the helicopter noali¢OM, the RPM dynamics
is not included in the flat model description, i.e. in Sectloh ], since not part of the rigid-
body dynamics. By so doing, the same flat model can be usedtfotie engine OFF and
ON cases, hence simplifying the trajectory planning safweowever, excluding the main
rotor RPM dynamics from the planning problem is only pogsibé. will result in feasible
autorotative trajectories, if the trajectory flight time kgpt small enough. Since the RPM
dynamics is eliminated from the planning problem, the maiomrRPMQyr signal may
not be required for the trajectory tracking system eithehu3, the standard requirement
consisting of adding a dedicated magnetic or optical RPMseeron the main rotor shaft
or on the gear-box of a small-scale helicopter, may here opged.

TRAJECTORY CONSTRAINTS

Regarding the trajectory constraints, as expressed ivEM))( these are conceptually iden-
tical'® to the ones set in Sectich2.20f Chapter 3, except for the trajectory constraints on
the inputs, and on the main rotor RPWyr (see Sectiod.3.3. For the constraints on the
inputs, these are set on total forces and moments (basedumpolation results). Regarding
the main rotor RPMyR, there are no constraints, sinQgr is not part of the state-vector.

14By initial we mean at the start of the engine OFF flight maneuver.

15The codficients 1.50 and 1.75 ili\;z—s'vm < Torf < 1;%)'“ are empirically deduced, after several simulation ex-
periments, for the case of the small-scale Align T-REX logdter, with physical parameters as given in Table
of Chapter 2. A dfferent helicopter, or even an Align T-REX helicopter with &efient main rotor inertia, may
likely result in diferent coéficient values.

1650me numerical values of bounds and constraints nfésrdiom the ones used in Chapter 3, in particular since

Chapter 3 and Chapter 4 do not use the same helicopter UAkeaireed in Sectior8.5of Chapter 3).
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4.4.ROBUST CONTROL BASED TRAJECTORY TRACKING (TT)

The goal is to design a TT module for our small-scale helieoptaV. This tracker should
allow the vehicle to fly along previously planned optimajeédories. However, with four
control inputs and at least twelve measured outputs (i.e.rifid-body states), the heli-
copter is heavily under-actuated, which inevitably withit the performance of the track-
ing system. Now, since control over position and velocitaiprimary objective of our
application, we choose to have the helicopter track theioilg seven references, namely
3D inertial'’ positions &y xe Xz)T, 3D body velocities{ v wT, and heading angkg. In
addition, based upon simulation results using the helexdgOM, it is found that position
dynamics is much slower than velocity dynamics. This juestifa design philosophy based
upon the successive loop closure of feedback loops, wheegueestial design process of
inner- and outer-loops is sought, also known ddaster-Slavecontrol configuration see
Fig. 4.2. This design approach is thus related to the well-known-$eee separation prin-
ciple [63], between slow and fast dynamics of a dynamical system, apgdases that the
bandwidth of the inner-loop is much higher than the bandwadtthe outer-loop’.

Cost Function

&
Constraintsl

XTPmaster XTpsiave

h 4

Inner-Loop | ek e

ek _| by i
Trajectory u "| NonLinear X ¥| Output
. Tracker I Simulation l Matrix

YSIa\re

Yinaster

Figure 4.2: Master-Slave control configuration.

The outer-loop aims at tracking the planned inertial 3D f@si(xy Xg Xz)1p. On the
other hand, the role of the inner-loop consists in trackivggplanned headingrp, and the

1"Wwhich is equivalent to North-East-Down (NED) position irrdlight dynamics model.

18Note that the control design by time-scales leads not ondysimpler and more modular control architecture,
but also to a potentially more robust ori&f]. Indeed the existence of time-scales means that the syistem
numerically ill-conditioned, hence a control law ignorititgese aspects may also be ill-conditioned, thus more
difficult to implement, and potentially more sensitive to mauglerrors B6).
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Figure 4.3: Outer-Loop, control interconnection diagram.
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Figure 4.4: Inner-Loop, control interconnection diagram.

planned 3D body linear velocities {/ W1, these latter being adjusted by the outputs of
the outer-loop controllen(v w) ] to allow for position control, see Fig.3and Fig.4.4. In
these figurest represents the state-vector (with dimension twenty-falefining the states
of the nonlinear helicopter HOM. Thei¢ W] can be seen as a "delta" correction to the
nominal velocities v w{,. Hence, the to-be-tracked velocities by the inner-loop-con
troller are given by v w{, + (uvw),. Next, since the outputs of the outer-loop are given
in the inertial frame, i.e. North-East-Down (NED) frame, meed a nonlinear inversion to
convert the reference velocities from NED to body frame,(uev W] = T] (Vn VE Vz)g,
with the rotation matrixCo, given in Eq. £.8) of Chapter 2. Note also that in Fig.4 all
signals, except position, are fed-back into the contratiémprove the closed-loop perfor-
mance.

As the helicopter dynamics is nonlinear, the design of theditroller necessitates an
approach thatféectively respects or exploits the system’s nonlinear stinec To this end,
several control methods are available, from 1) robust ofir2) classical gain-scheduling,
and Linear Parameter-Varying (LPV) approaches; to 3) tndplinear control methods
(e.g. nonlinear receding horizon control, Lyapunov basethods such as sliding mode
and backstepping, adaptive control, or even passivitgdapproaches). In this Chapter we
select an approach that combines simplicity and compuraltificiency, i.e. we choose to
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apply a robust contrql strategy. This method consists in using a nominal LTI planided
with an uncertainty, and applying a small gain approdch 9] to design a single robust
LTI controller, valid over a wide portion of the flight envele. Now, rather than modeling
the uncertainty in a detailed or structured manner, an inpuitiplicative uncertainty is
added here to compensate for the unmodeled plant nonliiesaaind unmodeled higher-
order rotor dynamics, by lumping all types of model uncertainty together into anpex,
full-block, input multiplicative uncertainty. The robustntroller synthesis consists then in
obtaining a controller insensitive to this multiplicativacertainty at the plant input.

4.4.1.LINEAR MULTIVARIABLE {4 CONTROL DESIGN

Both, the inner- and outer-loop controllers are designedmling to the robust control de-
sign paradigm, in a two-degrees-of-freedom control stméc(i.e. using both feedback and
feedforward). Here the feedback part is used to reducefbet®f uncertainty, whereas the
feedforward part is added to improve tracking performari¢g [and for optimality, both
feedback and feedforward are designed in one step. Firstrénal plantP(s) (andPy(s)
for the disturbance) is obtained by linearizing the nordinteelicopter model at some spec-
ified condition (to be discussed in the sequel). Next, we @dfie generalized pla@p(s)
which maps the exogenous inpwts= [nT r™ d"]" and control inputsi, to controlled
outputsz = [z,7 z,"]T and measured outpuis=[r" y']T, see Fig4.5.

Generalized Plant Gp
> (Wo ) —> Zu
Actuator Limits
n . ng Magnitude/Rate
o
oise
Shaping Filter
r r
l"‘ Wa)
» Z
Disturbance - \v&/ P
d AT, =l Performance
a wd » Pd
Disturbance
Shaping Filter @
Uncertainty +
u haping Filter
y
+
Plant

Trajectory «
Tracker

Feedback + Feedforward

Figure 4.5: Closed-Loop interconnection structure fousitzontroller synthesis.

The signals include also the sensors naigandn,), the reference signaits the distur-
bance signalsl, the actuators performance signal (to limit actuator défleanagnitudes

1Unmodeled in the low-order nominal LTI plant used for cohttesign, these are however modeled in the high-
order nonlinear plant of Chapter 2.
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and ratesy,, the desired performance in terms of closed-loop signgloeses,, and the
system outputg (andy,), such that

Z O 0 O W, n
r o 1 0 0 r
y W, O Pg Wy P (I + AWy) u

For the weights, which help shape the performance and noésstcharacteristics of
the closed-loop system, we use the input weighi(gy, the performance weight ¥s), the
actuator weight \M(s), the sensor noise weight M#), and the disturbance weight}#).

Now Wi, (s) andA(s), in Fig. 4.5, parametrize the uncertainty or errors in the model. The
Transfer Function (TF) W(s) is assumed known and reflects the amount of uncertainty
in the model, whereas the TA{(S) is assumed to be stable and unknown, except for the
norm condition||A(s)]le < 1. Next, the generalized pla@p(s) has a linear fractional
dependence on the input uncertaintg), and is represented by the upper Linear Fractional
Transformation (LFT) interconnection

(Z)sz(YJV)zFU(M,A)(YJV) (4.15)

Vv

whereM(s) is a known LTI plant, see Figl.6, andA(s) some complex, full-block, four-by-
four’, operator specifying how the uncertainty enters the plgnachics.

Uncertainty

—

w M — Z

Plant + Weights

—

Trajectory Tracker

Figure 4.6: Standart¥ — A — K robust control framework.

The feedback structure associated with the LFT intercaioreEq. ¢.15 is given by

ZA WA
z |=M| w Wa = AZy (4.16)
% u

with z,, andwy,, the inputs and outputs of the operaxgs), see Fig4.6, and the closed-
loop operator from exogenous inpwtgo controlled outputg is given by

20The helicopter plant has four control inputs.
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T(M, K, A) = Fi(Fu(M, A),K) (4.17)

with K(s) the to-be-synthesized controller. The goal of the coldras to minimize
the L>-gain boundy from the exogenous inputg to the controlled outputs, despite the
uncertaintyA(s). Based upon small gain consideratiofs,[19], this goal is approximated
by the minimization of thé+,, norm of F|(M, K). Now, better performance may potentially
be obtained by synthesizirgys) through D-K iteration 5, 66]

K = in_inf |IDF(M,K)D™}l., 4.18
arg min_ inf | (M, K)D™H| (4.18)

with D(s) a stable and minimum-phase scaling matrix, chosen su¢tDfsA(s) =
A(S)D(s).

We have presented here-above a general TT architectutewilhde applied twice,
once for the inner-loop controller design and once for the=eloop controller design.
When synthesizing the inner-loop TT, we use the followingnsis: the control inputs
U = (Ag 61c 615 B1R)", the reference signals= (urp + Ug Vrp + Vg Wrp + Wy YTp)',
the wind disturbance signals (given in inertial framte)= (Vn, Ve, Vz,)', the system
outputsy = (uvw pqgre¢ 6y)T, and the sensors noise(added to the system outputs).
When synthesizing the outer-loop TT, we use the followirgmals: the control inputs =
(Vn VE V)|, the reference signats= (Xy Xe Xz)1p, the system outputg = (xn Xe Xz) 7,
and the sensors noise(again added to the system outputs). Here the outer-loop doe
not include disturbance signals, since the wind has alrbaéy accounted for, within the
inner-loop control structure. For controller assessmadtalidation, a two-step approach
is here adopted consisting in: 1) evaluating first the cldse@ characteristics, with the
help of several 'metrics’, using the nominal LTI plarR{and Py); and 2) evaluating the
closed-loop characteristics on the nonlinear helicopti@hof Chapter 2. In the following
section, we briefly present these control assessment taetri

Remark 5 The same control architecture will be used for both the eaddi-F and ON
cases, what will however change, between the OFF and ON dadée numerical values
of the weights and controller matrices.

4.4.2.CONTROLLER ASSESSMENT METRICS
For controller assessment, we analyze the results fromaéweetrics’ [64].

e The output loop TH.(s) = P(s)K(s), representing the open-loop gain.

e The so-called 'Gang of four’ TFs6[/]. Here the following signals, as found in
Fig. 4.5, are used: the control inputs the reference signals the system outputs
Y, Yo, and the sensors noisen,. To these signals, we also add two disturbance sig-
nals, as defined ing[/]: the input disturbance signatk and the output disturbance
signalsd,, in order to define the following TFs (see Fig’)

1. The input sensitivityi(s) = (I + L(s))"*P(9), representing the T& — Y.
2. The output sensitivito(s) = (I + L(s))™%, representing the T8, — Yo.
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Figure 4.7: Basic feedback loop.

3. The input complementary sensitivity(s) = L(s)(l + L(s))™%, representing the
TFsr — y, (alson, — Yy, andd; — u).

4. The output complementary sensitivity(s) = K(s)(I + L(s))™%, representing
the TFsr — u (alson, — uandd, — u).

o To evaluate the frequency range over which the controffescéive, we consider the
following bandwidths $4]

1. we being the gain crossover frequency whérés)| first crosses 0 dB, from
above.

2. wg being the lowest frequency whe®&(s)| crosses -3 dB, from below.
3. wgr being the highest frequency whéig(s)| crosses -3 dB, from above.

e The Robust Stability (RS) metric, definedRS < ua(N11(9) < 1, with N(s) =
Fi(M(s), K(9)), with N11(s) the upper left block corresponding to the full, complex,
four-by-four uncertainty (i.e. our plant input multiplicative uncertainty), andys)
as given in Fig4.6.

» The Robust Performance (RP) metric, definedRds < ua(N(s)) < 1, for the
structured uncertaintk as

A = {diag(A, Ap) [|Aplle < 1} (4.19)

with Ap an unstructured (complex, full-block), fictitious uncéntg of size dimv)
by dim(z), with w the exogenous inputs, azdhe controlled outputs.

Remark 6 We compute both an upper and lower bound for the RS and R&wialy the
method in pg]. As in [68], we have added 1% of complex perturbationsAtan order
to improve the convergence of the lower bound, albeit at ¥peese of slight additional
conservatism.

In the following sections, we address the weights seleahcontroller validation, for
the engine OFF case.
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4.5.DEsSIGN OF THE ENGINE OFF INNER-LOOP CONTROLLER

As stated in Sectiori.4, with four control inputs and twelve measured outputs, tak h
copter is heavily under-actuated, which inevitably lintlte performance of the tracking
system. As mentioned earlier, see also FEig, we choose to have the inner-loop track
the following four reference signals: 3D body velocitiesMw) ", and heading anglé.
Recall also that the goal of the controller is to minimize tBggain boundy from the
exogenous input® to the controlled outputg, despite the uncertainty(s). The various
signals are further given as follows: the exogenous inputs[n™ r7 d™]7, the controlled
outputsz = [z,7 z,7]7, the control inputss = (6y 61c 1s 6rr)", the measured outputs
v = [rT yT]", the reference signats= (Urp + Ug Vrp+ Vg Wrp + Wy ¢tp)", the system
outputsy = (uvw pqre¢ 0y)T, the wind disturbance signals (given in inertial frame)
d = (Wn, Ve, Vz,)", and the sensors noise(added to the system outputs), see HEig.
Here the signay contains all the available measured output signals, exoefite 3D po-
sition, since the latter is only of interest for the outesgacontroller.

4.5.1.CHOICE OF NOMINAL PLANT MODEL FOR THE INNER-LOOP CONTROL DESIGN

As mentioned in Sectiof.1, we do not use any gain-scheduling philosophy in this Chap-
ter, rather a single LTI plant is used for controller desigdow, for an engine ON flight
condition, it is relatively easy to find equilibrium pointss. steady-state flight conditions,
at which the nonlinear helicopter model of Chapter 2 cantegliized. The resulting LTI
models can subsequently be used for LTI control design. Mewsdor the engine OFF
flight condition, this set of equilibrium points, i.e. stgaautorotative flight conditions, is
rather small and in certain situations even non-existemtekample, when an engine fail-
ure happens at a low altitude, the helicopter does not evaarhra steady-state autorotation
(corresponding to a constant main rotor RPM), rather thiedyter system is continuously
in transition from one non-equilibrium point to the next. fatigate this problem, the
approach used here consists in excluding the main rotor RRNfrom the state and mea-
surement vectors, and use this "quasi-steady" modelingpapp to find the equilibrium
points. By so doing, the control architecture and contraigte philosophy for the engine
OFF case can be made exactly identical to the engine ON casee lsimplifying the over-
all control system design.

The state-space data used to design the inner-loop trejechaeker is as follows: the
state-vector is of dimension nine givenxy (uvw pqgr¢ 8¢)T, the control inputi (given
here-above) is of dimension four, the wind disturbath¢given here-above) is of dimension
three, and the measurements vegtot x. This LTI model is obtained by linearizifg
the helicopter nonlinear model of Chapter 2, at a specifiortréd flight condition. This
condition corresponds to hover, with the engine OFF (nadt low the main rotor RPM
is not in equilibrium anymore). Choosing such a flight coiedit with an associated initial
velocity of zero, can potentially provide the best desaipbf helicopter behavior during
landing (where the helicopter velocity is also very low) eThsulting state-space data given
in Appendix H? of Chapter 2. By using the eigenvalues of theamatrix in the Popov-

21according to the linearization procedure given in Sectiof. 1.
22The state-space data of the LTI plants given in Appendix Hiwd@er 2 are in S.I. engineering units. However,
before using the plant for control design, scalings havenhesed on the input and output matrices in order to
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Belevitch-Hautus (PBH) rank test, we found that this LTIntlavas both controllable and
observable. Simulation results, presented later in Ch&ptieave shown that this nominal
LTI plantis indeed suitable for the design of controlleraimengine OFF situation.

4.5.2.SELECTION OF WEIGHTS

The robust control framework makes use of several useratkfireights, see Figl.5. In
this Chapter, these weights have been chosen as follows.mTiftglicative uncertainty
weight W, () is of the form W, (s) = diagwini(S), Win2(S), Win2(9), Win2(9)], set on the four
control input channela = (6y 61c 615 6tr)", With 6 the main rotor blade root collective
pitch, 6;c the main rotor lateral cyclic pitclé;s the main rotor longitudinal cyclic pitch, and
Orr the tail rotor blade collective pitch. Furthes,1(s) andwinz(s) are filters whose magni-
tude represent the relative uncertainty at each frequermytiije level of uncertainty in the
behavior of the helicopter is assumed frequency dependgased upon engineering judg-
ment?, we choose here far1(S) to consider 20% uncertainty at low frequency (DC gain),
100% uncertainty at the filter crossover frequency of 10 Hith(WO Hz being roughly the
anticipated closed-loop bandwidth for the vertical veipchannel), and 200% uncer-
tainty at infinite frequency. Again, based upon enginegridgment, we choose favi,2(9)

to consider 40% uncertainty at low frequency (DC gain), 106ertainty at the filter
crossover frequency of 5 Hz, and 200% uncertainty at infinélguency®, giving

Win1(9) = (2s+ 22.21)/(s+ 1111)

Win2(9) = (25 + 23.75)/(s+ 59.37) (4.20)

Next, the performance weight filter J) is placed on they( v, w, y) error signals, to re-
flect the tracking objective for the three body linear vdiiesiand the heading angle. Here
Wp(9) is a four-by-four, diagonal, frequency-varying weight, &) = diagfw,(s), wu(s),
Ww(S), Wy (s)], with each diagonal term defined as a first- orderi’séﬁf’% At low frequen-
cies this weighting function should be high in order to kelap error small. Beyond the
anticipated bandwidth of the closed-loop system, the trackrror may be released and
W () rolls off [64]. After several controller design cycles, we have setttad f

For wy(s) (Mp,ws,As9 = (2,0.57rad/s, 0.001)
For wy(s) (Mp,ws,Ass = (2,0.57rad/s, 0.001)
For ww(s) (Mp,ws,As9 =(2,90rrad/s, 0.001)
For wy(s) (Mp,ws,Asy = (2, 4rrad/s, 0.001)

(4.21)

This means that a steady-state tracking error of 0.1% wipeet to the normalized
filter input is allowed. Further, the flerence with the engine ON case is in terms of track-
ing bandwidth: 1) for the engine OFF case, it is lower on thezomtal channelsy and
v velocities) since the LTI model used for control design isiewhat less "accurate’ (due
to the non-fixed main rotor RPM, and high descent rates); afdr2he engine OFF case,
the tracking bandwidth is considerably much higher on theicad channel { velocity)

obtain a normalized LTI plant.

23The chosen uncertainty may be overly conservative, or may be unrealistic. Alternative ways to shape the
uncertainties exist, e.g69]. The goal here is simply to add some robustness to the closgdsystem.

24For each control input, Table 1in Chapter 1 summarizes their primarjieets on the vehicle response.

25The uncertainty is large at high-frequency since we use aolaler model.
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to allow the tracking of a rapidly changing vertical velgcieference. The latter is only
feasible if high-bandwidth actuators are mounted on thebeler (at least for the verti-
cal channel). Now, tracking should not be achieved at thé afo®o high control &ort.
Therefore, both actuator deflection (i.e. amplitude) arte aae penalized through weight
Wy(s) = diagWac(s), Wact(S), Wact(S), Wac(S)], with

S+ w1
S+ w2

corresponding to actuators with a bandwidth of approxifget® Hz, i.e. twice the
bandwidth for the engine ON caSe(see Appendix B for the engine ON case). Next, a
noise weight W(s) is set to represent the actual noise levels associatedeatth sensor,
and is defined as a nine-by-nine, constant, diagonal scediaigix described as follows
(given here in its unscaled form)

wact(s)zlo”( )n with (n,wr, wy) = (3,40rrad/s 400t rad/s)  (4.22)

Wy (s) = diag[001m/s,0.01m/s,0.01m/s, 37/180rad/s, 37/180rad/s, 37/180rad/s,
n/180rad, 7/180rad, 37/180rad]
(4.23)
Finally, a wind disturbance weight W&) = diagfway, (S), Wy (S), Wa, (S)] is added to

simulate the frequency content of the NASA Dryden atmospheind modef’ [71], re-
sulting in a disturbance bandwidth of 0.06 Hz, 0.12 Hz, a®® Gz along the North, East,
and Down (NED) axes respectively. The wind disturbance hitsigre modeled here, in
normalized form, as low-pass filters, as follows

Wy () = AgZ2  with  (Ag, w1, wp) = (10%,0.227 rad/s, 2.2r rad/s)

Wee (S) = Adsﬁfff with  (Ag, w1, w2) = (10%,0.37 rad/s, 3 rad/s) (4.24)
W, (9) = Aasr2  with  (Ag, w1, w2) = (10°, 7 rad/s, 10r rad/s)

4.5.3.CONTROLLER SYNTHESIS AND ANALYSIS

For the D-K iteration [ 2], we obtain after four iterations a stableontrollerk (s) of order
38, using §' order (constantps-scalings. The controller is further reduced td"3rder,
after balancing and Hankel-norm model reducti@fi]| without any significant ect on
closed-loop robustness and performance. In Fig. we visualize the relevant TFs, with
the bandwidths for the three main TFs given in Tableé In particular, we see that the
bandwidth of|T;(s)| is about equal to the bandwidth of the actuators, i.e. arduh#iz
(obviously high enough to stabilize the plant, see our disimn in Sectior?.4.3of Chapter
2). Also the closed-loop disturbance rejection, given ig.Ri.9, shows relatively good
attenuation of wind disturbances, i.e. approximately -83at a frequency of 2 rad’s
along the Down axis.

26The engine OFF condition may hence dictate the requirecimtspecifications.

2TThe wind turbulence, or disturbance, frequency contenendep upon the mean wind value, and also upon the
vehicle height and speed. For the mean wind value, we chogs &/nich is equivalent to a Beaufort wind force
value of 4, corresponding to the yearly average wind foromglhe coast in The NetherlandsJ]. For the
vehicle height and speed, we chose 1 m and/'d nespectively, since a low-speed flight condition, closthéo
ground, results in the highest wind disturbance bandwidthé NASA Dryden model.

28The controller itself is a stable dynamical system.




160

4 .ON-LINE TRAJECTORY

PLANNING AND TRACKING: SysTEM DESIGN

Singular Values

Maximum Singular Value (dB) (dB)

80|

-100

10°

10t 10° 10"

Frequency (rad/s) (radls)

Figure 4.8: Singular values df(s), Si(s), So(s), Ti(s), and Ty(s), of the
inner-loop trajectory tracker (Engine OFF case).
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Figure 4.9: Closed-Loop wind disturbance rejection, forthdeast-Down
(NED) winds, of the inner-loop trajectory tracker (EnginEfcase).
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Table 4.1: Open- and closed-loop bandwidths.

Bandwidths (rags)
IL(I | 1Si(I] | ITi(9)
Case Wc Wg WBT

Engine OFF (Inner-Loop)| 35 2.4 65
Engine OFF (Outer-Loop) 3 0.29 6.7
Engine ON (Inner-Loop)|| 15 2.15 15
Engine ON (Outer-Loop)|| 0.8 0.37 15

We also see thd, is not well-behaved, since it remains high at both low- arghhi
frequencies. This can be explained as follows. The outmg Igs) is a 9x9 matrix, with 4
singular-values having very high values (for low-frequies: These high singular-values
correspond to the 4 controlled channels. Since our helrapunder-actuated, the remain-
ing 5 singular-values are all very low (for all frequencieBhus, inverting [ + L(s)) to get
S, results in maximum singular-values which are most ofteseko 0 dB.

Next, RS and RP are visualized in Figl0and Fig.4.11 We can see that lower and
upper bounds are indistinguishable. We observe that tineopdial RS is guaranteed (i.e.
a maximum value below 1). On the other hand, as for the enghe&se, we see that
RP is not met (i.e. a maximum value well above one). Note thiat hay potentially
be due to the fact that the chosen uncertaikts), shown in Fig.4.5, is not realistic. If
robust performance specifications need to be met, then thisl potentially be done by
lowering the amount of model input uncertainty, gordy relaxing some of the assumptions
made during the various weights selection. However, fromesperience, this will likely
compromise the closed-loop performance of the contraliece tested upon the nonlinear
system.

1N )

10° 10° 107 10" 10° 10' 10° 10°

107 107 10° 10
Frequency (rads) Frequency (radls)

Figure 4.10: Robust Stability of the inner-loop tra- Figure 4.11: Robust Performance of the inner-loop
jectory tracker (Engine OFF case). trajectory tracker (Engine OFF case).
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4.6.DESIGN OF THE ENGINE OFF OUTER-LOOP CONTROLLER

We first recall that the design approach is based upon thekmeiln time-scale separa-
tion principle 3] between slow and fast dynamics of a dynamical system, tieguh a
so-calledMaster-Slavesonfiguration (see Figl.2), and supposes that the bandwidth of the
inner-loop is much higher than the bandwidth of the outepit

As mentioned earlier, refer also to Fig.3, we choose to track the following three
reference signals: 3D inertidlpositions &y Xz Xz)T. Recall also that the goal of the
controller is to minimize thel,-gain boundy from the exogenous inputs to the con-
trolled outputsz, despite the uncertaint(s). The various signals are further given as
follows: the exogenous inputs = [nT rT]", the controlled outputg = [z,7 z,"]", the
control inputsu = (Vn Ve Vz)4, the measured outpuis= [r" yT]7, the reference signals
r = (Xn Xe Xz)1p, the system outputg = (xy Xe Xz)7, and the sensors noise(added to
the system outputs), see Fig5. Here the outer-loop does not include disturbance signals,
since the wind has already been accounted for, within theritoop control structure.

As discussed in Sectioh ], a single LTI plant is again used for controller design. The
state-space data used to design the outer-loop trajectmier is obtained as follows. An
LTI dynamical system can be formed by connecting the nonifamodel, used for the
inner-loop TT, with its inner-loop controller, and subseqtly adding a set of integrators
on the 3D velocities to generate the 3D inertial positiong Xe Xz)". This manipulation
is readily done in MATLAB, and results in the nominal LTI mddeeded to design the
outer-loop position controller. In our case, we obtain @é#hby-three input-output system,
with a state-vector of dimension 55. Next a minimum realizats obtained, resulting in
a state-vector of dimension 42 (the LTI model is too big to bdeal to the Appendix).
Note that here too scalings need to be applied. Further, acepefor three poles at the
origin (corresponding to the integration of the 3D velas), all other eigenvalues of the
A matrix are stable and well damped, implying easier corgralkesign. Again, by using
the eigenvalues of thé matrix in the PBH rank test, we found that the LTI system ishbot
controllable and observable.

The design philosophy for theouter-loop TT parallels that of the inner-loop.

4.6.1.SELECTION OF WEIGHTS

The input multiplicative uncertainty weight M{(s) is of the form W, (s) = diag[win2(9),
Win2(9), Win1(9)], with win1(s), win2(s) identical to the ones used in the engine OFF inner-
loop, in Eq. ¢.20). Herewin1(s) is applied to the vertical velocity channel (recall that we
haveu = (Vn VE Vz);). In the design of the inner-loop TT, in Sectiérb.2, we had chosen
an uncertainty weight equal ti,1(S) on the collective inputy. Now, since the vertical
velocity channel is mostly influenced by the collective infaee Tablel.1in Chapter 1),
we also assign an uncertainty (s) to the vertical velocity. The same argument holds for
uncertaintywinz(s) on the horizontal velocities. Obviously, this choice of tlincertainty

29Based upon simulation results, using the helicopter mdd@hapter 2, it is indeed found that position dynamics
is much slower than velocity dynamics.
30which is equivalent to North-East-Down (NED) position inrdlight dynamics model.
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weight W, (s) is somewhat arbitrary. This said, the purpose here isguatitt some robust-
ness to the closed-loop system.

The performance weight filter ¥{s) is placed on thex, Xg, xz) error signals to reflect
the tracking objective for the inertial position. Here,4) is a three-by-three diagonal,
frequency-varying weight. We have)($) = diagfwy, (S), Wx.(S), Wy, ()], with each diag-
onal term defined as a first-order transfer func@&ff;\%. After several controller design
cycles, we have settled for

For wy,(s) (Mp,ws,Asd = (2,0.1rrad/s 0.001)
For wy.(s) (Mp,ws,Asg = (2,0.1rrad/s 0.001) (4.25)
For wy,(S) (Mp,ws,As9 = (2,4.5nrad/s, 0.001)

Again, a steady-state tracking error of 0.1% with respedh®normalized input is
allowed. The filter bandwidths, on the horizontal channais, adjusted to be five times
smaller than the W(s) filter bandwidths of the inner-loop horizontal channelst the ver-
tical channel bandwidth, instead of a 1:5 ratio, we setttadaf 1:20 ratio. These values
have been obtained after several simulation experiments.

Next, tracking should not be achieved at the cost of too hagtirol &fort (i.e. resulting
in much too large velocity setpoints = (Vy Ve Vz)] for the inner-loop). This means
that both inertial velocities and inertial acceleratiohswdd be penalized, through weight
Wy(s) = diagWaci(S), Wact(S), Wact(S)], with wae(S) identical to the one chosen for the inner-
loop, with engine OFF. Again, this choice may be interpretedather arbitrary, since here
W,(s) is assigned to the inner-loop setpoints= (Vy Ve Vz);, whereas for the design of
the inner-loop controller, \)(s) was assigned to the actuators. Hence, potentially better
choices for W(s) may exist, although the one selected here provided setiisfaresults.
Finally, a noise weight W(s) is also defined to scale the normalized position measuremen
noise. The sensor noise model is defined as a three-by-ttoastant, diagonal scaling
matrix described by (given here in its unscaled form)

Wh(s) = diag[01 m, 0.1 m, 0.1 m] (4.26)

4.6.2.CONTROLLER SYNTHESIS AND ANALYSIS

For the D-K iteration, we obtain after four iterations a $tatontrollerK(s) of order 57,
using 0" orderDs-scalings. The controller is further reduced td"3frder (using the same
technique as for the inner-loop), without arfjeet on closed-loop robustnéssrformance.

In Fig. 4.12, we visualize the relevant TFs (we see tBAR) = So(s), andTi(s) = To(9)),
with the bandwidths for the three TFs given in Tallé. In particular, we see that the
bandwidth of{Ti(s)| is ten times lower its inner-loop counterpart, which is geotte we
do not want both controllers to start interacting with eatiiea Further, RS is shown in
Fig. 4.13 whereas RP is pictured in Fig.14 Again, we observe that RP is not achieved,
whereas RS is well guaranteed.
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Figure 4.12: Singular values &f(s), Si(s), So(9), Ti(s), andTy(s), of the outer-loop trajectory tracker (Engine
OFF case).
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Figure 4.13: Robust Stability of the outer-loop tra- Figure 4.14: Robust Performance of the outer-loop
jectory tracker (Engine OFF case). trajectory tracker (Engine OFF case).
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4.6.3.ADpAPTING THE ENGINE OFF OUTER-LOOP CONTROLLER

When close to the ground, it is crucial to keep the referembeacities as small as possible.

To this end, we adapt the outer-loop controller as follows:gosition tracking is switched-

off, i.e. the values fory(v w) are set to zero, once the helicopter height descends below
a predefined threshold (keeping only velocity and headiacking). This helps lowering

the final (touch-down) values of the 3D velocities, by givimgre time to the velocity
deceleration process. The value of this user-defined @dtitbreshold depends upon the
initial conditions, and depends upon whether it is an en@RE or ON automatic landing.

4.7.CONCLUSION

In this Chapter we have presented a trajectory planningraicling framework, anchored
in the combined paradigms offtérential flathess based planning and robust control based
tracking. Both the engine OFF and engine ON cases are basedthip same planning
and tracking system architecture. In particular, mainnr®BM is not used, neither neces-
sary for the engine OFF trajectory planning, nor for the esponding trajectory tracking,
hence simplifying the overall system design. We have alssgnted what we believe to be
a simple trajectory tracking architecture, capable of maling a small-scale helicopter in
autorotation (i.e. engine OFF flight condition). To this en@ have settled for an archi-
tecture with only two nested loops, controlling positioglacity, and heading, but without
control of vehicle roll and pitch angles. Our methodologyésl-time feasible since it
allows for, computationally tractable, planning and tiagksolutions. In Chapter 5, we
evaluate, through several simulations, the flight contooitml system developed in Chap-
ter 4, using the nonlinear high-order helicopter model ofyabr 2.
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4.8. AppENDIX A: OPTIMAL TRAJECTORY PLANNING FOR THE ENGINE
ON caAsE

The TP optimization problem, as in Chapter 3, consists osafomctionall(-), with contri-
butions from a fixed cosb(-), and a running cost over timj?2 Y(-)dt, with the independent
time variablet defined over the time domai@ = (T,, T¢), where the final tim& ¢+ may be
free or fixed.

CoOST FUNCTIONAL

First, we set the fixed cost tb;, i.e. ®(-) = Ts, to avoid obtaining trajectories with un-
reasonably long flight times. Next, we define a general costtfanal here, applicable for
several types of maneuvers, including taff@md landing, cruise flight, and hover-to-hover
flight. From engineering judgment, we use

Jon(X(t), ut), Tr) = Wr, T+ [ [(F&, )2+ (F&s )? + (F&g,)?
+(Mgex)2 + (Mgey)z + (MEGZ)Z (4.27)
+WV2 + Wrrz]dt

For the first six terms in the running cost over time, i.e. tbetol derivatives, these
have been added to: 1) minimize the battery power consumyaial 2) encourage smoother
control policies, hence avoidingang-bangype solutions, that might excite undesirable
high frequency dynamics or resonances. Next, the t8isadded to limit vehicle sideslip
flight. Indeed, large sideslip decreases the flight perfagaaby increasing vehicle drag,
increasing rojlyaw coupling, and hence increasing the workload of any faeklbontroller.
The ternr? has been added to minimize inter-axis coupling. Finallgjtmhal weights, i.e.
Wr,, Wy, andW;, have been added to evaluate various trafieeithin this cost objective.

BOUNDARY AND TRAJECTORY CONSTRAINTS

The boundary conditions are used to set the initial and ftriadihed) flight conditions, and
also to set the (initial) and final vehicle accelerationse¢ooz Having final accelerations
equal to zero helps obtaining smooth approaches towardsniddewaypoint, or alterna-
tively a gentle touch-down during an auto-land. Furtherrttaximum flight timeT; may
also be limited.

On the other hand, the trajectory constraints serve separpbses. First, they account
for the vehicle’s inherent physical and flight envelope tations, such as bounds on three-
dimensional (3D) position, speeds, and attitude. Secdwcontrol inputs to the rigid-
body dynamics, i.e. the helicopter forces and mométi{s and M2, are also limited,
based upon bounds obtained from simulations using themeanlhelicopter model. Third,
a tail rotor blade tip clearance has been added to avoid grstuike by the tail rotor during
a flare maneuver (see our discussion in Chapter 3). Finhlyairflow through the main
rotor, given bW,otor = W+ pYH — X4, has been limited to half the induced velocity in hover
Vin, 1.€. Vigtor < %vih, as to avoid flight into the chaotic, highly nonlinear, VorRing-State
(VRS) region, refer also to Fig.19in Chapter 2.

31sideslip flight refers to a vehicle moving somewhat sidevesysell as forward, relative to the oncoming airflow.
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4.9. AppEnDIX B: DESIGN OF THE INNER-LOOP CONTROLLER FOR THE

ENGINE ON CASE
As stated in Sectiori.4, with four control inputs and twelve measured outputs, the h
licopter is heavily under-actuated, which inevitably li;mthe performance of the track-
ing system. As mentioned earlier for the engine OFF inneplsee also Figs.4, we
choose to have the inner-loop track the following four refere signals: 3D body ve-
locities U v W7, and heading anglg. Recall also that the goal of the controller is to
minimize the £,-gain boundy from the exogenous inputs to the controlled outputg,
despite the uncertaintk(s). The various signals are further given as follows: the ex-
ogenous inputsv = [nT rT d']7, the controlled outputg = [z," z,"]", the control
inputsu = (fp O1c 61s 61r)", the measured outputs = [rT y']", the reference signals
r=(Urp+Uq Vrp+Vqg Wrp+ Wy ¥1p)", the system outputs= (uvw pqredy)T, the
wind disturbance signals (given in inertial frante¥ (Vn, Vg, Vz,)T, and the sensors noise
n (added to the system outputs), see Eig. Here the signay contains all the available
measured output signals, except for the 3D position, sinedatter is only of interest for
the outer-loop controller.

As mentioned in Sectior.1, we do not use any gain-scheduling philosophy in this
Chapter, rather a single LTI plant is used for controllerigies The state-space data used
to design the inner-loop trajectory tracker is as followse state-vector is of dimension
nine given byx = (uvw pqr¢ 6 )7, the control inputu (given here-above) is of
dimension four, the wind disturbande(given here-above) is of dimension three, and the
measurements vectgr = x. This LTI model is obtained by linearizing the helicopter
nonlinear model of Chapter 2, at a specific timmed flight é¢tof?, according to the
linearization procedure given in Sectiamn!.], with the resulting state-space data given in
Appendix H of Chapter 2. By using the eigenvalues ofAhmatrix in the Popov-Belevitch-
Hautus (PBH) rank test, we found that the LTI system is botitrmdlable and observable.
Simulation results have shown that this nominal LTI was varitable for the design of
controllers, capable of steering the helicopter, in an ea@N situation, from low-speed
to medium-speed flight conditions.

SELECTION OF WEIGHTS

The robust control framework makes use of several useratkfireights, see Figl.5. In
this Chapter, these weights have been chosen as follows.mTitélicative uncertainty
weight W (s) is of the form W, (s) = diagWwin1(8), Wini(S), Win1(S), Win1(S)], with wini(s) a
filter whose magnitude represents the relative uncertatregch frequency (i.e. the level of
uncertainty in the behavior of the helicopter is frequenegehdent). Based upon engineer-
ing judgment, we choose here fog1(S) to consider 40% uncertainty at low frequency (DC
gain), 100% uncertainty at the filter crossover frequenéyldz (roughly in the range 2.5 to
5 times the anticipated closed-loop bandwidth), and 200é&rainty at infinite frequency,

giving

Win1(S) = (2s+ 23.75)/(s+ 59.37) (4.28)

32The condition corresponds to hover, with engine ON (the matior RPM is constant).
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Next, the performance weight filter M) is placed on they( v, w, ) error signals to re-
flect the tracking objective for the three body linear veiiesiand the heading angle. Here
Wp(9) is a four-by-four, diagonal, frequency-varying weight,&) = diagfw,(s), wu(s),
Ww(S), Wy (s)], with each diagonal term defined as a first- order%ﬂ-‘f’% At low frequen-
cies this weighting function should be high in order to kele@ érror small. Beyond the
anticipated bandwidth of the closed-loop system, the trackrror may be released and
W, () rolls off [64]. After several controller design cycles, we have setttad f

For wy(s) (Mp,ws,Ass = (2,27 rad/s 0.001)
For wy(s) (Mp,ws,Asd = (2,2rrad/s 0.001)
For ww(s) (Mp,ws,As9 = (2,4rrad/s 0.001)
For wy(s) (Mp,ws,Asy = (2, 4rrad/s, 0.001)

This means that a steady-state tracking error of 0.1% wipeet to the normalized
filter input is allowed, whereas the tracking bandwidth afg# filters is set below the 5
Hz actuators bandwidth (actuator data is reported in Taldlef Chapter 2). Now, tracking
should not be achieved at the cost of too high contifolreé Therefore, both actuator deflec-
tion (i.e. amplitude) and rate are penalized through weilyhts) = diagwaci(s), Wact(9),
Wact(S), Wact(9)], with

(4.29)

5 Zl) with (0, w1, ws) = (3, 67 rad/s, 60r rad/s) (4.30)
2

Wact(S) = 10”(

Next, a noise weight \A(s) is defined to represent the actual noise levels associated w
each sensor, and is defined as a nine-by-nine, constantrdibgcaling matrix described
as follows (given here in its unscaled form)

Whi(s) = diag[001m/s,0.01m/s,0.01m/s, 37/180rad/s, 37/180rad/s, 37/180rad/s,
x/180rad, n/180rad, 37/180rad)]
(4.31)
Finally, a wind disturbance weight &) = diagwa, (S), Wa.(S), Wa, (S)] is added to
simulate the frequency content of the NASA Dryden atmospiveénd model [71], and is
identical to the one used in the engine OFF case, seelEx) (

CONTROLLER SYNTHESIS AND ANALYSIS

For the D-K iteration 7 2], we obtain after four iterations a stable controkgfs) of order
38, using &' order (constantPs-scalings. The controller is further reduced td"3rder,
after balancing and Hankel-norm model reducti@fi]] without any significant fect on
closed-loop robustnegerformance. In Figi.15 we visualize the relevant TFs, defined in
the previous section, with the bandwidths for the three m&s given in Tablel. L.

In particular, we see that the bandwidth[©f(s)| is high enough, to stabilize the plant,
i.e. above 2.1 rgd, see our discussion in Sectiagn!.2 Also the closed-loop disturbance
rejection, given in Fig4.9, shows good attenuation of horizontal wind disturbancesne
though the vertical disturbance attenuation could paadiptbe improved (approximately
-20 dB at a frequency of2rad's). We also see that tH&, is not well-behaved, since it
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Figure 4.15: Singular values af(s), Si(s), So(s), Ti(s), andTy(s), of the
inner-loop trajectory tracker (Engine ON case).
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Figure 4.16: Closed-Loop wind disturbance rejection, forth-East-Down
(NED) winds, of the inner-loop trajectory tracker (Enginbl Case).
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remains high at both low- and high-frequencies. This canXptamed as follows. The
output loopL(s) is a 9x9 matrix, with 4 singular-values having very highued (for low-
frequencies). These high singular-values correspondedaltbontrolled channels. Since
our helicopter is under-actuated, the remaining 5 singuaéues are all very low (for all
frequencies). Thus, inverting € L(s)) to getS, results in maximum singular-values which
are most often close to 0 dB.

Next, RS and RP are visualized in Figl0and Fig.4.11. We can see that lower and
upper bounds are indistinguishable. We observe that tineopdial RS is guaranteed (i.e.
a maximum value below 1). On the other hand, we see that RPtimeb(i.e. a maxi-
mum value well above one). Again, this may potentially be thuine fact that the chosen
uncertaintyA(s), shown in Fig.4.5, is not realistic. If robust performance specifications
need to be met, then this could potentially be done by lowettie amount of model input
uncertainty, angbr by relaxing some of the assumptions made during the vasiaights
selection. However, from our experience, this will likelgnepromise the closed-loop per-
formance of the controller, once tested upon the nonlingstem.

Uy, 6

10° 10°

10° 10° 107 10"

107 107

10 10* 10° 10"
Frequency (rad/s) Frequency (rad/s)

Figure 4.17: Robust Stability of the inner-loop tra- Figure 4.18: Robust Performance of the inner-loop
jectory tracker (Engine ON case). trajectory tracker (Engine ON case).

4.10.AprpenDix C: DESIGN OF THE OUTER-LOOP CONTROLLER FOR

THE ENGINE ON CASE
Again, the design approach is related to the well-known t&ta&e separation principle
[63] between slow and fast dynamics of a dynamical system. Astioreed earlier, see
Fig. 4.3, we choose to have the helicopter track the following theference signals: 3D
inertiaP® positions &y xe Xz)T. Recall also that the goal of the controller is to minimize
the £,-gain boundy from the exogenous inputs to the controlled outputs, despite the
uncertaintyA(s). The various signals are further given as follows: the exmgis inputs
w = [n" rT]T, the controlled outputs = [z," z,"]", the control inputsl = (Vn VE Vz){,
the measured outpus= [r " y] 7, the reference signais= (xn Xe Xz){p, the system out-
putsy = (Xny Xg Xz) ", and the sensors noise(added to the system outputs), see Big.

33which is equivalent to North-East-Down (NED) position inrdlight dynamics model.
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Here the outer-loop does not include disturbance signaise she wind has already been
accounted for, within the inner-loop control structure.

As discussed in Sectiofi 1, a single LTI plant is used for controller design. The state-
space data used to design the outer-loop trajectory traglkdstained as follows. An LTI
dynamical system can be formed by connecting the nominainiddel, used for the inner-
loop TT, with its inner-loop controller, and subsequentging a set of integrators to gen-
erate the 3D inertial positiongy xg Xz)". This manipulation is readily done in MATLAB,
and results in the nominal LTI model needed to design therdéatg position controller. In
our case, we obtain a three-by-three input-output systath,aistate-vector of dimension
55. Next a minimum realization is obtained, resulting inaestvector of dimension 42 (the
LTI model is too big to be added to the Appendix). Note thatheo scalings need to be
applied. Further, and except for three poles at the originrésponding to the integration
of the 3D velocities), all other eigenvalues of thematrix are stable and well damped,
implying easier controller design. Again, by using the eigdues of theA matrix in the
PBH rank test, we found that the LTI system is both contrdd@nd observable.

The design philosophy for theouter-loop TT parallels that of the inner-loop.

SELECTION OF WEIGHTS

The multiplicative uncertainty weight Y\(s) is of the form W, (s) = diag[win1(s), Win1(9),
win1(9)], with win1(s) identical to Eq. 4.28. Obviously, this choice of the uncertainty
weight W, (s) is somewhat arbitrary. This said, the purpose is here tosaduake robust-
ness to the closed-loop system. The performance weigfg)Wé placed on thexy, Xg, Xz)
error signals to reflect the tracking objective for the ii@nposition (which as a reminder
is equivalent to NED position in our model). Here,,{4) is a three-by-three diagonal,
frequency-varying weight. At low frequencies this weiglgtfunction should be high in or-
der to keep the error small. Beyond the anticipated bandivatithe position tracking sys-
tem, this error may be released ang(#y rolls off. We have W(s) = diagfwy, (S), Wx (),
Wy, ()], with each diagonal term defined as a first-order transfaction %{;\“’B After
several controller design cycles, we have settled for

For wy,(S) (Mp,ws,Asd = (2,0.2rrad/s, 0.001)
For wy.(s) (Mp,ws,Asg = (2,0.27rad/s 0.001) (4.32)
For wy,(S) (Mp,ws,As9 = (2,0.4rrad/s, 0.001)

This means that a steady-state tracking error of 0.1% wabeet to the normalized
input is allowed. Further, the filter bandwidths are adjd$tebe ten times smaller than the
Wp(9) filter bandwidths for the inner-loop case.

Next, tracking should not be achieved at the cost of too hagtirol efort (i.e. resulting
in much too large velocity setpoints = (Vn Ve Vz)] for the inner-loop). This means
that both inertial velocities and inertial acceleratiohewdd be penalized, through weight
Wy(S) = diagWact(S), Wact(S), Wact(S)], With w,c(S) identical to the one chosen for the inner-
loop, with engine ON. Again, this choice may be interpretedadher arbitrary, since here
Wy (s) is assigned to the inner-loop setpoints: (Vy VE Vz) |, whereas for the design of
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the inner-loop controller, \)(s) was assigned to the actuators. Hence, potentially better
choices for W(s) may exist, although the one selected here provided setiisfaresults.
Finally, a noise weight W(s) is also defined to scale the normalized position measuremen
noise. The sensor noise model is defined here as a threadmy-tlonstant, diagonal scaling
matrix described by (given here in its unscaled form)

Wi (s) = diag[01m, 0.1 m, 0.1 m] (4.33)

CONTROLLER SYNTHESIS AND ANALYSIS

For the D-K iteration T2], we obtain after four iterations a stable controlkefs) of or-
der 63, using B orderDy(s)-scalings. The controller is further reduced td"3frder (us-
ing the same technique as for the inner-loop), without difgce on closed-loop robust-
nesgperformance. In Fig4.19 we visualize the relevant TFs (we see tBgs) = Sq(9),
andTi(s) = To(9)), with the bandwidths for the three TFs given in Tabl& In particular,
we see that the bandwidth {f(s)| is ten times lower its inner-loop counterpart, which is
good since we do not want both controllers to start intengatiith each other. Further, RS
is shown in Fig4.20, whereas RP is pictured in Fig.21. Again, we observe that RP is not
achieved, but RS is guaranteed.

Singular Values

80— —

60 1

Maximum Singular Value (dB) (dB)

-80 L I I
107 10° 10° 10" 10
Frequency (rad/s) (rad/s)

Figure 4.19: Singular values &f(s), Si(s), So(S), Ti(s), andTy(s), of the outer-loop trajectory tracker (Engine
ON case).
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Figure 4.20: Robust Stability of the outer-loop tra- Figure 4.21: Robust Performance of the outer-loop
jectory tracker (Engine ON case). trajectory tracker (Engine ON case).

ADAPTING THE ENGINE ON OUTER-LOOP CONTROLLER

For the case of an engine ON automatic landing, and when tdabe ground, it is crucial
to keep the reference velocities as small as possible. $ceetid, we adapt the outer-loop
controller as follows: the position tracking is switchefii-de. the values forl v w)| are
set to zero, once the helicopter height descends below afimed threshold (keeping only
velocity and heading tracking). This helps lowering thelf{t@uch-down) values of the 3D
velocities, by giving more time to the velocity deceleratfrocess.
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4.11.AprpeNDiX D: MAXIMUM ROLL (OR PITCH) ANGLE FOR SAFE (LE.

SUCCESSFUL) LANDING
The landing gear of our Align T-REX small-scale helicopwae Fig.4.22, has been re-
designed in order to hav®S = OG = h;. In this figure the half-ellipse, depicted in blue,
represents the landing gear frame, whereas the yellow peggents a main rotor blade.

From Fig.4.22, since we hav&SOG = % then we also obtailDSG = y; = £ since
OS = OG. Further, due to the moments created by the weight fo¥cend the ground
reaction forceR, the helicopter will tilt-over to the right and hit the gradiat landing,
whenever the Center of Gravi§ moves "to the right" of poing. WhenG is exactly above
S, and sincgu; = %, we can compute the vehicle maximum roll angle (for safeilzgidas:
¢=7%=45.

This said, a more stringent limiting factor may exist, dueatpossible ground strike
by a main rotor blade as depicted in Fig22 Obviously, the vehicle roll angle for safe
landing will also depend upon the blade flapping amgyle From the geometry depicted
in Fig. 4.22, and using triangle identities, we can derive the roll arajlevhich a blade
ground-strike will occur, as follows

¢ =m— (U2 + Ha) (4.34)
with H
_ apelo M
U2 = COS (S H) (4.35)

and sinceHT = Rot, we have

_ 2
— Cos—l( szot (S T“+S H2)

25T5H ) (4.36)

Ha
with the distanceS HandS T defined by

SH = ./(h + GH)2+h?
(v GHZ + 1y (4.37)

ST = \/erot +SH — 2.Rot.S H cosus

and angleus obtained as follows

3z =5 — (us + |Boll)
s = (& + ) (4.38)

with u, computed using Eq4(35 and the distanc8 Hfrom Eqg. ¢.37).

From engine OFF (autorotation) flight and landing simulagiowe found variations
between -1down-flap and-4°up-flap for the blade flap angl. Now, using for our heli-
copterRot = 0.9, h; = 0.25,GH = 0.23, Table4.2 gives the maximum vehicle roll angle
¢ for safe landing, as a function of blade down-flap arggle We see that a <town-flap
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Table 4.2: Maximum vehicle roll anglgfor safe landing, as a function of blade down-flap aggle

Flap angledy (°) 0 -1 -5 -10 | -15
Roll angleg (°) || 36.4| 35.5| 31.8| 27.0| 21.7

1 : H: Main Rotor Hub

/ G: Center of Gravity
W: Weight Force
R: Reaction Force

Bbl

&
GROUND / T /

Figure 4.22: Maximum vehicle roll anglefor safe landing, for the case of a negative blade flap ghigle

would result in a 35.5naximum vehicle roll angle, hence way above thér@l angle de-
fined in the requirement for safe landing in Definition 4.2 dfapter 4. Even for much
larger down-flap angles, e.g. “Y®ssibly due to the ground impact, we see that the maxi-
mum allowable roll angle is still higher than the°$@ecification. A similar reasoning can
also be applied to the pitch axis which, based upon the shifeedanding gear, gives
comparable results to the ones outlined for the roll axis.
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4.12.AprpenDIX E: ProOF OF LEMMA 1
From Eq. ¢.4) and Eq. £.8) we obtain

u XN COSH COSY + Xg COSH Siny
[ % ] = [ —Xn SiNy COSe + Xy Sind sing cosy
w XN SiNg siny + Xy SiNf coSy coSg (4.39)
—Xz SIn@
+Xg COSY COSp + Xg SiNG Sing siny + Xz Sing cosd ]
—Xg SiNg COSY + Xg SiNG Siny COSg + Xz COSp COSH

Now, inverting Eq. £.7) we get

pY ( ¢-using
q ] [ Hcos¢+¢/sm¢cose (4.40)

r —6sing + ¥ COSp COSH

From Eg. ¢.5) and Eq. £.39, and taking the derivative of E¢/ (39, we obtain for the
three force input&2; = (F2g FRs Fog,)”

F?}G = = —g. sing cosd — Xn(Siny cosg — sind sing cosy)

Fce, —(. COSp cOSH + Xn(Sing Sinys + Sind cosy COSe) (4.41)
+Xe cosfsiny — Xz sind '
+Xe(cosy cosp + sind sing siny) + Xz sing cos

—Xe(sing cosy — sind siny cosg) + Xz COS¢ COSH

Fcoy g g. Sing + ¥y cosd cosy
Feg, | =

Finally, from Eq. ¢.6) and Eq. ¢.40), and taking the derivative of Eq4 (40), we can
express the three moments inpMg, = (Mg M2 M2

G'Z)T as
M2, = E(j/(¢ cosdsing + 0 cosg sinf) + dsing
+¢0 cos¢ z//cos¢ cost) — A(w sing — ¢ + 6 cosd)
—F(w(q) COS¢ cost) — fsing sind)
+9cos¢ posing + z,bCOSHSIﬂq)) (4.42)
+(6 sing — y cos¢ cos@)(B(G COS¢p +  cosf sing) '
—F(¢ wsme) + D(@sing — Y COS¢ c0sH))
- COSp + Y oSt sm¢)(E(¢ wsme)
+C(0sing — y cosg cosd) + D(H cosg + ¥ cos sing))

M2s, = D(¥(4 cososing + 6 cosg sine) + fsing
+¢9 cos¢ w COs¢ cost) + B((¢ Ccos¢ cos — é)smgb sing)
+6)cos¢ POsing + wcosesmgb) + F(wsme b + Yt cost)
+(¢ — wsmé))(E(qb wsme) + C(fsing — y cosg cost) (4.43)
+D(6 COSp + wcosesmqﬁ)) - (Hsmqﬁ
— COSg cos@)(A(q) wsme) + E(0sing — y cos¢ cosd)
—F(6cose + ¢ cosd sing))
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MR, = E(rsing — ¢ + yd cost) — C(z//(¢ costsing
+9 cos¢ siné) + 95|n¢ + ¢ COSP — iy COSP Ccos)
—D(w(q& Cos¢g cost — fsing sing) + Gcos¢ pOsing
+/ cosH sing) + (¢ - wsmG)(B(a COSp + ¥ cosH sing) (4.44)

—F(¢ wsme) +D(#sing — Y cOSp cOSH))
- COS¢ + ¢ COSY sm¢)(A(¢ zpsme)
+E(0sing — ¥ cosg cosd) — F (0 cose + i cosdsing))
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ON-LINE T RAJECTORY PLANNING AND
TRACKING: SIMULATION RESULTS

The helicopter approaches closer than any other vehiclalfdlfnent of mankind’s
ancient dreams of the flying horse and the magic carpet.

Igor I. Sikorsky
Designed the world’s first mass-produced helicopter in 1942

In Chapter 4, we presented a combined Trajectory Plannii®) @nd Trajectory Tracking
(TT) system, having on-line computational tractabilityGhapter 5, we demonstrate—using
the high-fidelity, high-order, nonlinear helicopter siratibn of Chapter 2—the first, real-
time feasible, model-based TP and TT system, for the cassméklscale helicopter UAV
with an engine OFF condition (i.e. autorotation). To beitkrstrate the various challenges
encountered when designing a planning and tracking systethé engine OFF condition,

a comparison with two engine ON automated flight maneuveisdprovided.
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184 5.0ON-LINE TRAJECTORY PLANNING AND TRACKING. SIMULATION RESULTS

5.1.INTRODUCTION

| N this Chapter, we evaluate the combined Trajectory PlanfiiRy and Trajectory Track-
ing (TT) functionalities, developed in Chapter 4. Thesetested on the helicopter, high-
fidelity, High-Order Model (HOM) developed in Chapter 2. &itest cases are presented,
two with engine ON, and three with engine OFF (autorotatistarting from various initial
conditions. The modeled small-scale UAV is the instrumérRemote-Controlled (RC)
Align T-REX helicopter, used also in Chapter 2, and beloggmnthe flybarless two-bladed
main rotor class. This vehicle has a total mass of 7.75 kg, ia no¢or radius of 0.9 m, a
main rotor nominal angular velocity of 1350 RPM, a NACA 001&imrotor airfoil, and
an induced velocity in hover given by, = 3.5 nys (see also Tablg.1, of Chapter 2, for
additional helicopter parameters).

The two engine ON test cases are included to illustrate teaFtight Control System
(FCS) framework, presented in the Appendices of Chapteltalysfor a variety of auto-
mated flight maneuvers. With the engine ON, we demonstrateitomatic landing, and a
cruise-to-hover maneuver. The first engine ON test casts$tam an initial flight condi-
tion which is identical to the one used when deriving the m@ahiL.TI model, used for TT
design (i.e. helicopter in hover). The second test castsgtam an initial condition which
is far away from the operating condition used to derive tAishodel. Both test cases are
set in an ideal environment, i.e. a noise-free and disturbdree environment.

The three engine OFF test cases are set to demonstrate dneadigtautorotation land-
ing capability. Here too, the first engine OFF test case idcsevaluate the FCS perfor-
mance for an initial flight condition which is identical toetflight condition used to derive
the nominal LTI model, used for TT design (i.e. helicoptehaver, however with the main
rotor RPM free to vary). The second test case starts fromiialioondition which is far
away from the operating condition used to derive this LTI elo@hese first two test cases
are also set in an ideal environment, i.e. a noise-free astdrdiance-free environment.
The third engine OFF test case is added to illustrate the FZBnmance when including
sensors measurement noise together with a wind disturbance

5.2.SETTING UP THE TRAJECTORY PLANNING FOR THE ENGINE ON
CASES
Case 1.This test case involves a landing maneuver from a hovealnitindition, starting

at an altitudé of -8 m, with further 2 m and -1 m displacements, in the Nortti East axes
respectively, together with a 90ight turn in heading. Numerically, the initial and final

1Recall that the vertical z-axis is oriented positive down.
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conditions for this maneuver are given’by

Xi = (Om Om -8m Om/s Om/s Om/s
Orad/s Orad/s Orad/s =n(3.4/180)rad Orad Orad )T
x= (2m -1m -1m Om/s Om/s 02n/s
Orad/s Orad/s Orad/s =(3.4/180)rad Orad =(90/180)rad )T

Before proceeding, we make the following comments

e The final altitudexz (see the third component gf) is set to -1 m. This allows to add
a safety margin into the planned trajectory.

e The final vertical velocity (see the sixth component gf) is set to 0.2 's. When
close to the ground, the goal is to move at a constant and sitanof descent (until
the skids hit the ground).

Next, the flight envelope (i.e. state constraints in the fafmminimum and maximum
limits, partially based upon engineering judgment) is defins follows:

Xmin = —(50m 50m 50m 5m/s 1m/s 3m/s
7(100/180)rad/s m(100/180)rad/s =(100/180)rad/s
n(15/180)rad  (15/180)rad 2rrad )’

Xmax = ( 50m 50m -025m 15m/s 1m/s 1.16m/s
7(100/180)rad/s x(100/180)rad/s =(100/180)rad/s
7(15/180)rad n(15/180)rad 2r rad )T

Before proceeding, we make the following comments

e When the helicopter is on the ground, the Center of Gravitg)8eight is equal to
-0.25 m (see the third componentgfay).

e The maximum helicopter velocity is limited as follows. Alfgize helicopter such as
the Bell UH-1H has a main rotor radius of 7.24 m, whereas outehloelicopter has a
main rotor radius of 0.9 m, resulting in a scale rati@qual toN = 7.24/0.9 = 8.04.
Now, a model and its full-size counterpart are said to be hically similar if the
relative magnitudes of their governing forces are unchdtyescale []. Often, the
so-called Froude scaling is used to study systems at a rediize [L]. The Bell
UH-1H has a top speed of 60.2@nthus based on Froude scaling the top speed of
our RC helicopter would be 688/ VN = 21.26 nys. In our case, and in order to
reduce the stresses on the airframe and main rotor hub, wetdotand to operate
the vehicle beyond 15 fm (see the fourth componentxyfay).

2Recall also that the rigid-body dynamics, used in the flatrid? is characterized by a state-vector of dimension
twelvex = (xy Xe Xz UVW p g r¢ 6y)T, with total forces and total moments as inputs, each of dgioerthree,
given byF2 = (FgGx FgGY FEGZ)T, andM2; = (M2, M

b b
ceyx Vicay MCGZ)T'
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e The body lateral velocity is constrained ta: 1 nys, as to limit vehicle sideslip
motion.

» To prevent flight into the Vortex-Ring-State (VRS)he body vertical velocitwv is
limited to a third of the induced velocity in hover < %vih, givingw < 35/3=1.16
m/s (see the sixth componentxfay).

e Therollg and pitchd angles are limited ta: 15°, in order to: 1) keep the load factor
n within acceptable valuési.e. preferably below one; and 2) minimize the system’s
nonlinear behavior, facilitating thus the trajectory kiag®.

Next, the input constraints, i.e. on the total forces andltwtoments, are based upon
simulation experiments with the nonlinear helicopter HOMChapter 2, and have been
chosen as follows:

F2. =—( 20N 15N 120N )" M2, =-(5Nm 5Nm 5Nm)’

F2. =( 20N 15N -30N )" M2 =(5Nm 5Nm 5Nm)’

Besides, additional constraints have also been includefdr(also to the flatness TP
in Appendix A of Chapter 4), such as: 1) a tail rotor blade figacance to avoid ground
strike by the tail rotor during flare; and 2) a supplementamjtion the airflow through the
main rotor as to avoid flight into the VRS. The airflow througk main rotor is given by
Viotor = W+ PYH4 — %4, which is limited to half the induced velocity in hoVeoor < 2vin,
see Fig2.19in Chapter 2. In the cost functional, defined in Appendix A dla@ter 4, we
have used the following weigh®4, = W, = 1 andW, = 100. HeréW; is chosen high to

reward straight flight trajectories.

Finally, we use the 'adaptation’ functionality of the engi®N outer-loop controller,
as outlined in Appendix C of Chapter 4. When close to the gdpitnis crucial to keep
the reference velocities as small as possible. Once thedpédir height descends below a
predefined threshold (here -1 m), the position control ipstal.

Case 2.This test case involves a cruise-to-hover maneuver, sgpati a North velocity
Vn = 10 mys, an altitude of -20 m, and then transitioning to hover maden altitude of
-5 m, with further 30 m and -5 m displacements, in the North Badt axes respectively,

SBriefly summarized, the VRS corresponds to a condition wiieeehelicopter is descending in its own wake,
resulting in a chaotic and dangerous flight conditiah [

“4For a level turning flight the load factor is given hy= ﬁ.

S1tis well known that strong coupling in longitudinal anddeal motions exists for helicopters flying in low-speed,
high-g turns (i.e. high load factor), and that for helicapteith a single main rotor, the direction of turn has also
a significant influence on the flight dynamic§.[This coupling becomes stronger with higher roll or pitciykes,

i.e. with higher-g turns4, 5]. It was further shown in{] that the performance of a FCS, designed using a straight
flight condition, can be severely degraded when the helizagters a turn. Since in our case the nominal LTI
plant, used for control synthesis, corresponds to a howadition, it becomes relevant to maintain small angles
in roll and pitch.



5.3.SETTING UP THE TRAJECTORY PLANNING FOR THE ENGINE OFF cASES 187

together with a 120left turn in heading. Numerically, the initial and final cations for
this maneuver are given by:

xi= (O0m Om -20m 10m/s Om/s Om/s

Orad/s Orad/s Orad/s =(2.6/180)rad -n(1.1/180)rad Orad )T
xt= (30m -5m -5m Om/s Om/s Om/s

Orad/s Orad/s Orad/s =(3.4/180)rad Orad -n(120/180)rad )T

Regarding the state and input constraints, and cost furaltieeights, these are identi-
cal to the engine ON case 1.

5.3.SETTING UP THE TRAJECTORY PLANNING FOR THE ENGINE OFF

CASES

Three engine OFF test cases are included to demonstratettimatic autorotation landing
capability. The first engine OFF test case is set to evalhat&é€CS performance for an ini-
tial flight condition which is identical to the flight conditi used to derive the nominal LTI
model, used for TT design (i.e. helicopter in hover with fregin rotor RPM). The second
test case starts from an initial condition which is far awayf the operating condition used
to derive this LTI model. These first two test cases are alsmsm ideal environment, i.e.
a noise-free and disturbance-free environment. The thmgine OFF test case is set to il-
lustrate the FCS performance when including sensors me@asunt noise, together with a
wind disturbance.

Case 1.This test case involves an autorotation, starting from ainenfailure in hover,
at an altitude of -35 m, and then landing at 2 m North and 1 m gesition, without any
heading turn. Numerically, the initial and final conditicare given by:

Xi = (Om Om -35m Om/s Om/s Om/s

Orad/s Orad/s Orad/s =(3.4/180)rad Orad Orad )T
X¢ = (2m 1m -0.75m Om/s Om/s 0.2m/s
Orad/s Orad/s Orad/s Orad Orad Orad )T

Here, we make also the following comments

¢ Note that we also give a final value to the North and East hot&@gositions (this
was not the case in the planning of Chapter 3). This represeitlitional constraints
on the TP. We do this with an eye on future experimental flightst where, for safety
reasons, we want to know in advance where the helicoptebwilanding.

e The final altitudexz (see the third component &f) is set to -0.75 m. This allows to
add a safety margin into the planned trajectory

6This value was set to -1 m for the engine ON automatic landifigr the engine OFF case, better autoration
landings were obtained when adjusting this value to -0.75 m.
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e Again, the final vertical velocityv (see the sixth component »f) is set to 0.2 1fs.

Xz

e The final timeTy is bounded such that; < Torr, With 175~ < Torr < %E'Nh see
our discussion in Sectiof.3.3 giving for this test case.Bs < Torr < 6.6s. Here
we chos€lorg = 6 S.

The constraints on states and inputs are identical to the nsed in the engine ON
cases, except for the following item: we allow for a highewdwards velocity on thev
channel, up to 15 ys. Besides, the limit on airflow through the main rotor is alsmoved,
i.e. flight through the VRS is here allowedn the cost functional of Sectich 3.3 we have
used the following weight®/, = W, = Wy, = W,, = 1.

Finally, we use here the 'adaptation’ functionality of thegae OFF outer-loop con-
troller, as outlined in Sectior.6.30f Chapter 4. When close to the ground, it is crucial
to keep the reference velocities as small as possible. Owckdlicopter height descends
below a predefined threshold (here -1 m), the position cbistgiopped.

Case 2.This test case involves an autorotation, starting from ayinenfailure atvy =
8 nys, at an altitude of -45 m, and then landing at 30 m North and Oast Bosition,
together with a 30left turn in heading. Numerically, the initial and final catidns for this
maneuver are given by:

Xi = (Om Om -45m 8m/s Om/s Om/s

Orad/s Orad/s Orad/s n(2.6/180)rad Orad -n(0.8/180)rad )T
Xf = (30m Om -075m Om/s Om/s 0.2m/s

Orad/s Orad/s Orad/s Orad Orad -x(30/180)rad )T

We make also the following comments

¢ Again we give a final value to the North and East horizontaltjmss.

« The final timeT; is bounded such thalt; < Torr, With 72— < Torr < Taa
giving for this test case.3s < Torr < 8.5s. Here we chos&orr = 7.3 s.
Regarding the state and input constraints, and cost furatimeights, these are identi-
cal to the engine OFF case 1.

For engine OFF flight conditions having relatively high imlitvelocities, we imple-
mented the following 'adaptation’ functionality for the gine OFF outer-loop controller.
When|xz| < 5 mis true, we stop the horizontal position trackimxg,(xe). This helps low-
ering the final (touch-down) values of the 2D horizontal edles. Further, wheixz| < 1
m is true, we stop the vertical position tracking) as well.

“Indeed, and depending on the initial condition at the intsthengine failure, a brief transition through the VRS
may be unavoidable.
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Case 3.This test case involves an autorotation, starting from ayinerfailure in hover,
at an altitude of -30 m, and then landing at 0 m North and O m Rasition (i.e. the
horizontal position of the landing spot is identical to therihontal position of the initial
state), without any heading turn. We also include Gaussihite noise, on the 12 measured
statesy = (Xy Xe Xz UV W p qre¢ 0y)T, with the following 1o values:

( 01m 01m 01m 005m/s 0.05m/s 0.05m/s
n(3/180)rad x(3/180)rad =(3/180)rad
n(1/180)rad x(1/180)rad =(3/180)rad )T

These 16 values correspond to the noise weight values used duringatien design in
Chapter 4, expect for the noise on the three body velocitiestliree most critical signals),
where we have used a noise value which is five times higherttimnalue used during
controller design, in order to better visualize the respafmracteristics of the FCS.

We also include a headwind of &spwhich is equivalent to a Beaufort wind force value
of 4, corresponding to the yearly average wind force alomgdbast in The Netherlands
[6]. Note that this is a rather heavy wind condition for such akmscale helicopter. Now,
numerically, the initial and final conditions for this marneunare given by:

Xi = (Om Om -30m Om/s Om/s Om/s

Orad/s Orad/s Orad/s =(3.4/180)rad Orad Orad )T
Xi = (Om Om -075m Om/s Om/s 0.2m/s

Orad/s Orad/s Orad/s Orad Orad Orad )T

The final timeT¢ is bounded such that; < Togg, with % < Torr < %E'Nh giving
for this test case.8s < Torr < 5.7s. Here we chos@orr = 5 s. Regarding the state and
input constraints, and cost functional weights, togethiéin the 'adaptation’ functionality
of the outer-loop controller, these are identical to theiea@FF case 1.

Remark 7 Before proceeding with analyzing the time-traces of theaxdibloop simulation
data, we quickly compared the frequency coritefithe various inner- and outer-loop ref-
erence signals (generated by the planner, for all engine @tNengine OFF test cases) with
the bandwidths of the complementary sensitivity functigs),Twhich have been reported
in Table4.1 of Chapter 4. Fortunately, the frequency content of allniexfiee signals were
lower than the corresponding bandwidth gtd), hence the engine ON and OFF controllers
ought to be able to track the reference signals.

5.4.DISCUSSION OF CLOSED-LOOP SIMULATION RESULTS FOR THE EN-

GINE ON CASES
Fig. 5.1 and Fig.5.4 visualize the required control inputs for the engine ON tastes 1
and 2, respectively. Figh.2 and Fig.5.5visualize the evolution of the 3D inertial veloci-
ties (Vn, VE, Vz) and positionsXy, Xg, Xz). Although the vertical z-axis is oriented positive

8This is done by computing the single-sided amplitude speoftained through Fast Fourier Transforms (FFT).
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down, on the figure¥; andxz are shown positive up for better readability. Further, Eig.
and Fig.5.6visualize the time-histories for the body states, naméitude anglesd, 6, ),
linear velocities ¢, v, w), and rotational velocitiegy g, r).

In Fig. 5.2, Fig. 5.5, Fig. 5.3, and Fig.5.6, the black lines represent the outputs from the
flatness TP, these include the planned 3D inertial posi(ise Xz){p, defined in Fig4.3,
the planned 3D body velocitiea ¢ W1, defined in Fig4.4, and the planned headigg p,
also defined in Fig4.4. The flatness-based TP, in Sectiofi of Chapter 4, computes also
a planned trajectory for the remaining states, e.g. rollepgpitch angles, roll rate p, etc.
However, and for the sake of clarity, in Fig.2, Fig. 5.5, Fig. 5.3, and Fig.5.6, we have
only visualized the TP outputs that will be tracked.

Now, in Fig.5.2and Fig.5.5, the blue lines, namegference for outer-loorepresent
the signals that need to be tracked by the outer-loop cdetroHere, these signals are
simply the planned 3D inertial positiong&( xe Xz){p., i-. black and blue lines are identical
(except possibly at the end of the flight, see Sectiagh3of Chapter 4). In Fig5.3and
Fig. 5.6, the blue lines, nameeference for inner-looprepresent the signals that need to
be tracked by the inner-loop controller. Here, these sgimalude the planned heading
YTp, Where again black and blue lines are identical. Howevery#locities that need to be
tracked by the inner-loop are given by ¢ Wi, + (uv w)], and here black and blue lines
are not identical. Finally, the red lines represent the aistfrom the nonlinear helicopter
model of Chapter 2. From these figures, we see that:

e The combined trajectory planning and tracking system isibbgpof safely guiding
and controlling the helicopter.

e From Fig.5.3, and Fig.5.6, we see that a single LTI controller is capable of control-
ling the nonlinear helicopter system, for a relatively Evgriation in forward vehicle
velocity (i.e. body linear velocity is varying between approximately -/srand 10
nys).

e The specifications for a successful automatic landing, sefniflon 4.2 in Sec-
tion 4.3.3and Appendix D of Chapter 4, have been definefilijas 0.5 nys,|v| < 0.5
m/s, W < 0.25 nys, |¢| < 10°, and|d| < 10°. Regarding case 1, at the instant of
ground impact, we have for the body horizontal velocities 0.03 nys,v = —0.04
nys, the body vertical velocitw = 0.22 nys, and the roll and pitch angles= 5.02°,
andd = 2.04°. Hence all specifications for a successful automatic landne met.

e From Fig.5.1, Fig. 5.4, and from the actuator data reported in Tabléof Chapter
2, we see that the control input amplitudes never saturatgddsg| < 13°, |61¢| < 6°,
|61¢] < 6°, and|brrl < 20°.

e From Fig.5.2, Fig.5.5, Fig.5.3, and Fig 5.6, better tracking performance is achieved
for the vertical motiorw andxz in (and heading/), when compared to tracking per-
formance on the horizontal channels\{) and (xy, xg), see our discussion in Sec-
tion 2.4.20f Chapter 2.
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o Close to zero steady-state errors can be seen for the inopréference tracking, for
both test cases.

e Position control clearly exhibit some over- and undershdot addition, nonzero
steady-state errors are observed for test case 1. Thistiallyadue to the fact that
position control is stopped when the helicopter descenlbsvikem.

o Regarding test case 2, even though godind pitchd angles are not controlled, they
nicely adjust, at the end of the flight, to their respectivedrovalues.

¢ Although the nominal model, used for control design, waseditized at a condition
outside the groundfect, we did not notice any significant performance detetiona
of the closed-loop system, when the helicopter was in greiiedt (i.e. below 1 m
above ground level).

In addition, Fig.5.7, Fig. 5.8, Fig. 5.9, and Fig.5.10visualize the frequency content
of the main rotor lateral Tip-Path-Plane (TPP) tilt angle, vehicle roll ratep, and con-
trol inputs respectively, for the Engine ON case 1 (the em@N case 2 is very similar).
Although, in our test cases, the frequency contents of thdiexpcontrol inputs are not
broadband, we are still able to identify some salient ndtamdes of this small-scale heli-
copter system. For instance, the first two figures clearlyvsti® main rotor TPP modes,
with the lowest (the so-called regressing TPP mode) at aiénecy of 5.5 Hz. The regress-
ing flapping mode is the most relevant one, when focusing dindpger flight dynamics,
as it may have a tendency to couple into the fuselage modes. [ Fig. 5.8 also shows
the main rotor vibrations. In the engine ON case, i.e. at afixain rotor RPM of 1350
(equivalent to 22.5 Hz), we can clearly identify th@&2v’ rotor vibration at 45 Hz.

For the engine ON case, simulation tests have shown thahald@igdwidth closed-loop
system was not required for the case of gentle and smooth fligiheuvers. This led to
the selection of low bandwidth performance weightg(8), during controller synthesis.
Accordingly we see that the frequency content of the contqmlits is rather low, staying
below 0.5 Hz, see Figh.9-Fig.5.10, except for an interestingly large peak at 2.7 Hz. This
peak at 2.7 Hz, clearly seen on these four figures (predorntynatated to a roll-pitch-yaw
motion), is an interesting aspect of these figures, and septs the interaction between
the Flight Control Computer (FCS) and the main rotor. Hemezhave a situation where
the actuators are also reacting to a periodic rotor-fusetagipling (in addition to vehicle
rigid-body dynamics), as opposed to a context where theatansiare only responding to
the rigid-body dynamics. This clearly results in limit cga@scillations.

In the experimental results obtained 0] 11], a 3.1 Hz pendulum-like mode in roll
and pitch was also observed, for the case of a two-bladed-so®de helicopter, albeit
having a teetered main rotor, but with somewhat comparadiécie size and mass, hence
corroborating our results. This phenomenon (i.e. intésadietween the FCS and the main
rotor) has only sparsely been covered in the small-scale li#ékature. This phenomenon
is well-known within the realm of wind turbined §], and is somewhat reminiscent to the

9Since we have a two-bladed main rotor.
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realm of Higher-Harmonic-Control (HHC) for helicopters3. This interaction between
the FCS and the main rotor is comparable to the well-knoweradtion between aircraft
FCS and aircraft structural dynamics—i.e. aeroservdeleects [L4—which are known
to lead to flutter or limit cycle oscillations, and hence dyrmaand fatigue loads. Aside
from these dynamic and fatigue loads, this dynamical ictesa would also result in our
case in an increase of the electrical power consumptionhande a lower flight time. A
general approach to mitigate such problems would consist)jrusing higher-order LTI
models during the control design, possibly in combinatidtina reduced-order observer,
in order to estimate the unmeasured main rotor stategpapuse carefully selected notch
filters, see [1].

5.5. DISCUSSION OF CLOSED-LOOP SIMULATION RESULTS FOR THE EN-

GINE OFF cASEs

We discuss here the first two engine OFF cases, the third efif case will be addressed
in Section5.5.2. Fig.5.13and Fig.5.16visualize the required control inputs for the engine
OFF test cases 1 and 2 respectively. Figl.4 and Fig.5.17 visualize the evolution of
the 3D inertial velocities\{n, Ve, Vz) and positions X, Xg, Xz), whereas Fig5.15 and
Fig. 5.18visualize the time-histories for the body states, nameljude anglesd, 6, v),
linear velocities g, v, w), and rotational velocitiegx g, r). Fig.5.19and Fig.5.20visualize
the time-histories for the main rotor RP®r. Note also that the definition of the black,
blue, and red lines, is identical to the one presented Haogea for the engine ON cases,
and hence is not repeated here. From these figures, we see that

e The combined trajectory planning and tracking system isibbgpof safely guiding
and controlling the helicopter in autorotation.

e The specifications for a successful automatic landing, se#nilon 4.2 in Sec-
tion 4.3.3and Appendix D of Chapter 4, have been definefilijas 0.5 nys,|v| < 0.5
m/s, W < 0.25 nys, |¢| < 10°, and|d| < 10°. Regarding case 1, at the instant of
ground impact, we have for the body horizontal velocities 0.04 mys,v = 0.15
my/s, the body vertical velocitw = 0.25 nys, and the roll and pitch angles= 1.41
°, andd = 3.39°. Regarding case 2, at the instant of ground impact, we hawbéo
body horizontal velocitiest = —0.37 mys, v = 0.13 nys, the body vertical velocity
w = 0.21 nys, and the roll and pitch anglgs= 6.67 °, andd = —0.54°. Regard-
ing case 3, at the instant of ground impact, we have for thg hodzontal velocities
u=-0.09nys,v = 0.12 nys, the body vertical velocityw = 0.24 nys, and the roll and
pitch anglesp = —0.75°, andd = —0.15°. Hence all specifications for a successful
automatic landing are met.

o Asingle LTI controller is capable of controlling and landithe helicopter system, in
autorotation, for a relatively large variation in forwanddavertical vehicle velocity
(at least up to approximately 8 to 1Q'si and for relatively large variations in main
rotor RPM (approximately in the range 50% to 110% of the na@hengine ON
value), see Figh.15 Fig.5.18 Fig.5.19 and Fig.5.20Q
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e From the actuator data, reported in Taklé of Chapter 2, we see that the control
input amplitudes would never saturate, except for a briefration of the main rotor
collectivety, that would happen just prior to touch-down.

o As expected, tracking performance is better for the vdntimgionw andxz, than the
tracking of horizontal motiony, v) and y, xg), see our discussion in Secti@m.3
of Chapter 2.

e Some steady-state errors can be seen on the horizontalelhaee Fig.5.14 and
Fig. 5.17) and heading (see Fig.15and Fig.5.19, whereas this is not the case for
the vertical channel (refer to these same figures). This @artially due to the fact
that position control is stopped some time before the hptexaouches the ground.

e Main rotor RPMQur behaves as expected, see Figl9 and Fig.5.20 i.e. we
recognize the typical autorotative time-histories, assshim Chapter 3. Notice that,
when starting from low altitudes such as in these test célsedelicopter does not
even reach a steady-state autorotation (main rotor RPMtisartstant), rather it is
continuously in transition from one non-equilibrium stedehe next.

e Again, although the nominal model, used for control desigas linearized at a con-
dition outside the groundf®ect, we did not notice any significant performance dete-
rioration of the closed-loop system, when the helicoptes imaground &ect.

In addition, Fig.5.21, Fig.5.22, Fig.5.23 and Fig.5.24visualize the frequency content
of the main rotor lateral TPP tilt angf&, vehicle roll ratep, and control inputs, respec-
tively. For the engine OFF case, simulation experimente lsé&own that a higher closed-
loop bandwidth was necessary for good tracking behaviois fesulted in a bandwidth
increase of the controller performance weights. This iasedn control bandwidth has also
some drawbacks. Indeed, we also clearly see an interaaitwebn the FCS and the main
rotor around 5.5 Hz. This mode was identified to be the regrg$sp mode of 5.5 Hz, for
a constant main rotor RPM of 1350, in the figures for the en@hkcase. In the engine
OFF case, the RPM is not constant anymore, and hence thadtiter between the FCS and
the main rotor shows a frequency spread, which cannot dasiiyiminated by notch filters.

Summarizing the observed results for the engine OFF casesew that the crucial
control of vertical position and velocity exhibits outstéimg behavior in terms of tracking
performance, and does not require an additional increaseritrol bandwidth. However,
the tracking of horizontal positions and horizontal velies is clearly lacking some band-
width (i.e. the flown trajectories are clearly lagging tharpied ones). Although a further
increase of the horizontal closed-loop bandwidths praygieod results when evaluated on
the LTI model used for control design, this increase in delemp bandwidths resulted, un-
fortunately, in closed-loop instabilities, when evalubte the nonlinear helicopter model
of Chapter 2.

5.5.1.SvystEM ENERGY. THE ENGINE ON VERSUS ENGINE OFF caASEs
We compute here the stored energy in our helicopter systenth€ following analysis, we
assume that the flight time is not limited by the amount of gpstored inside the on-board




194 5.0ON-LINE TRAJECTORY PLANNING AND TRACKING. SIMULATION RESULTS

batteries. In other words, the electrical power supplyaysis omitted from this energy
balance analysis. Hence, we consider only the followingggneomponents (refer also to
the nomenclature in Appendix A of Chapter 2): the vehicleeptal energymyg|xz|; the
vehicle kinetic energgmy (U?+v2+w?) + 1(Ap?+ Be?+Cr?), with A, B, andC the diagonal
elements of the inertia matriy; the stored energy in the main ro%)leleﬁ,R; and the to-
tal energy (sum of previous three). These energies havefdteted in Fig.5.11-Fig.5.12,
and Fig.5.25-Fig.5.26 for the engine ON test cases, and for the first two engine @&t t
cases, respectively. A quick scan on total energies rettealsiain diference between the
engine ON and OFF cases, i.e. while the total energy for amer@N case may even
increase, the total energy for an engine OFF case is alwaysaking. This particularity
renders the trajectory planning and tracking rather chgltgg for the engine OFF case.

For the engine ON case, we conjecture that the current \eebiiate has only a limited
impact (if any) on reachable states at very distant timess iEtbecause we can always in-
ject some energy back into the system, and hence compensatg/fsuboptimal decisions
made at the current time. However, for the engine OFF caseg ¢he energy of the system
is always decreasing, there is less room for error. We alsgecture that the size of this
reachable set, in the engine OFF case, is much smaller thamthfor the engine ON case,
and hence feasible engine OFF trajectories are much harfiadt

5.5.2.CLOSED-LOOP RESPONSE WITH RESPECT TO SENSORS NOISE AND WIND DISTUR-
BANCE
Here we illustrate the response of the FCS, for the case sfynoeasurement signals and
a wind disturbance. The wind disturbance includes a cohédeterministic) headwind of
8 nys, together with a small gust (Dryden stochastic variatmm}he three linear axes.
Fig. 5.27 visualizes the required control inputs for the engine Ot ¢tase 3. Fig5.28
visualizes: 1) the nonlinear model time-histories for tBeiBertial velocities and positions
(in red); 2) the corresponding noisy measurement posigensto the outer-loop controller
(in magenta); and 3) the wind disturbance (in green). Fig9visualizes: 1) the nonlinear
model time-histories for the nine body states (in red); anthe€ corresponding noisy mea-
surements sent to the inner-loop controller (in magenta)ally, Fig. 5.30visualizes the
time-histories for the main rotor RPM.

Again, we see that all specifications for a successful autiontending are met, see
Definition 4.2 in Sectiont.3.3and Appendix D of Chapter 4, despite the additional mea-
surements noise and wind disturbance. Also Fig0illustrates the benefits of a headwind
landing, namely we see that the RPM is still high (about 1160MR at the end of the
landing maneuver (compare with Fig.19and Fig.5.20. Obviously, a higher energy in
the rotor allows for a smoother landing, and for additiormaitcol authority, which may be
particularly useful for disturbance rejection.

5.6. CoNCLUSION

In this Chapter we have evaluated the capabilities of th@@tary Planning (TP) and Tra-
jectory Tracking (TT) framework, previously developed indpter 4. In particular, we have
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demonstrated in this Chapter—using the high-fidelity, hagtier, nonlinear helicopter sim-
ulation of Chapter 2—the first, real-time feasible, moda$éd TP and TT system, for the
case of a small-scale helicopter UAV with an engine OFF diordi The main distinctive
features of the engine ON versus engine OFF TP and TT may bmatined as follows:

For the engine ON case, the vehicle state at a currenttin@s only a limited impact
(if any) on the reachable states at a (very distant) timevith t; > t;. If we omit
the on-board electrical power supply system from the vehériergy balance, i.e.
considering only vehicle potential, kinetic, and main rotoergies, then the total
vehicle energy may decrease or increase, depending onevélight above ground
level and vehicle velocity. By contrast, the total vehicleergy in the engine OFF
case is always decreasing. Hence, we conjecture that #nefdzis reachable set, at
time t¢, is much smaller than its engine ON counterpart, and coregglyfeasible
trajectories are harder to find in the engine OFF case.

For the engine ON case, helicopter operations can remainedbaity which stays in
the neighborhood of the design-point velocity, i.e. in teeghborhood of the equilib-
rium point velocity which was used to derive the LTI model éontrol design. This
allows to maximize the linear behavior of the system. On tieiohand, helicopter
operations with the engine OFF will inevitably result in aleirange of flown veloc-
ities, including high descent rates, and even flight intodihaotic Vortex-Ring-State
(VRS). Indeed, a brief transition through the VRS may in sarases be required.
This obviously tends to 'amplify’ the nonlinear behaviortbé system.

For the engine ON case, the designer can choose to keep ttheidémof the closed-
loop system rather small, by only considering gentle andammaneuvers in the
design specification phase. For the engine OFF case, a luigised-loop bandwidth
is definitely required, if proper trajectory tracking is te performed. This may
complicate the controller design, since higher-order LTidels (for controller de-
sign) may have to be considered. This complicates also #uipal implementation,
since higher-bandwidth actuators may become compulsory.

A general approach to mitigate the observed interactioblpro, between the FCS
and the main rotor dynamics, could be to use higher-ordemhddiels, for control

design, possibly in combination with a reduced-order olesein order to estimate
the unmeasured main rotor states.

For the engine OFF case, our results show that the cruciatataf vertical posi-
tion and velocity exhibit outstanding behavior in termsraftking performance, and
does not require an additional increase in control bandwidibwever, the tracking
of horizontal positions and horizontal velocities is clgdacking some bandwidth.
Unfortunately, a further increase of the horizontal clekmmp bandwidths resulted
in closed-loop instabilities (i.e. when evaluated on thelim@ar helicopter model of
Chapter 2).

Finally, tracking performance of horizontal positions dratizontal velocities could
potentially be improved, by considering one of the two faflog options: 1) remain-
ing in the framework of a single robust LTI controller, howecombined with a
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higher-order LTI plant (i.e. containing the main rotor fligrand inflow dynamics),
instead of the low-order plant used in Secti®®.1 of Chapter 4. This LTI plant
could also be derived using a more accurate linearizatiothade as discussed in
Section2.4.10of Chapter 2; or 2) using another control method, i.e. in #@m of
nonlinear, adaptive, or Linear Parameter-Varying (LPV}hods.



5.6.CoNcLUSION 197

APPENDIX A: SIMULATION RESULTS
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Figure 5.1: Helicopter control inputs, for the Engine ONecas
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Figure 5.26: Vehicle energies, for the Engine OFF case 2.
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Figure 5.27: Helicopter control inputs, for the Engine ORBe 3.
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Figure 5.30: Main rotor RPM2uR, for the Engine OFF case 3.
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There is this famous quote that the theory of nonlinear systs like a theory of
non-elephants. It is impossible to build a theory of nordingystems, because arbitrary
things can satisfy that definition.

Pablo Parillo
MIT News, 2010

In Chapter 5, a single nominal Linear Time-Invariant (LTIpdel was used for the design
of a single robust LTI Trajectory Tracker (TT). This LTI canllier was capable of landing
the helicopter in autorotation. Simulations showed thatthucial control of vertical posi-
tion and velocity exhibited outstanding behavior in terrfisacking performance, although
the tracking of horizontal positions and velocities waskiag some bandwidth. Increasing
the horizontal closed-loop bandwidth was investigateddsying modified LTI controllers
which, when evaluated on the nominal LTI model, showed giamresults. Unfortunately,
closed-loop instability was observed when evaluated oNthd.inear (NL) model of Chap-
ter 2. Hence, improving the performance of the TT may neeg¢ssin approach that better
exploits the system’s NL structure, while being computatiiy tractable (for on-line use).
Linear Parameter-Varying (LPV) systems have become caiethias they represent an at-
tractive midway approach between LTI and NL structures, laedce LPV control could
potentially be applied to improve the performance of the Hdwever, the LPV control
paradigm takes the existence of the plant, in LPV form, asdisy point. Since a sys-
tematic formulation of a NL system into a suitable LPV modsiains often problematic,
the purpose of this Chapter is to present gfiree LPV modeling approach—for the case
where a plant’s NL model already exists—that delivers a rheuitable for control design.
Our LPV modeling method was applied to the helicopter NL rhofi€hapter 2, and re-
sulted in a LPV model having a large number of scheduling peat@rs. Unfortunately, it
became impossible to synthesize LPV controllers for sudgladrder model, and hence
the simulations in this Chapter have been done on a simpledylem system.

Parts of this Chapter have been publishedlin [
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6.1.INTRODUCTION

| N Chapter 4, we presented a combined trajectory planningrac#lihg system, capable
of safely landing the helicopter, in autorotation, in theinity of the planned North-East
landing spot. Our simulations of Chapter 5 showed that tieking of horizontal positions
and velocities was lacking some bandwidth. Increasing tirezbintal closed-loop band-
width was investigated, by testing upgraded controllersesE controllers, when evaluated
on the nominal Linear Time-Invariant (LTI) model, showeamising results. Unfortu-
nately, closed-loop instability was observed when testetthe helicopter, NonLinear (NL),
High-Order Model (HOM) of Chapter 2. Hence, tracking penfiance of horizontal posi-
tions and horizontal velocities could potentially be imyed by considering one of the two
following options: i) remaining in the framework of a singiebust LTI controller, using
a higher-order LTI plant for controller design (i.e. comiag the main rotor flap-lag and
inflow dynamics), instead of the low-order plant used in B&ct.5.10f Chapter 4; or ii)
using another control method that better respects and iexph® system’s NL structure,
while being also on-line computationally tractable. Testbind, the three main alternatives
are: 1) Nonlinear Dynamic Inversion (NDI) afod Lyapunov based methods such as slid-
ing mode and backstepping; 2) methods in the realm of adaptintrol; or 3) methods in
the areas related to gain-scheduling and Linear Parandatging (LPV) approaches.

Now the first option, i.e. option (i) here-above, with the wsea higher-order LTI
plant (potentially in combination with a reduced-orderetver to estimate the unmeasured
higher-order rotor dynamics) is attractive for its simjilicand hence is worth investigat-
ing. However it was ruled out in this Chapter since, as statgd], it is generally not
recommended to 'hard-wire’ the higher-order main rotoraiyics into the feedback law,
whenever these higher-order dynamics are fiidently well-captured by an LTI model
(which in practice may often be the case). Hence in this Glrape have chosen to investi-
gate option (ii), and in particular the third alternative, ithe LPV approach, since there is
a plethora of mature LPV control methods, and Model Pradigfiontrol (MPC) for LPV
systems, to choose from. This said, the first two alternatsleuld also be investigated
in future research projects. In particular the recent amnising developments of tHe
adaptive controlj] deserve further attention.

LPV systems allow to enclose NL behaviors into a linear fraom& [4, 5]. In fact,
LPV control methods can be seen as an extension of the sthidaand H,, LTI syn-
thesis techniquesst13]. The LPV method amends also the main drawbacks of classical
gain-scheduling14, 15] by: 1) eliminating the need for repeated desjgimulations, in
order to handle the global control problem; and 2) guaramgeleoth stability and perfor-
mance, along all possible parameter trajectories. In imaditPV control design problems
are dficiently solved, by first expressing the problems as LineatriMénequality (LMI)
optimizations | 6—subsequently formulated as Semi-Definite Programs (§D#)—for
which there are several powerful numerical solutioni§ [L9). This resulted in a growing
number of applications[]], such as in aerospacgl-26], wind turbines P7], wafer step-
pers P8, 29, CD players B(], and robotic manipulatorsi[], to name a few. Now, and for
all its benefits, the LPV control paradigm typically takes #xistence of a model of the
plant, in LPV form, as a starting point. However, a systemftimulation of a NL system
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into a suitable (quasi-)LPVYmodel remains often problematig]). Hence, the problem
of simplifying a large scale, complex, NL model, such as alidopter nonlinear HOM of
Chapter 2, into a LPV representation, suitable for contesigi, is highly relevant. When a
plant’'s NL model is already available, there exists two nmaodeling avenues to transform,
or approximate, its NL representation into a LPV one, narttedyso-called local and global
approaches32, 33]. The local approach consists in applying linearizatiosaity of the
NL system to obtain local LTI models in a state-space forna, subsequently interpolate
these models to derive a LPV approximation. Within this fearark several methods have
been developed, based upon e.g.: extended linearizatipnIpcobian linearizatiorSp],
multiple-model design procedurgd], H, norm minimization 7], multivariable polyno-
mial fitting [38], and poles, zeros, and gain interpolati@d,[40]. On the other hand the
global approach generates a LPV model which preserves thenalg behavior of the NL
system. This can either be done by using a range of mathexhatémipulations e.g.: state
transformation 41], velocity-based formulation4], function substitution 43, 44], and
automated LPV model generatio® 45], or alternatively by using a global identification
approach of the scheduling parameters, through the usastf¢guares based estimations
or Prediction Error Methods (PEM).{].

Often it is important that the global behavior of the LPV midake similar to the global
behavior of the NL system. This is typically the case whenltR& model is used for
predictionisimulation in open-loop47], MPC or optimal control. On the other hand, itis
sometimes desirable that the local (frozen) behavior ofLiR¥ model, i.e., for constant
scheduling, be representative of the local behavior of thesytem, i.e., local lineariza-
tions of the NL system. For such cases, a local approach wailedcommended This
is particularly the case when the LPV model is used for galredaled controller design,
where controllers are synthesized on the basis of local taode

For LPV systems, the simultaneous identificatiari the LPV basis functions and
scheduling parameters is a non-trivial problem, as it galyecontains excessive degrees
of freedom, giving rise to an ill-conditioned system idén#tion problem 48]. Previous
attempts towards such simultaneous identification prosleave used nonlinear optimiza-
tion methods 49, 50]. Another approach to mitigate such ill-conditioned idécation
problems requires the inclusion of additional constragmtsegularizations47]. An even
simpler way would consist in having separate identificaiab-problems, e.g. by identi-
fying first the basis functions, followed by a separate idieation of the scheduling pa-
rameters. We opt here for such a philosophy, i.e. by followire three-step methodology
introduced in B6], formulated as follows: 1) identify first a central LTI mdd@) identify
the basis functions; and finally 3) identify the schedulimggmeters. Now, the method in
[3€] generates a model which is highlyfective for open-loop prediction and simulation,

1Thequasi-prefix is used to define LPV systems in which the schedulingrpaters are endogenous, i.e. depen-
dent of system states agod control inputs 20].

2Note that global embedding of the behavior of a nonlineatesysinto an LPV representation often does not
imply that the frozen aspects of the LPV models will have himg in common with the local linearizations of
the NL system47, 49].

3Throughout this Chapter, and since the NL system is knownuses PV modelingand LPV identification
interchangeably.
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however the obtained LPV model is not truly in LPV fotnand hence can not be used for
LPV control design. Since our goal is modeling for controg present in this Chapter an
alternative approach that, among others, delivers a LPVefrsdtable for LPV controller
synthesis.

Our method is based upon local linearizations of the NL systdong a nominal tra-
jectory, followed by an interpolation procedure. Speclfic@ur modeling method consists
in: 1) applying linearization of the NL system in order to aibta set of local LTI models
in state-space form, and a set dfime remainder terms resulting from (among others) lin-
earizations of the NL system at non-equilibrium points; 8§ifing a central model within
this set of local LTI models; 3) using Singular Value Decomiions (SVD) tools to de-
rive two sets of LPV basis functiofis4) for the two sets of LPV basis functions, identify
two respective sets of LPV scheduling paraméteaad 5) using a Neural Networks (NN)
based approach to convert the LPV model into a quasi-LPV sungh that the scheduling
parameters may be estimated on-line.

Our method is identical to thglocal’ method of 3], with respect to item 1), and with
respect to the SVD-based machinery used to obtain the firsff 4V basis functions in
item 3). Our method diiers from 6], as follows: a) first it generates a representation which
is truly in LPV form, as it provides a model for théiame remainder terms, and hence allows
to use the LPV model for controller design, over the compbpterating regime (hence valid
also at d@f-equilibria points); b) the choice of the central model anel thoice of the first
set of scheduling parameters are set within e norm framework, as most robustness
results are expressed in termsfaéf, distances; and finally ¢) our method allows the user to
specify an input-signal frequency range of interest, oncitihe local LTIs should best be
approximated In fact, our method is in spirit more reminiscent of the sdiarl Jacobian
linearization, or linearization gain-scheduled con&p[b, 35], in which linearized plants
along equilibria (or alternatively a trajectory), assoethwith local deviation signals, are
used to design a parametrized family of linear controll@sr modeling approach could
perhaps be seen as an extension of these methods since ocoacpgoes not rely upon
local deviation signals and hence can be used to approximafdL behavior of the plant
at off-equilibria points.

The LPV modeling method, presented in this Chapter, wasieppb the helicopter
NL model of Chapter 2 and resulted in a LPV model having a langraber of (i.e. more
than thirty) scheduling parameters. Unfortunately it beeampossible to synthesize LPV
controllers with such a high-order LPV model. It is indeedlwaown that the numerical
conditioning and solvability of LMI problems play a crucialle in LPV practical design

4This aspect will be discussed later, starting with Eg7)

5The first set of basis functions is used to approximate tha! IGEl models, whereas the second set is used to
approximate theféine remainder terms.

6The first set of scheduling parameters is obtained by minmgithe ., distance between the frozen-scheduling
LPV models and the respective LTIs, whereas the second gktased by minimizing theC> norm of a vector.

"The acronynmlocal stands for the combination of botfiobal andlocal.

8This is done since, for controller synthesis, design sptifins are typically generated for specific frequency
ranges.
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methods P7-30]. Hence the simulation results, presented in this Chaptee been done
on a simpler example, i.e. a modified pointmass penduluniodlgh our focus is primarily
set upon LPV modeling for control, we provide extensive gsialof, both, open-loop and
closed-loop simulation results to illustrate the pradiigaf the method.

The remainder of this Chapter is organized as follows. IrtiSeé.2, the general LPV
modeling and optimization problems are defined. In SediiGithrough6.8, a step by step
modeling approach is described, and solutions to the opditioin problems are derived.
In Section6.9, open-loop and closed-loop simulation results are andlyasingH.., y,
and two LPV controllers. Finally, conclusions and futureedtions are presented in Sec-
tion6.10

The nomenclature is fairly standard. Vectors are printetidhiface. M™, M*, Mf
denote the transpose, the complex-conjugate transpode¢hamoore-Penrose inverse of
a real or complex matriM, whereas He\l) (resp. Symi#)) is shorthand foiM + M*
(resp.M + MT). We usex as an ellipsis for terms that are induced by symmetry. Matrix
inequalities are considered in the sensd.6fvner. Furtheri(M) denotes the zeros of
the characteristic polynomial det(— M) = 0. L. is the Lebesguenormed space s.t.
1G]l = supo-(G(Ja))) < o0, with o(G) the largest singular value of mati@(-). Similarly,

Hs C Lx, |s the Hardy normed space s.|Gll.. := sup o(G(s)). Forw; < wy, A, =

Re(s)>0
[wi, wz], we use||Glly, = supc(G(jw)). RL. (resp. RH.,) represent the subspace of

wEA,,
real rational Transfer Functions (TFs) i, (resp. H.). For appropriately dimensioned
matricesk andM, where the latter is partitioned & = [ Mir - Maz
M21 M2z
Fractional Transformation (LFT) is definedBgM, K) = M11+ MoK (I =M2oK) M2y, and
the upper LFT is defined d&,(M, K) = Mas+ M21K (I = M13K)"tM1, under the assumption
that the inverses exist. F&f € C#P, the structured singular valug (M) of M, with respect
to an uncertainty set c CP9, is defined ag,}(M) := minsea{o(A) | det( — MA) = 0}

}, the lower Linear

6.2. PROBLEM STATEMENT
We suppose that a real-life system can be described by a kiniwstate-space, Continuous-
Time (CT), dynamical model

Yt>0  X(t) = f(x(t), u(t)) y(t) = f(x(®), u(t)) (6.1)

with f(-), f(), partially differentiable smooth functiong(t) € £, c R™ the plant state,
y(t) € Py c R™ the plant outputy(t) € £, c R™ the control inputf the time variable, and
Py, Py, Pu SOMe compact sets. In this simulation model, the simulai¢alid not perturbed
by noise. Further, we assume that the simulation model gifyfdescribes the behavior
of the NL system. However, as mentioned earlier, this masldieiemed too complex for
control design. Hence, our goal consists in approximatiegNL functionsf(-), f(-), in
Eq. (6.1), by a quasi-LPV representation, suitablefar LPV control design. Next, and to
simplify the problem’s context, we consider here the appnation of functionf(-) only;
indeed procedures similar to the ones presented in the lsiequig-) may also be applied
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to approximatef (-). Hence, from now on we consider the case
Yt>0 X(t) = f(x(t), u(t) y(t) = x(t) (6.2)

Our procedure uses simulation data to identify a quasi-LRMehof the complex NL
model f(-). For this purpose, we apply to simulation model Exj2) a typical input trajec-
tory and store the corresponding output. This yields thiefiohg Input-Output (10) signal
sequenceZM = {u(t;), y(t)},. Since in our case we considgft) = x(t), the setzV is
refereed in the sequel &" = {u(ti),x(ti)}i'\il. We also assume that this sequence is infor-
mative’ enough for the identification of the quasi-LPV model, i.¢relevant nonlinearities
of the system given by Eq6(2) have been excited over the entire working area.

Remark 8 We will encompass our discussion within the CT frameworéesstability and
performance requirements, for controller synthesis, aragally much more conveniently
expressed in this framework. In case an equivalent LPV Bisefime (DT) realization
is needed, this may be easily achieved by, either, disorgtthe obtained CT LPV model
through one of the LPV discretization methods presente@ihdr, alternatively, by using
the equivalent DT formulations of the machinery outlinethis Chapter.

We denote now thefine LPV model we want to identify as

X(t) = Aox(t) + Bou(t)

+ ri 6r (X(t), U(t))(Arx(t) n Bru(t)) (6.3)

P(O(x(1), u(1)) = {

with 8(x(t), u(t)) := [61(X(t), u(t)), ..., Br(X(t), u(t))] T the non-stationary scheduling pa-
rameters defined on the compact &t known as the scheduling space, and matrices
{Ar, B(}}, of appropriate sizes, representing the basis functionsth&uy we also choose
to enclose our analysis within théiae LPV setting, with static scheduling-parameter de-
pendence, as dynamic dependence may leadfiouties in terms of controller design and
implementation. There exists also a clear advantage irgubmdfine LPV structure. In-
deed, previous work on Takagi-Sugeno (TS) fuzzy models¢lvbihibit similarities with
LPV systems $4], has shown that, on a compact subset of the state and inpaé sfhe
approximation of the NL model Eq6(2) by the dfine LPV model Eq.§.3) can be made
arbitrarily accurate47, 50.

Next we consider the situation where one needs to build a GIBdel from sampled
measurements of the CT signal@) andy(t). These DT signals, sampled with the sam-
pling periodTs > 0, are denoted(t;)) = u(iTs), i € Z, as illustrated here for the input signal
u(:). Building a CT LPV model from samples of measured CT sighals been addressed
recently in p5]. Our problem is here simpler since we are dealing with aexfiise NL
model, avoiding thus the ficult question of CT random process modeling from a sam-
pled CT noise source. Further, for LPV systems with statjpethelence, and concomitant

°Note that persistence of excitation, to ensure consistandyconvergence of the estimation as understood in the
LTI case p1], is an ill-defined concept in the LPV cas&’]. Signal richness, referring to the informativity of a
data set w.r.t. ca@cient parametrization and model order, is a more suitabl ¢dhcept H2], but has yet to be
formalized within this context, and hence is not addresgettiér in our LPV modeling framework.
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to classical discretization theorg(], if the sampled and free-CT signals (i.e. inputs and
exogenous parameters) can be assumed to be piecewisent@msgasampling period, i.e.
Tsis suficiently small, then the CT output trajectory may be compyateconstructed from
its sampled observations]].

Non-stationary linearizations of the NL model, along a givejectory, as suggested
for the Gain-Scheduling (GS) modeling framework irv459], and for the LPV modeling
framework in B6, 42, 60], have often been used to extend the validity of GS, or LP¥Y-co
trollers to operating regions far from equilibrium poingghen combined with a sficiently
small sampling periods, such an approach may allow to better capture the transiératb
ior of the NL model. Accordingly, we also choose to base o Infodeling methodology
upon such linearizations. The latter may be computed viadiner Taylor-series expan-
sions, or via classical numerical perturbation methodsonFEq. ¢.2) and setZN, we
create a set of triplet elemer@, = (A, B, di}iL,

A _ of(xu) n _ of(xu)
A' - OXT (Xivui)_ B __ suT

di = f(x,u) = Ax; — Biu

(xi,ui) (6.4)

with d; the so-called fiine remainder term. In Eq6(4) we have also used the shorthand
X; = X(t), ui == u(t;) to streamline notations. We also define a sequence of CT tarisfer
Functions (TFsp_i(s) = [ 'T' %’
operating pointX;, u;), we can approximate the NL model E§.%), in alocal neighborhood
of (x;, u;), as

}, with matrices of appropriate size. Now, for each

X(t) = F(x(®), u(t) ~ Ax(t) + Biu(t) + di (6.5)
while having exact equivalence at each operating point
X(t) = f(xi,u) = Axi + Bui+di i=1,...,N (6.6)

The two sets we have defined, namely 10 gét and linearization seZNin, describe
the behavior of the NL system Edi.0) from a global and local perspective, respectively.
Both will be used for the identification of our LPV model, ré8wg in a model valid for
both open- and closed-loop applications. As stated eafitiethe identification of the LPV
model we follow the three-step methodology introducedis,[formulated as follows

o Step lldentify the central modelAg, By).
e Step 2Using (Ao, Bo), identify the basis functiong\, Br}f*:l.
o Step 3ldentify the scheduling parametei&(t), u(t)).

Since our method builds upon results fro&@], we first briefly recall this method. In
[36], the following LPV model is being identified

X(t) = Aox(t) + Bou(t)

+ gler (1), u()(Ax (D) + Bru(t) + dy ) (6.7)

PO(X(t). u(t)) = {
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with {d,}f‘:l a set of basis vectors. Now, following the three-step stmecbutlined
here-above, the data flow for the identification of the modetmyin Eq. €.7) is depicted

in Fig. 6.1
(Ao,Bo)

e N Y

e
(AL BN, {ArBnd f —

A/

{61y,

{ue), x(m))Y,

| O(x(1),u(r))

1

o

Figure 6.1: Data flow for the LPV identification methdth]. Lines in blue represent the information flow from the
local system’s behavior, present in %ﬁ‘in. Lines in red represent the information flow from the globaitem’s
behavior, present in 10 s@N. Lines in black represent internal information flows.

We notice, among others, that: i) matricés,(Bo) are identified on the basis of the
global system’s behavior, whereas matri¢As B,}rR:l are identified on the basis of the
local system’s behavior; and ii) the scheduling parameéx§), u(t)) are identified in a
two-step procedure, defined as follows: first, a set of sdhugjparameterw}i'\il, i.e. for
each timet;, is being identified on the basis of the information ava#aibl the previously
identified se{A;, B, d,}rR:1 together with the data availablemﬂn, and nexta CT mapping
0(x(t), u(t)) is obtained by using the information available in the jwasly identified set
{0i}i“i1 together with the data available in 10 sgt'.

The model in Eq..7) allows to replace a computationally expensive, first-giphes
based, NL model with a computationally tractable altexmati Typical applications for
the model in Eq. €.7) include predictiofsimulation in open-loop, e.g. on-line optimal
trajectory planning. Now, the flerence between Eq6 (7)) and Eq. 6.9, is that Eq. 6.7)

R
contains an additional vectd?, 6, (x(t), u(t))d;, which role is to model theffine remainder
r=1
terms{di}i'il. Strictly speaking, the model in Ed () is neither in LPV form, nor in Piece-
Wise-Affine (PWA) form [1, 62], but rather in a hybrid mix of both. Besides, and due
to this additional vector, the model in Eda.{) is not in a form suitable for LPV control
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design. Hence, in this Chapter, we extend the approachajeelin Eq. §.7) in order to
obtain a LPV model, suitable for both open- and closed-lqugieations. To this end, we
replace the model in Eq6(7) by the following quasi-LPV model

P(n(x(1). u(). £(x(t). u(t)) :=
X(t) = Aox(t) + Bou(t)

+ 2 10, uO) (LX) + RU) 6.8)
+ 3 G0 UO)Tx® + Z4()

for some scheduling parametep((t), u(t)) := [n2(x(t), u(t)), ..., ns(x(t), u(t))]T
Z(x(v), U(t)) = [ (x(), u(), ..., dwlx(1), u(t))] ", and matricesAo, Bo), andiLs, Relg;,
{Tw, ZW}W_l, of appropriate sizes. Next, we present the multi-stepgbiphy used to iden-
tify the quasi-LPV model given in Eq6(8)

o Step 1Ident|fy the central model4p, Bo) from the local system’s behavior present
in {A, BiJlL,, available in seZ .

e Step 2Using (A, Bo), |dent|fy the basis functiond s, RS} , from the local system’s
behavior present ipA;, B}l ;, available in seZ. .

e Step 3 Identify the basis function$§T,,, Zw}w:1 from the local system’s behavior

present in(d; }I ., available in seZLm, and from the global system’s behavior present
in 10 setZN.

e Step 4ldentify the scheduling parametegéx(t), u(t)) using, here-too, a two-step
approach.

— Step 4.1A set of scheduling paramete{ng},”l, i.e. for each timg;, is being
identified on the basis of the information available in thevpmusly identified
set{Ls, RS} , together with the data available in s{ét B.}I ,. Basically, this
step conS|sts in obtaining a value of the scheduling parmsétom lineariza-
tions at timeg;.

— Step 4.2A continuous-time mapping(x(t), u(t)), that satisfieg(x(t;), u(t)) L, ~
{m}i“il, is obtained by using the information available in the poesgly identi-
fied set{n;}, together with the data available in 10 sgt'.

e Step 5ldentify the scheduling parametegéx(t), u(t)) using, here-too, a two-step
approach.

— Step 5.1A set of scheduling paramete{rﬁ}iﬁl, i.e. for each timg;, is being
identified on the basis of the information available in theviwusly identified
set{Tw, Zw}w:1 together with the data available in e‘,dt}i'\i 1

— Step 5.2A continuous-time mapping(x(t), u(t)), that satisfie$ (x(t;), u(ti))}i’il ~
{¢i }i’il, is obtained by using the information available in the poesly identified
set{Z} | together with the data available in 10 sgt.
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Following this five-step structure, the data flow for the itifezation of the model given
in Eq. (6.9) is depicted in Fig6.2.
o
(Ao, Ba)

\J

T ZalV

w=1

DA —

{gl }‘:\: 1 -

L N(X(r),u(r))
ZV Y
Z(x(r),u(r))

Figure 6.2: Data flow for the identification of our LPV model.K§.8). Lines in blue represent the information
flow from the local system’s behavior, present in sg{tn. Lines in red represent the information flow from the
global system’s behavior, present in IO €Y. Lines in black represent internal information flows.

fu(z).x(1))Y,

Remark 9 LPV properties cannot in general be inferred from underdylrT| properties,
i.e. frozen-scheduling deductions do not generally entatLPV modeling characteris-
tics will be preserved with rapid parameter variations3. Hence, no formal proofs of
convergence between the NL model and our LPV model may be\gavéhis engineering
practice.

Remark 10 Step 4.2 andStep 5.2 allow to use the model given by E§.&) for LPV control
design. Indeed, without the knowledge of the mappif{g&), u(t)), and £(x(t), u(t)), one
would be restricted to potentially more conservajieontrol methods, since the scheduling
parameters cannot be estimated on-line. Note that findieh smooth mappings is a non-
trivial task, and may even require some leap of faith, whink may be willing to take in
case the entire working area has been sampled with a densaybrgrid.
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Remark 11 We restrict our discussion to full-order modeling, i.e NGEsA; and(Ao, Ls, Tw)
have same size (resB; and(By, Rs, Zy)).

In the sequel we discuss, in more detail, our five step metbggio

6.3.STEP 1. IDENTIFYING THE CENTRAL MODEL (A, Bp)

As stated earlier, the modeA, Bo) is chosen within all models present in $8, Bi}Y,

A natural approach consists in finding the model which maydfandd as the mosentral

one. Further, we will base this model selection within #g framework?, since our pri-

mary focus is on modeling for control. In addition, for caiker synthesis, design specifi-

cations are typically generated on various frequency rao§mterest\,, = [w1, wy], w1 <

wy, which led us to use thgf,, norm on a frequency range of relevance, i.e.|thg,, dis-

tance metric defined in the introduction Section|@#,, = supo(G(jw)) for a TFG(jw)
weA,, . .

(see also Appendix A). This central model, i.e. the optimabied, Gy(s) = [ AI‘O ESO ]

A | B

10 ] i € {1,..,N}, the

is chosen as follows: compute, for each moGg(s) := [

following meany; and standard-deviatios as

Vel N] g = (UN) 3 1G9 - Gi(9la,
= (6.9)

N}
N — 211/2
5 = [(1/N) % (1G9 - Gi(9la, - ) |
where|| - ||, is obtained" by minimizing the boung subject to the LMI of Eq.{.49) (see
Appendix A). Next define the following extrema
p= ming, = maxu, $= Mins, $= maxs (6.10)
The optimal modeGo(s) is now designated &y(s) := G;(s), with the optimal index

resulting from a simple, and readily solved, mean versusdstal-deviation minimization
problem

.....

i arg,_min (o{( - /i) + (15 - 315~ 9 (6.11)

with p a user-defined weighting parameter.

6.4.STEP 2: IDENTIFYING THE BASIS FUNCTIONS {Lg, Rg}> o1

Whereas the role of the central mod&s) consists in capturing the most significant linear
behavior of the NL system, the role of the basis functi(jng,sRS}i1 (together with the

1%Even though several other norms could be used/Hhenorm provides guarantees on worst cases.

UThere are three ways to compljt,,: 1) approximately, through frequency griding of i, norm; 2) exactly,
through the LMI optimization problems presented in Appe&rili or 3) approximately, through a weightéd.,
norm minimization, using a strictly-proper, bandpassrflté, centered ad,,, leading to||Ws.(-)||e-
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scheduling parameters) consists in capturing the NL behafithe system. We know
from Eq. (.5) that the NL system may be approximated, in a local neightaudiof (;, u;),
by X(t) ~ AX(t) + Biu(t) + di. As the afine remainder terrd; will be handled in the sequel,
we consider here only the following local behavior of the Nistemx(t) ~ Ax(t) + Biu(t).
Hence, the gap between the local NL behavior and the cenwdehbehavior may be
characterized, in a local neighborhood xf (i;), as follows
oX(t) = (A = Ao)X(t) + (B; — Bo)ul(t) (6.12)
Now from Eq. 6.12) one can build the following s¢& — Ao, B — }IN 1» from which we
may derive the basis functiofiss, Ifis}f;l, through Singular Value Decompositions (SVD).
Such approaches have successfully been applied in the cd&lRV modeling in B6, 64,
65]. The approach outlined in this paragraph is not based or+anyorm considerations,
rather it is identical to the highlyficient method presented |B€E| and consists in first
transforming the information present, in matrix form{#—Ao, Bi— }N into a vectorized
form. Now, let
T =[1..1] (6.13)

be a row vector of lengtN. Define next the followingd andQ matrices

[vec(Ao) ]@Y o~

vecly) ... vec(An)
vect 1 N (6.14)

vecB) ,.., vec®Bn)

with vec() the vertical vectorization of a matrix, amlthe Kronecker product. It is clear
that the information contained iA — Ao, B — Bo} is now made available it — @).
Next, we can obtain a proper orthogonal decomposniomef(()) which gives the principal
directions in the space of the déieients of{Ls, F}s}il- This is done by obtaining a SVD
decomposition of the form

Q-®=UzV" (6.15)

Finally, let matrixUy s, with S < ny(nx + ny), contain the firs$S columns of the left
singular vector matriXJ in Eq. (6.15), then each basis function palt( Rs) is simply re-
covered from the matricization of each column olU; s. The chosen value fo8 will
depend upon the considered application, and its 'optimalie represents a tradé-be-
tween model accuracy and computational tractability ofcivatrol synthesis.

6.5.SrEP 3: IDENTIFYING THE BASIS FUNCTIONS { Ty, Z }W {

The idea here consists in prowdlng a model for thima remainder termil; }, 1- Suppose
we can find basis function3 ., Z,}\"_, and scheduling parametef) := [¢1(t), ..., fw(t)] T
such that

xi |

Vie{l, ..,N} d [ Uj

[ Z Sw(t) Tw ngfw(ti)zw (6.16)

with [-]” the left inverse, then by right-multiplying both sides wity’ u’]™ we recover

W
di ~ % Zu(t)(TwXi + Zoti). To determine the basis functions, we will again use SVDs.
w=1

12The operation that turns a vector into a matrix.
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First, we construct the matricés and¥ such that

¥ = vecAr) ... vec@n) | (6.17)

with vec() the vertical vectorization of a matrix. Next, we obtain al3¥ecomposition of
the form

¥ = Usv* (6.18)

Now let matrixUq w, with W < ny(nx + ny), contain the firs®W columns of the left
singular vector matri}J in Eqg. (6.19, then each basis function pdir., Zw}w:l is simply
recovered from the matricization of each columriafyy.

Remark 12 Note that the approach outlined f&tep 3 could potentially have additional
applications, within the LPV modeling problem, but alsohivitthe true context of system
identification when identifying a system from noisy measergs.

N
6.6.StEP 4.1 IDENTIFYING THE PARAMETERS {7; };_4

We identify here the set of scheduling parametqr)ﬂ1 = {m), ..., ns(ti)}i“il on the ba-
sis of the information available in the previously identifieet{Ls, Rs}i1 together with the

data available in se{@, I§i}i“i1. Indeed, since our focus is mainly on modeling for control,
we choose to approximate the local behavior of the NL systgm(£2). This is done
by obtaining a value of the scheduling parameters from ltoakrizations, i.e. by ap-
A | B

proximating the LTI model&;(s) := 0

with the frozen-scheduling LPV model

,fori =1,...,N. This can be formulated as

S S
+ ti)Ls | Bo+ ti)R
Gi(9) = { Ag Sglfls( i)Ls | 0 glns( i)Rs
I 0
follows: for a given user defined frequency ranfye = [w1, wy], find, at each time;, the

optimal parameters‘](ti)}i'il, with f(t) = [7(t), ..., 7s(t)] 7, that minimize

() =1IGi(9) - Gi(Ils, i=1...N (6.19)

Minimizing Ji(t) in Eq. (6.19 is equivalent to minimizing a scalar variable, subject
to the LMI of Eq. 6.49, or to the LMI of Eq. £.49. These LMIs are function of de-
cision variable? andQ, or F andK. Further, these LMIs are also function of matrices
A and B, given hereunder in Eq6(22), which are dependent on the decision variables
{m.(ti), ..., ns(t)}. Due to the product of matricésandQ (or F andK) with matricesA and
B, these LMIs become nonlinear. In such situations the ptiojedemma has often been
used to provide convex reformulations of the original penbl In our case, unfortunately, a
straightforward application of the projection lemma is achievable, due to the structured
nature of our problem (seéf] for additional details). Hence, we choose to use an iteati
approach to solve Eq6(19. The procedure has a two-stage modus operandi: an initial-
ization stage, followed by a nonlinear-based refinememnfestal he first stage computes
reasonable guess values iglt;). The idea here consists in approximating the maximum
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gain of the LTI matrices&; andB;, in the following way
Yie{l,.., N}

Xa(ns(t)) = A — (Ao + 21 ns(ti)Ls)

Xa(ns(ti) = B — (Bo + 21 ns(ti)Rs)
nt) = afgmtEpIIXA(ﬂs(ti))llz + [IXs(@s(t))ll2

(6.20)

This is readily recast into the sum minimization of the-induced gains of two static
operators
Vie{l,..,N} minimizeya +yg

7s(ti):yarys
subjectto ya>0 yg>0 (6.21)
yal * vel *
0 0
Xas) 1|77 | Xerst)) 1|7

Next, the second stage uses the initial guess values foubgli.21) in order to solve
Eqg. (6.19, through an iterative approach. Heirel|,, is computed via Eq.649) since the
latter is convex in either the=(K) or (A, B) matrices. TheseA; B) matrices in Eq.§.49
are given by

A 0 Bi

_ S S

&@—a©:[é 3}:0 Ao+ L ms(t)Ls | Bo+ 3 ns(t)Rs (6.22)
| —I | 0

Our proposed approach is a simple two-step iterative LMictgan spirit reminiscent

Fii Fo andK =

of D-K iteration synthesis{/]. First, partitionF andK, asF =
Fa1 Fa2

[ Kz K2

Ko Kz
procedure reads as follows

1. Start with the initial valug(t;) obtained from Eq.q.21)

}, with the sub-block sizes matching the partitions in E©j2f). Next, the

2. In Eg. (.49 minimizey with respect to , K)

3. Keep F12, F22, K12, K22) from step 2 since these variables multiply the unknowns
ns(ti). Nextin Eq. 6.49, minimizey with respect to the free variables
(1(t:), F11, F21, K11, Ko1)

4. Repeat from 2 until convergence or maximum iterationfedc

Remark 13 Aside from D-K iteration, similar heuristics appear to woskell in practice,
such as model order reductioi§], LPV controller with parameter-dependent scalings
[69], or gain-scheduled controller with inexact schedulingg@aeters [/(]. Analogously

to D-K iteration convergence—for which convergence towadjlobal optimum, or even
a local one, is not guaranteed’, 72]—the above iterative method does not inherit any
convergence certificates, however in practice convergbasebeen achieved within a few
iterations.
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Remark 14 In Appendix B, we examine a specific case for which the optradak of the
scheduling parameters can be computed, thus avoiding amyneavr iterative approach.

6.7.StEP 4.2 BTAINING THE MAPPING 77(X(t), u(t))

The aim is here to find a suitable representation, or smootim@ppingg(:), that satis-
fiesp(t) = g(x(t), u(t)) and{n(x(t), u(ti))}i'\il ~ {qi}i'il. To this end, this mapping will be
obtained by using the information available in the previpigentified set{m}i'\il together
with the data available in 10 sa™N.

Now, for physically-intuitive plants, one may select thguged states and inputs in
g(x(t), u(t)), based upon engineering judgment, and derive these mggirough popular
curve-fitting methods. For non-transparent systems, xleibéing significant dependences
among variables, one may consider formmgdtematic tools such as: orthoggnadial ba-
sis functions, principal component analysis, statistcallysis, fuzzy tools, or Neural Net-
works (NN). Regarding NN, it is well-known that, under mildsamptions on continuity
and boundedness, a network of two layécan be trained to approximate any 10 relation-
ship arbitrarily well, provided there are enough neurorteéhidden layer{3, 74]. Hence,
NN have found a wide range of applications in control thedi3].[ But despite their pow-
erful features, NN have only seen limited usage in the LP\dfjé5-78]. This said, we
choose here to base tgeé) modeling on NN. We will further illustrate the applicalyliof
a two-layer feedforward NN, the first being sigmoid and theosel linear, with neurons
(I large enough), such that

n(t) = g(x(t), u(t)) = C,.s,(t) (6.23)

with

S;(t) = Wo, .k(Wy, X () + Wy, u(t) + W, ) (6.24)
andW,, € RS, W, € R*™, W, e R""™ containing the output and hidden layer weights.
Further,W,, € R' contains the sets of biases in the hidden laggre RS*S contains the
output linear maps, ang-) is the activation function, taken as a continuous, diagatifa
ferentiable, and bounded static sigmoid nonlinearity. e-l@fl NN models will be based
upon a classical feedforward network, with the hyperb@igent activation transfer func-
tion in the hidden layer, and backpropagation training ierweights and biases.

: N
6.8.SrEPs 5.1 AND 5.2 IDENTIFYING THE PARAMETERS {{j};_; AND

OBTAINING THE MAPPING {(X(t), u(t))

We identify here the set of scheduling paramett}.r}ﬂl ={a), ..., {w(ti)}i'\il on the basis
of the information available in the previously identified §&,, Zw}wz1 together with the

data available in se{tji}i'il.AThis problem may be formulated as follows: find, at each time
t;, the optimal parametetg‘(ti)}i'\il, with £(t) = [&1(t), ..., dw(ti)] T, that minimize

W
() = lldh = > Ga®)(Twxi + Zut )l i =1,...,N (6.25)
w=1

13The first being hidden sigmoid and the second linear.
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Remark 15 In Eq. (6.25 we have based the optimization on thenorm of a vector, as itis
computationally very cheap. An alternative approach wdaddo consider thel,, norm of
a vector, in order to be consistent with the identificatiohaf scheduling variabley; }i'\il
in Sectior5.6.

Now using theA; matrix defined in Eq.€.17), we can rewrite Eq.6(.25 as

Yi e{l,...,N}
£(t) = arg minivec(ss) - Urw [4(t). .. Gw(t)] 1B (6.26)

which can be solved through linear least-squaredJAg, is an orthogonal matrix, the
solution of Eq. 6.26) reduces to

Vief{l,..N} Z(t)=U],, vech) (6.27)

The reconstructed remainder term, used in the sequel vtttleimodel evaluations, is
readily computed as

M=

Vie (L N} di= ) Gult)(Twxi + Zuw) (6.28)

1

7

The next step requires the determination of a suitable septatiorh(-), that satisfies
Z(t) = h(x(t), u(t) and{g“(x(ti),u(ti))}i“i1 X {gi}i“il. To this end, this mapping will be ob-
tained by using the information available in the previouslgntified set{g’i}i“i1 together
with the data available in 10 seZN. The mappind() is here as well based upon a NN
representation, and the associated procedure is idettitizé one of Sectiof. 7.

6.9. APPLICATION TO THE MODELING AND CONTROL OF A MODIFIED

POINTMASS PENDULUM

The LPV modeling method, presented in this Chapter, wasieppb the helicopter NL
model of Chapter 2, and resulted in a LPV model having a largaber of (i.e. more
than thirty) scheduling parameters. Unfortunately, itdvae impossible to synthesize LPV
controllers with such a high-order LPV model. Hence, theusation results, presented in
this Chapter, have been done on a simpler example, the passtpendulum. In this section,
both Open-Loop (OL) and Closed-Loop (CL) analysis of our Lddeling framework
will further be discussed. Now, the rotational motion of thiven and damped, pointmass
pendulum, is given by

g[xl(t)}_[xZ(t) }+[0 }

at| xo(t) |~ | —bxo(t) — a2 sinx(t) F(u(t)) (6.29)
with  d(u(t)) = csinu(t)

with [x; x2] T = [0 6] the statesq the rotation angley the input torquea = \/g/_L the

angular frequency the acceleration due to gravitythe pendulum length, see Fig3, ba
measure of the dissipative force, with valuds=(3, b = 2), and?¥(-) a fictional nonlinearity
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—i~
vy Torque u
f /

Pendulum Length L

Figure 6.3: The pointmass pendulum example representegdhlinear plant.

(with codficientc = 4) with the intent of increasing the NL model generality. @iwsly,
the system in Eq (29 can exactly be recast into quasi-LPV form, using a globpfaach,
i.e. by choosing two scheduling paramet@rs) andd,(-), such that(t) = sinxy(t)/x(t)
andd(t) = sinu(t)/u(t). We have purposely chosen a simple example, as to bettsirdte
the practicality of our modeling method, which will be usedierive several LPV models.

6.9.1.BuiLpiNg THE LPV MODELS

To derive the LPV models we excite the pendulum model fromeiss position with a 20
s. long sine-sweep(t) = Asin(2r.f.t), A = 1, with frequencyf in the range 0.001-1 Hz,
sampled with a periods = 0.05 s., resulting in 401 data points. The purpose is also to
illustrate the applicability of our modeling method in a servative context, i.e. for the
case where the control input signal-richness (used fortifitgation) is rather limited, as
is the case with this single sine-sweep signal chosen hedefoa the case of a relatively
high sampling period, resulting thus in few data points éhenly a few hundreds). Fur-
ther we also use a frequency range of interest defined as alevidpass filterA,, with
[w1, w2] = [0,10] Hz, to be able to test the model at frequencies outsid® b@l—1 Hz
band used during identification.

First, thecentralmodelGy(s), obtained according to Eqf (1), with p = 100, is found
to be model nr. 185, i.eGigs(s). Next, Table6.1 and Table6.2 are given to provide an
overview of the SVD results—of Sections4 and6.5—used to derive the basis functions,
where thecaptured energyefers to the percentage ratio between the sum of the retaine
singular values to the sum of all singular values.

Table 6.1: Number of retained basis functions, in the SVIbdgwositions of Sectiofi.4.

Nr. of Basis Functions i, g
S=2 | S=1 |
| Captured Energy dfl; s (%) || 100 | 53 |
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Table 6.2: Number of retained basis functions, in the SVDbdgmositions of Sectiof.5.

Nr. of Basis Functions itU1 w
W=3 | W=2 | w=1 |
| Captured Energy dfi w (%) | 100 [ 79 [ 51 |

From Table5.1, we see that matriil; s has 2 columns, and hence the maximum value
of S'is 2. Similarly from Table6.2, we see that matriXJ; w has 3 columns, and the
maximum value oW is 3. To better analyze our modeling framework we will use&itPV
models: the first two to evaluate the OL response, whereathifteone will be used for
dynamic output feedback control designThe first two assume full-information, whereas
the third corresponds to the case where only staie measured. The first model, model
M1, with S = 2, W = 3, retains all basis functions, and hence corresponds toetstanodel
we can build. On the other hand, both models M2 and M3, Bits 1, W = 1, retain
the least amount of energy in the basis functions, but arepotationally most fficient.
Summarizing, the three models are described as

1. Model M1. Generated witts = 2, W = 3, and a 10-neurons network witfft) =
g(xa(t), X2(1), £(t) = h(Xa(t), %2(1))

2. Model M2. Generated witts = 1, W = 1, and a 10-neurons network witfft) =
g(xa(t), X2(1), £(t) = h(xa(t), X2(t))

3. Model M3. Generated witts = 1, W = 1, and a 10-neurons network witfft) =
g(xa(t)), £(t) = h(xa(1))

Note that functiong(-) andh(-) are functions of the states only, rather than both states
and inputs, since better validation results were obtaihedvay when exciting the LPV
models with fresh inputs (i.e. inputs not used during theniifieation process). Next,
to compare the féectiveness of the proposed LPV models, we define the follpwist
functions

1. Cost C1 For an evaluation of the optimization problem E§.1©), we define the
mean of the local TF deviation in terms of cagi := %Zi'\il Ji(ti), with J1(°) the
cost function of Eq.€.19), andN the data length.

2. Cost C2 For an evaluation of the optimization problem E§.205), we define the
s,
oo
statesgx € RN a time-domain vector representing i row of d, the latter being
defined in Eq. §.4). Further,dx € RN is a time-domain vector representing t#ie

row of d, the latter being defined in Ecf.¢9).

Ny
following costJp, = 100%n—1x kglmav(l - O), with ny the number of

14In most practical situations, when designing control systeone does not have access to the full state-vector.
In the case of the pendulum, often only the rotation adgé&ebeing measured.
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For our NL system Eq.6(2) recall that, at each operating potntwe had
x(t) = f(xi,u) = Axi+Biuj+di i=1.,N

Hence the purpose of cost C1 is to check whether the LPV sydédimed by Eq.§.30),
with its scheduling parameters evaluated at a frozen-sdimgdfor timet;, does (or not)
represent a good approximation of the LTI system given hacer by Eq. §.31).

X(t) = Aox(t) + Bou(t)

P ut) = { + 35 nx(), UO) LX) + Rou(h) 630
s=1

X(t) = Ax(t) + Biu(t) (6.31)

On the other hand, the purpose of cost C2 is to check whetbeetionstructed remain-
der termd; at a frozen-scheduling for timg defined by Eq.€.29), does represent (or not)
a good approximation of the remainder tedmdefined by Eq..4). Note also that costs
C1 and C2 evaluate the models before the inclusion of the Nhpcment.

The results are given in Table3, where all LMIs used to compute cost C1 are solved
using YALMIP [79] with the SeDuMi solver [9]. For model M1, since we kept all basis
functions, the cost functionds, and Jp, reveal a perfect match between E§.30) and
Eq. (6.31), and between the remainder tercisandd; respectively. On the other hand,
models M2 and M3 use the minimum set of basis functions. Thesgels are equivalent
in terms ofJp, and Jp,, since diterent only through their respective NN representation.
We see thatlp, is still high (which is good), and that the simple approach Eq20), to
compute the scheduling parameters, gives a very low valudgfo(which is also good).
For this example, we see that the NL refinementkgr(to compute the scheduling param-
eters) is not even necessary, although onfiedint examplel] it did provide substantial
improvements. This preliminary modeling review shows thatlels M2 and M3, although
based on the minimum set of basis functions, may potenfatlyide good model fidelity
in OL. In the sequel we provide additional evaluations otl@t. and CL behavior.

Table 6.3: Cost Functionslp, andJp,.

LPV Costs

Model Jp1 Jp1 Jp2

Model from Eqg. 6.20 | from iterative refinement (%)
M1 0 N.A. 100
M2=M3 || 0.34 0.32 74

6.9.2.0pEN-L 0OP ANALYSIS
To better compare theffectiveness of the proposed LPV models we define the following
additional cost functions



236 6. ArrINE LPV MoODELING

1. Cost C3 For a comparison of time-domain outputsl3f0, ), we use fresh data
sets, namely step-inputs, and sine-inputs at varying angas and frequencies, and
”S'k_§k 2
sk—meansk)uz ’
time-domain vector representing tk€ row of x (x being the state-vector of the NL
system), and similarl§ € RN being the LPV counterpart.

Ny
compute the Best-FiT (BFT) 100%:% 3, max(1- ” 0) with 5, e RN a
X k=1

2. Cost C4. Using the variables defined f@3, we compute the Variance-Accounted-
For (VAF)

Ny ~
VAF = 100%2 k;l max(1-53) 0). Roughly speaking the VAF tends to capture

signal closeness in terms of their respective "shapes".

In this section we have added the NN part to the LPV models (seetie NN MAT-
LAB Toolbox). All models become now quasi-LPV models (alsdtten as gqLPV). We
will compare next the behavior of the CT quasi-LPV modeldwtitat of the CT NL sys-
tem. We excite the quasi-LPV models with data sets not usedglthe modeling build-up.
First, we use sine-inputs, for several fixed amplitudes awdlffrequencies (again not used
during identification), and present the respective BFT afH f6r each model in Tablé.4
through6.6.

Overall all three models exhibit very good to excellent fittwthe NL model, for
input amplitudes below one (i.e. the value used during ifleation). The accuracy of
these quasi-LPV models diminishes when the input amplitsidereased above one, even
though model M2 still retains a very good fit. We also note thadel M2, even though
based on fewer basis functions than M1, is roughly at leagioasl as model M1. This
may be explained by the fact that the NN models were traindll avivery small data set.
Indeed good identification data sets may be two orders of matmbigger, in the tens of
thousands of points rather than a few hundred}. [Hence, and even though there is no
measurement noise in these simulations, a model with fesvbetestimated parameters,
like M2, may provide, in this case, a higher quality modeleTithfor model M3 is slightly
worse than that of M2, e.g. for input amplitudes above onés Trtay be explained by the
fact that the identification of M3's NN was based on statenly.

Table 6.4: Time response to sine-inputs for M1. Left valuBRS (%), Right value is VAF (%).

Input Input Frequency (Hz)
Amplitude || 0.25 | 0.5 | 0.75 | 1 |
0.25 93 99 | 94 100| 96 100| 97 100
0.5 97 100| 91 99 | 94 100| 94 100
0.75 93 100| 90 99 | 91 99 | 92 100
1 94 100| 91 99 | 90 99 | 90 99
1.5 78 97 | 8197 |79 97 | 73 95
1.75 O O |5488 |6995 |61 92
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Table 6.5: Time response to sine-inputs for M2. Left valuBRS (%), Right value is VAF (%).

Input Input Frequency (Hz)

Amplitude || 0.25 | 0.5 | 0.75 | 1 |
0.25 93 100| 87 98 | 90 99 | 91 99
0.5 94 100| 87 98 | 88 99 | 89 99
0.75 96 100| 90 99 | 90 99 | 90 99
1 94 100| 94 100| 93 100| 91 99
1.5 83 97 | 86 98 | 8098 | 77 97
1.75 80 96 | 77 96 | 68 95 | 63 94

Table 6.6: Time response to sine-inputs for M3. Left valuBRS (%), Right value is VAF (%).

Input Input Frequency (Hz)

Amplitude || 0.25 | 0.5 | 0.75 | 1 |
0.25 91 99 | 87 98| 90 99| 90 99
0.5 93 99 | 86 97| 88 98| 88 99
0.75 95 100| 88 98| 87 98| 89 99
1 97 100| 91 99| 88 98| 81 97
1.5 73 95 | 85 98| 81 97| 62 94
1.75 5590 | 74 96| 70 94| 53 91

Finally, we also compare the model responses to a step ifipotglitudeA = 0.5, with
the outcomes given in Table7, and Fig.6.4through6.6, where again the respective high
model quality is being confirmed.

Table 6.7: Time response to step input of Amplitusle 0.5.

Quasi-LPV Costs
Model BFT (%) | VAF (%) |
M1 70 97
M2 72 98
M3 55 96

We do see that all models exhibit some steady-state errotab@>g. This may po-
tentially be attributed to the training of the NN models, iie this case with few data. In
summary, model M2 provides good model fidelity in OL, coupléth slightly better com-
putational &iciency than model M1 (since having fewer scheduling pararagand hence
fewer NN models to evaluate), and may thus be used for OL gtiedi whereas model M3
has also shown to be a suitable candidate for subsequembbendesign, in a dynamic
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output feedback framework (based upon measuremént
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Figure 6.4: M1 outputs for step input of Amplitude= 0.5 (legend: -’ NLXxg; '—= =" NL Xp; =" qLPV xq; "’
qLPV x2).
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Figure 6.5: M2 outputs for step input of Amplitude= 0.5 (legend: -’ NLXxp; '=—="NL Xp; =" qLPV xg; .
gLPV xp).
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6.9.3.CLoSED-L 0OP ANALYSIS

The objective of this section is to evaluate the quasi-LP\deid/3 in a CL setting. To
this end, we define the generalized pl&i(s) which maps the exogenous inpwts =

[r" nT]T and control inputsi, to controlled outputg = [z,7 z,"]T and measured outputs
v = [rT e"]", see Fig.6.7. The signals consist further ofthe reference signals, the
sensors noisee the tracking errorsz, the actuators performance signal (to limit actuator
deflection magnitudes and rates), apdhe desired performance in terms of closed-loop
signal responses. The plant used for control synthesisistddP (plantPy and uncertainty

® will be addressed in the sequel), and for the weights, wehesstandard robust control
weights, which include the performance weighg(4), the actuator weight V{s), and the
sensor noise weight ¥{s), all given in Appendix C. The generalized pla®(s) is further
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Figure 6.7: Control synthesis: two degrees-of-freedontrobstructure.

given by
Z, 0 0 Wy r
| | W, O -W, P
colEL 0 0 n (6.32)
e I -W, -P

The goal of the control synthesis consists in finding a dycarointrollerK(s) that
establishes closed-loop stability, while guaranteeidg-@ain boundy from the exogenous
inputsw to the controlled outputs such that

T T
f " ()z(t) dr < 2 f Wi (Ow(t) dr YT >0 (6.33)
0 0

In the sequel, we will synthesize four controllers—dthe LTI, one robusi LTI, and
two LPV ones—and compare their reference tracking perfaneao step reference in-
puts. The controller synthesis is based upon a two-degrefreedom control structure,
see Fig6.7. The feedback part is used to reduce tfiee of uncertainty, whereas the feed-
forward part is added to improve tracking performan&#,[and for optimality, both will
be designed in one step. These four controllers are definedl@ass

e Controller 1: H., LTI controller . The purpose is here to synthesize a controller
which is not based on model M3, but rather based upon a nofdinahodel. This
latter model is obtained from a single linearization, at st qgosition, of the NL

Anom Bnom
W’T], Used

model defined in Eq.8.29. This nominal LTI modePnom =
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for control design, is computed via a first-order Taylonegexpansion of the NL
model, at its equilibrium poinb{y x,]™ = [0 0]", see Appendix C. Further, for this
H. LTI controller, the control synthesis does not include astyustness with respect
to some uncertaint®, hence in Fig6.7we have

P = Po = Pnom (6'34)

Now, with Eqg. 6.34) in mind, we can rewrite Eq5(32) as follows

1))

with Gp(9) the generalized plant. Obtaining here a LTI controlgs) that mini-
mizes theL,-gain boundy from the exogenous inputg to the controlled outputs,

is equivalent to the minimization of th&(., norm of a standard, weighted, mixed-
sensitivity SKS criterion. Here, the controlld€(s) is computed such thagp]

K = arg min|[Fi(Gp, K)le (6.36)

We will consider this controller as the benchmark controll€he next three con-
trollers will be synthesized using the LPV model M3, and wilo be compared to
this benchmark controller.

Controller 2: Robust y LTI controller . First, the identified fine LPV model M3,
as defined in Eq.6(9), is given by

P(6(t)) = { X(t) = Aox(t) + Bou(t) + rgl 6r O(AX(t) + Bru(t)) (6.37)

with R=S + W, S andW the number of basis functions retained in Sectiochand
6.5, respectively, and

[61(0). ... 6RO 2= [A2(). .. (). 22(0). o G (®)]
[Al,...,AR] = [L]_,..., Ls,T]_,...,Tw] (638)
[Bl, vy BR] = [Rl, vy Rs, Zl, vy Zw]

Now, it is also useful to first rescale plaad(t)) in Eqg. (6.37) as follows
X(t) = Aox(t) + Bou(t)

* ri“r(t)(Aﬂ((t) + Bru(b)) (6.39)

P(a(t)) = {

such that(t) := [a1(t), ..., ar(t)] ", with |a;(t)] < 1. Here, the generalized pla@p(s)
has a linear fractional dependence on the scheduling péeaa{8. This plantGp(s)
can be represented by the upper LFT interconnection

(\Z/):GP(\GV)=Fu(M,®)(\LV) (6.40)
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whereM(s) is a known LTI plant, see Fig..8. Further® := blockdiada1ly,, .., arlks)
represents some block diagonal operator specifying hovgtheduling parameters
enter the plant dynamics, antk }}, denotes identity matrices whose sizes corre-
spond, in a sense, to the "complexity" of the schedulingmpatar variations. Next,
the feedback structure associated with the LFT intercaioreEq. .40 is given by

Zy Wy
z |=M| w
y U (6.41)

Wy = Ozy

with z,, andwg, the inputs and outputs of opera®y shown in Fig 6.8,

Uncertainty

Zg

Plant

Controller

Figure 6.8: Standart¥ — ® — K robust control framework.

We further proceed by treating the scheduling parametétians, i.e. given ir®, as
fixed uncertainties (not measured on-line). This represantapproximation of the
LPV model givenin Eq.§.39, which is here considered as a set of LTI models rather
than a time-varying model. This scheduling parameter tiara is addressed here
within the robust control framework, by consideri@@s a time-invariant uncertainty,

such that
o1 co

The CL operator from exogenous inpuigo controlled outputg is given by

T(M, K, ®) = Fi(Fu(M, ©),K) (6.43)

with K(s) the to-be-synthesized controller. Again, the goal of thatwller is to
minimize theL»-gain boundy from the exogenous inputsto the controlled outputs
z, despite the uncertain@. Based upon Eq6(42 and small gain consideratiorisd,
84], this goal is approximated by the minimization of th&e, norm of (M, K). Now,

if ® presents some structure, better performance may be otithinsynthesizing
K(s) through D-K iteration §7, 8]
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K =arg min inf |DE(M,K)D Y. 6.44
gm DJ}l%ll I )D~I (6.44)

with D(s) a stable and minimum-phase scaling matrix, chosen su¢iD{g}® =
®D(s). Using [8€] we obtain, for our example (see Appendix C for the probleta)ja
after five iterations, a T2order controller based upon al 8rderD(s)-scaling. The
controller is further reduced td"Sorder, after balancing and Hankel-norm model re-
duction B7], without any significant fect on CL robustnegserformance.

In summary, we have obtained a single robust LTI controfter,a family of LTI
plants. Recall however that a major approximation was maategly the LPV model
in Eq. 6.39 is considered as a set of LTI models, by assungirig be time-invariant.
Clearly, such an approach is noticient to prove stability and performance of the
original, time-varying system, i.e. the LPV model in Ef.39 [8€]. In other words,
the L,-gain from the exogenous inputsto the controlled outputs may be much
higher than the#H,, norm of DF (M, K)D~1. This robust control approach should
only be viewed as a necessary condition to prove stability gerformance of the
original LPV system. In other words, if the controlké(s), obtained from Eq..44),
does not meet the desired stability and performance ob@s;tihen it is pointless to
consider other controllers, such as LPV ones, that do takértte-varying aspect of
the system into account. This said, this robust control @ag, as presented here,
is known to work well in practice for scheduling parameteasihg suficiently slow
time-variations.

Let us now examine a more sophisticated control approaclichaakes the time-
varying nature of the scheduling parameters into accouatthis end, we consider now
controllers which are also in LPV form, and hence also tiragsing. The goal of afH.,-
based, output-feedback, control problem for LPV systenmsists in finding, for all pa-
rameter trajectories O(t) := blockdiagai(t)lk,, ..., 2r(t)l), @ dynamic controlleK(s)
that establishes closed-loop stability, while truly miiging the £»>-gain boundy from the
exogenous inputw to the controlled outputa

Over the years the subject of LPV control has received muteimiadn, resulting in a
plethora of control methods. Although a full review of LPVntml methods is beyond the
scope of this Chapter, we briefly mention here the followilagsifications

e So-called polytopic—also known as quadratic—techniques$-97], versus so-

called scaled small-gain—also known as Linear FractiorgrBsentations (LFR) or
norm-bounded—approachés B, 9, 12, 13, 92-94].

e So-called Parameter-Independent Lyapunov Function (REdhniques (such as the

methods listed in the previous alinea), versus so-calledrater-Dependent Lya-
punov Function (PDLF)—also known as griding—approachés 11, 69, 70, 95—
99.

I5Notice that nowe(t) is a time-varying operator.
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We summarize next some general guidelines

e Polytopic PILF approaches tend to be less conservativettiescaled small-gain
PILF ones P2, 100 101]. However, this comes at the expense of an exponential
growth in the number of LMIs.

o PILF methods enjoy twin relevant properties: 1) simplichgving controller com-
plexity typically equaling that of the plant; and 2) numatitractability. However
PILF methods are based upon the quadratic stapsibpstness condition, known to
be only a sificient condition [.07.

e PDLF methods can improve performance, i.e. decrease c@iisen, in case the
scheduling parameter time-derivative is known to be bodijitleZ]. However, PDLF
approaches often lead to additionaffidulties, namely an infinite number of LMIs
emanating from the parameter-dependent LMI structure celdPDLF methods rely
upon so-called griding techniques, resulting in poor cotaganal tractability.

In light of the previous discussion, and in order to validate LPV modeling frame-
work in CL, we implement here twoH,.-based) LPV control methods: 1) a so-called
polytopic PILF one; and 2) a so-called scaled small-gain PDhe. Keeping in mind syn-
thesis simplicity and low online computationdfat, we choose methods][and [69] as
the respective control approaches. These two LPV contsadlee defined as follows

e Controller 3: Polytopic PILF LPV controller . In the LPV modeP(a(t)), given by
Eq. (6.39, the scheduling paramete(t) is defined on a compact s&t,, represented
by a hypercube of dimensid®) with its vertices corresponding to the extremal values
of {ar (IR ;. Let{wj| j € {1,..., 3}, I = 2R} be the vertices of this polytope, then we
can define the following convex hull

J
COWL, ..., Wy} = {Zﬂjwj, =10 > o} (6.45)

J
=1 =1

with Co(-) the abbreviation denoting the convex hull. For LPV model, M@ have
1 1
1|2 = [ -1

-1

1 :1 , since we had normalized the scheduling parameters m

as|a;(t)] < 1. In Eq. 6.39 the dependency oa(t) is afine, hence the vertices of
the state-space matrix polytope, used for controller agsige given byP(w;), j €
{1, ..., J} (see [] for further details). The controller syntheSidollows the lines of
classicalH., synthesis, with the dlierence that it is based upon t##é, quadratic
stability and performance concept (since both plant androber are time-varying).
The global LPV controlleiK (a(t)) is obtained through interpolation of local con-
trollers, the latter being synthesized at each veRg@y;) [7]. Since the method re-
quires the control-matrix to be independent of the timesveay scheduling parame-
ter, we pre-filtered the LPV model with the low-pass filter defl at the beginning of

R=S+W =2, implyingJ = 22 = 4 vertices, given by, = [

W3 = y Wy =

16The polytopic PILF LPV controller synthesis methad fs available in the MATLAB Robust Control Toolbox.
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Section6.9.1. A gainy = 0.92, in Eq. £.39, was achieved with the weights defined
in Appendix C. Although the synthesized controll&(a(t)) is time-varying—and
hence represents an improvement compared to the previdug téntroller—the
guadratic stability and performance concept assumesaihjtfast varying schedul-
ing parameters(t). Obviously this may result in some conservatism, in case th
scheduling parameters have a bounded rate of variation.

e Controller4: Small-gain PDLF LPV controller . This last controller is also referred
in the sequel as the LPV-LFT controller. Again, both pland aontroller are depen-
dent on the time-varying scheduling parameéié) := blockdiada1(t)ly,, ..., ar(t)lkg)-
The CL operator from exogenous inpuwisto controlled outputg is adjusted from
Eq. 6.43 to become

Tip(M, K, ©(1)) = Fi(Fu(M, 6(1)), Fi(K, O(1))) (6.46)

The to-be-designed LPV controll&(®(t)) is obtained by minimizing the&,-norm

of operatofTp, [69. Moreover, the controller synthesis method also takearpater
time-derivative into account, implying a dependence omi@it) and its derivative
O(t). This results in an infinite-dimensional LMI probleraid which, in our case,
was tackled by using a small grid, containing only the exa@f®(t) and®(t). Since
the method §9] is an iterative method, good starting values for the scalings were
obtained by performing a robugtsynthesis, with constant scalings, on tidg, Bo)
plant (this plantis defined in Eq6 (39). A gainy = 0.51, in Eq. (.33, was achieved
with the weights defined in Appendix C, after ten iterations.

Remark 16 The purpose of this CL experiment is not so much on specifectspelated
to controller weight selection, but rather on highlightiagy general similarities or dfer-
ences, obtained when synthesizing various controllerdewising two modeling options:
either LTI or our LPV based method. Similarly, and althouigi ,generality, some robust-
ness with respect to signal noise was included during thérolber synthesis process (with
weight Wi(9)), the simulation results, presented hereunder, considireference tracking
in a noise-free and disturbance-free environment.

DISCUSSION OF RESULTS

The validation of all controllers, on the NL plant, is donénggsstep inputs on the; refer-
ence signal, starting from a zero initial condition, i.engelum at rest, see Fig.%-Fig.6.11
With respect to our LPV modeling method, we provide the fwlfmy main conclusions and
recommendations:

e TheH,, controller exhibits a steady-state error, which remainsipient despite sev-
eral modifications of the performance weitit(s). Compared to thél,, controller,
which is designed on a linearization of the NL plant, all atbentrollers designed
using our LPV modeling methodology, i.e. on model M3, do ndtikit any steady-
state error, and hence achieve much better referencenackhis is achieved even
though model M3 has been built with the least number of basistfons.

1"The small-gain PDLF LPV controller synthesis methaé][is not available in the MATLAB Robust Control
Toolbox.



6.9. APPLICATION TO THE MODELING AND CONTROL OF A MODIFIED POINTMASS PENDULUM

e Best practice would be to first design a rohusbntroller (especially if the NN model
has been trained with few data), and view it as a benchmailgmlehen, it would
be interesting to implement at least one PILF LPV controlhodt and one PDLF

LPV control method, in order to be able to compare results.
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With regard to control, we provide the following main corsiins:

e The robusiu controller and the polytopic PILF LPV controller exhibitryesimilar
tracking performance, although the control input of théelabne is much smoother,

see Fig6.11

e Comparison of robugt control with several LPV control methods has primarily been
addressed inl[03-107]. Except for [LO7], all authors have reported that LPV meth-
ods were less conservative than a stangaagproach. Indeed, the distinct advantage
of LPV control methods is based upon the on-line measurewfethie scheduling
parameters (and potentially its derivatives). HoweverlBW-LFT methods, this
advantage needs to be put into perspective, since all LPMddnatrol methods (ex-
cept for the most prominent contributio4]) have been based upon static scaling,

whereag: uses dynamic scaling.

o If additional robustness is required, to account for unniededynamics and NL
effects, then one may add a complex full-block input multighicauncertaintyd.(s)
at the input of the plant. The uncertainty struct@() in Fig. 6.8is then replaced by

a mixed, real and complex, uncertainty S'[I’UCE[JI’(%C (E)) ] for which several LPV

control methods exist, e.g3,[69].

o If knowledge of the scheduling parameters is somewhat ttedgen [L0g may be

of interest.
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6.10.ConcrLusion

We have presented a comprehensiti@ma quasi-LPV modeling framework, allowing to de-
rive models which are suitable for open-loop and close-kmglications such as robust and
LPV controller design. In addition, the versatility of theoposed modeling framework may
potentially allow to consider other types of control anaysd synthesis avenues, provided
some form of model clustering is used, such as those in tHmrefiPiece-Wise-Afine
and Piece-Wise-Linear methods. Since our LPV modeling@aagr does not incorporate
any information on parameter time-derivatives, it is expdcthat significant enhancements
could potentially be obtained in this area.

Our modeling method was applied to the helicopter high-ordmlinear model of
Chapter 2, and resulted in a LPV model having a large numbéreof more than thirty)
scheduling parameters. Unfortunately, it became imptessibsynthesize LPV controllers
with such a high-order LPV model. In fact, the numerical dtiading and solvability of
LMI problems play a crucial role in LPV practical design medls. A way to mitigate
such problems would consist in applying some LPV model rédao¢echniques, in order
to obtain a LPV model having fewer scheduling parametenscédetter suited for LPV
controller synthesis.
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6.11.AprpeNDIX A: K ALMAN-YakUBoVICH-Porov (KYP) LEMMA wiTH

SPECTRAL MASK CONSTRAINTS

We recall here how to compute tije ||, norm, i.e. theH. norm with spectral mask
constraints, through the use of the Kalman-YakubovicheRdYP) Lemma [L09 with
spectral constraintsi[L0, 111].

6.11.1.PRELIMINARIES
Lemma 2 Let real scalarswi < wz, we = (w1 + w2)/2, and a Transfer Function (TF)

G(s) = é [E; be given, then the following statements are equivalent.
1. Vy>0, A(A) c C UCH, ||G||iw <y? (6.47)

2. There exists matrices P and Q, of appropriate size, suah th
P=P* Q>0,and L(P,Q) + ® < 0, with

A BT[] -Q P+jwQ |[ A B
L(P’Q)_[I O] [P—jch —w1w2Q [I 0]

cC DIl o C D
®:[o | } 0 —y2|Ho | (6.48)

3. There exists matrices F and K, of appropriate size, suah th
Vle{l,2} M(F,K)+®<0
F . A B

M|(F,K):He<[ ” }[ el ]| o )
With @ given in Eq. .49 (6.49)

Proof 2 Invoke the KYP Lemmas with spectral mask constraints, ffarf] and [111], to
prove (ii) and (iii) respectively.

Hence, the norni - |I3 is obtained by minimizing the bound defined in Eq. §.47),
which is computationally done by minimizing’ subject to the LMI in alinea 2), or 3).
Both approaches in 2) and 3) of Lemravill be used in this Chapter. Now letbe the
number of decision variables, antthe number of rows of LMIs, then comparing 2) and 3)
shows that, while both have similar, they difer in terms of, i.e. n2 + ny versus + nyny,
respectively. Since the asymptotic computational coniplear flop cost, of SDP solvers
is in O(N?m?® + m3®) for SeDuMi [19], and inO(n®m) for MATLAB LMI-lab [ 117, the
former approach is mordigcient for large problems, and hence is the method we will use
most often, however, the latter has the advantage thatxkd fi andK, it is also dfine in
the problem’sA andB matrices, and hence can be used in a bi-convex framework.

6.12.ApPPENDIX B: IDENTIFYING THE SET OF PARAMETERS

N
{n1(t), ..., ms(ti)};_ FOR A SPECIFIC CASE
Here we consider a situation for which the optimal value efshheduling parameters can
be computed, avoiding thus an iterative approach the likéeation6.6. We examine the
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specific case where matricks are not identically zero, however with matrid@sidenti-
cally zero. Now Eq.§.22) becomes equivalent to

S(9-6=| ¢ 5] -

A 0 B (6.50)
0 Ag+ ;lns(ti)l—s Bo
| -1 | 0

Here Eq. 6.50) corresponds to a situation where the control-input matfxall LTI
models, is independent of the time-varying schedulingmater (all matrice®; are iden-
tical). This may be a specificity of the NL model, or altermaly, it may be achieved by
(low-pass) filtering the control input of all LTI models][ In addition, we revert here to
a standard weighte@{,, norm minimization instead of the KYP-based formalism used i
Section6.6, hence replacing Eq6(19 by the following: find, for each timég, the parame-
tersi(ti) := [72(t), ..., 7s(ti)]™ that minimize

J(t) = IWe(9(Gi(9) - Gi(9)lleo (6.51)

with W(s) a strictly-proper, bandpass filter, centered\gt Now, if we consider the fol-
lowing assumption

e A.l In Section6.4, all basis (i.e. columns) ity s are retained when computing
{Ls, Rs}_il-

then Eg. 6.51) becomes convex, and the optimal vaip(g) can be found through a three-
step procedure. But before solving Ef.X1), we give first the following result, which will
prove useful in the sequel.

- S
Lemma 3 Let W (s) = Ar | Br ,G_i(s) = A | B ,Gi(9) = Ao+ glﬂs(ti)l-s Bo ,
Ci| O | | | 5
be given, with matrices of appropriate size. Let
_ A1 Az | Bu
Wi (9)(Gi(9) -Gi(s)==| 0 Ax| Bo (6.52)
Ciu 0] O

with Ajp = [ A(\)f %f ], Aix = [ _gf ], Bi1 =

S
> ns(ti)Ls, then the following two statements are equivalent
s=1

E% } Ci = [Cf 0], and A, = Ao +

1. ¥y > 0, Wi(s) € RHe, (Gi(9) - Gi(9)) € RLus, IWs(Gi(9) - Gi(I)IZ <»*  (6.53)




250 6. ArrINE LPV MoODELING

2. A(P,Q), P=PT, Q = QT = P1, with matrix partitions in P and Q matching those

in Eq. (6.5, given by P= PE P12 } Q= Qﬂ Qi } with
P, P2 1 Q2
I'(X;, P11, P12, Q11, Q12) = ...
SyniA11Qu1 + A12Q,)  * * *
Al + X Syf‘fﬁPnAn) * *
Bﬁ ! BILPu+BIP, —2 x |<° (6.54)
C11Qu1 Cu 0 -2l

and X, = P11A11Qu1 + P11A12Qg, + P12A2Q),

Proof 3 The proof is a straightforward application of the BoundedaReemma (BRL)
[113in LMIform [ 8], with further: 1) a congruence transformatiof {4 with diag(J, I, 1),

J= 8.1r1 (I) }; and 2) a change of variable given by, X Note that for stable systems,
12
I

i.e. (Gi(s) — Gi(9) € RH., one has to add the conditior BJ = [ Q|11 Py |7 0

Now, solving Eq. 6.51) reduces to a three-step procedure

1. First, solve
Yie{l,..,N} minimizey
with respectto X, P11, P12, Q11, Q12 (6.55)
subjectto y > 0, and the LMIs of Lemma&

2. Computefy, = P1,(X, — P11A11Qu1 — P11A12Q],)Q],, with (1) the Moore-Penrose

inverse. Note thaP1, andQJ, are skinny and fat matrices, hence, by virtue of the
respective left and right inverséy, is well-defined

S
3. Finally, minimize the£,-induced gain of static operatdiXa,, = Aoo—(Ao+ Y. 1s(ti)Ls),
s=1

such that _ R _
Vie{l,..,N} 7() = argmtlplezzllz (6.56)

which is solved as in Eq5(21)

6.13.AprrEnDIX C: PROBLEM DATA

The nominal model, corresponding to a linearization of tiequium NL model abf x] " =
[00]", used forH,, controller design, is given by

o 1 0
A”°m=[ ~3.2667 —2] B“Of“:[ 4]

The data for model Eq6(37) is given by

0 1 0
AO:[ -2.7915 -2 } BO:[ 3.0631]

s
18Note that, thanks to assumptiénl, the quantityAs; can exactly be recovered frofg + 3. 7s(ti)Ls).
s=1
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0o o0 0
Al:[ -0.0170 o] Bl:[ —1]

A-| O 0
>~ | 02205 -0.3446

The data for model Eq6(39 is given by

o8]

_ 0
27| -09125

< 0 1 - 0
Ao=| _28896 —1.8459] Bo :[ 3.4962
) 0 0] 4« 0

A :[ ~0.0159 o] Bl:[ —0.9342}

el ot otes] 8| ol
0.1556 -0.2433 0.6441
6, = 0.9092 6, = -0.9595 6, = 0.2588 6, = —1.1530
The maximum rates for the LPV-LFT controller are
a1 = 1159 a3 = 1210 ap = 1113, ap = -11.72

The LTI performance weights in Fig.7 are based upon the guidelines 6fl]. We
have used

S
WU(S) = E Wn(S) = 0005

For theH, u, and LPV-LFT controllers, after several trials, we setfied

s/2+ 0.257

0.257
107

We(s) = ot

For the LPV-Polytopic controller, we have used

s/2+ 0.257

0.25¢
S+ 100

We(s) =
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CONCLUSIONS AND FUTURE RESEARCH

Perfect is the enemy of good.

Aphorism commonly attributed to Voltaire

A good enough solution that works, is immeasurably betgm thperfect solution yet to
be implemented.

Justin Lloyd
A Mastermind’s Guide to Personal Development, 2009

In this Chapter the most important results achieved in thists are first presented, and
further objectives and opportunities for future research @entified and outlined.

261



262 7. CONCLUSIONS AND FUTURE RESEARCH

7.1. CONTRIBUTION OF THIS THESIS
T HE primary objective of this thesis was to develop a, modekbaautomatic safety re-
covery system that could safely fly and land a small-scaledywaier Unmanned Aerial
Vehicle (UAV) in un-powered flight (i.e. autorotation). THight control solution presented
in this thesis incorporates a classic guidance and comtgat,| in which the guidance mod-
ule is decoupled from the control module. The goal of the guid module, or Trajectory
Planning (TP), is to generate open-loop, feasible and @tmtorotative trajectories, for
the helicopter, whereas the aim of the control module, ge€tary Tracking (TT), consists
in comparing the current state values with the optimal egfee values produced by the TP,
and then formulate the feedback controls, enabling thuhéhieopter to fly along these
optimal trajectories. The work presented in this thesislted in the first demonstration
of a, real-time feasible, model-based TP and model-basetbfihe case of a small-scale
helicopter UAV, with an engine OFF condition (i.e. autotatn). The validation was per-
formed on a helicopter high-fidelity simulation, based upamonlinear, High-Order Model
(HOM). In the sequel we outline additional concluding reksarrelative to the various
solutions and results presented in this thesis.

o With regard tchelicopter modeling we developed two helicopter nonlinear models.
One is a first-principles based, HOM, developed in Chaptang, used to validate
the Flight Control System (FCS). The second one is a gray;haw-Order Model
(LOM), developed and used in Chapter 3 to obtain optimalrasidive trajectories.
The latter model provides a good approximation of the HOM béfter 2, while
having better computationafficiency when compared to the HOM. However, this
comes at a price, namely a time-consuming identificatioracibwis empirical co-
cients, using input-output data from the HOM. In additioncle new helicopter con-
figuration, or modification thereof (e.g. mass and inertipstdhents), will require
a re-identification of all empirical cdécients. By contrast, the HOM represents a
flexible modeling approach, readily updated in case of ndigdyer configurations,
although its associated CPU time, per model evaluatiorigisehn.

e With respect to theoff-line TP, developed in Chapter 3, based upon the realm of
constrained, nonlinear optimal control, we summarize tteganain findings

1. For fixed initial altitude, increasing the initial veloghas only a relatively lim-
ited efect on flight time and stabilized rate of descent.

2. For fixed initial altitude, the flight time is strongly cefated with the initial
altitude and the induced velocity in hover.

3. For fixed initial altitude, increasing the initial veldgicomplicates somewhat
the flare maneuver.

4. For hover initial conditions, the higher the initial &liile, the more the optimal
autorotative trajectory resembles a vertical flight path.

e With respect to then-line TP and TT of Chapters 4 and 5, using the combined
paradigms of dferential flathess and robust control, we summarize here t#ie m

1Using a mix of first-principles and various empirical figents.
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findings for both the engine ON (i.e. power-on) and engine QJF-power-dr, also
known as autorotation) flight conditions, for the case of alsiscale helicopter UAV

1. The proposed TP and TT approach is validated on the higfitfidirst-principles
based, helicopter HOM, developed in Chapter 2, for bothren@N and en-
gine OFF trajectories. The methodology is real-time fdasce it allows for
a computationally tractable determination, and trackafghe optimal trajec-
tories. In addition, both the engine ON and engine OFF casebased upon
the same planning and tracking system architecture. Furien rotor Rev-
olutions Per Minute (RPM) is not used, being neither necgdsa the engine
OFF trajectory planning, nor for the corresponding trajectracking, hence
simplifying the overall system design.

2. For the engine OFF case, a single Linear Time-Invariant)(tontroller is
capable of controlling and landing the helicopter systamautorotation, for
a relatively large variation in forward and vertical velislelocity (at least up
to approximately 8 to 10 ys), and for relatively large variations in main rotor
RPM (approximately in the 50% to 110% range).

3. For the engine ON case, the vehicle state at an initial tithas only a limited
impact (if any) on the set of reachable states for all adilissnput signals
and for all time instants in an interval [Q], with t; > t;. If we omit the
on-board electrical power supply system from the vehiclergy balance, i.e.
considering only vehicle potential, kinetic, and main roémergies, then the
total vehicle energy may decrease or increase, dependingtocie height and
vehicle velocity. By contrast, the total vehicle energythie engine OFF case,
is always decreasing. Hence, we conjecture that the sizg@fdachable set,
for the engine OFF case, is much smaller when compared togme ON
counterpart and, consequently, feasible trajectoriesrareh harder to find in
the engine OFF case.

4. For the engine ON case, it is relatively easy to find equiilib points, i.e.
steady-state flight conditions, at which the nonlinear nhada be linearized.
The so-obtained LTI models can subsequently be used for aiiirol design.
For the engine OFF case, this set of equilibrium points steady autorotative
flight conditions, is rather small and in certain situatienen non-existent. For
example, when an engine failure happens at a low altituéehdticopter does
not even reach a steady-state autorotation, rather it isncayusly in transition
from one non-equilibrium point to the next. To mitigate thimblem, the ap-
proach used in this thesis consists in excluding the maior ®PM from the
state-vector, and use the resulting "quasi-steady" apprtmafind the equilib-
rium points.

5. For the engine ON case, helicopter operations can renairvalocity which
stays in the neighborhood of the design-point velocity,inghe neighborhood
of the equilibrium point velocity which was used to derive Tl model for
control design. This allows to maximize the linear behawvitthe system. On
the other hand, helicopter operations with the engine ORRnevitably result
in a wide range of flown velocities, including high descemt¢saand even flight
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into the chaotic Vortex-Ring-State (VRS). Indeed, a briefsition through the
VRS may in some cases be required. This obviously tends tpligthe
nonlinear behavior of the system.

6. For the engine ON case, the designer can choose to keepridevidth of the
closed-loop system rather small, by only considering geatld smooth ma-
neuvers in the design specification phase. For the enginecas®, a higher
closed-loop bandwidth is definitely required (especiallthie vertical channel),
if proper trajectory tracking is to be performed. This mayngdicate the con-
troller design, since higher-order LTI models (for congoldesign) may have
to be considered. This complicates also the practical impigation, since
higher-bandwidth actuators may become compulsory.

7. For the engine OFF case, our results show that the crumiatal of vertical
position and velocity exhibit outstanding behavior in teraf tracking perfor-
mance, and does not require an additional increase in ddnatnolwidth. How-
ever, the tracking of horizontal positions and horizontloeities is clearly
lacking some bandwidth (i.e. the flown trajectories are rtyekagging the
planned ones). Although a further increase of the horizahtaed-loop band-
widths provided good results when evaluated on the LTI maded for con-
trol design, this increase in closed-loop bandwidths tedulunfortunately, in
closed-loop instabilities, when evaluated on the nonlitedicopter model of
Chapter 2.

8. For the engine OFF case, tracking performance of horpositions and hor-
izontal velocities could potentially be improved, by catesing one of the two
following options: i) remaining in the framework of a singlebust LTI con-
troller, using a high-order LTI plant for controller desi¢ire. containing the
main rotor flap-lag and inflow dynamics), instead of a lowesrglant as used
in Chapter 4; or ii) using another control method that betspects and ex-
ploits the system’s nonlinear structure, e.g. in the redimoalinear, adaptive,
or Linear Parameter-Varying (LPV) methods.

o With respect to theffine LPV modeling method, developed in Chapter 6, we have
shown, using a pointmass pendulum (i.e. a nonlinear exanthkg our LPV mod-
eling strategy was capable of reproducing the open-loomieh of the original
nonlinear dynamical system. Furthermore, we have showtrctivarollers (whether
robust or LPV), designed using our LPV model, achieved bettierence tracking,
when compared to a controller designed using a linearizatithe nonlinear system.

7.2. RECOMMENDATIONS FOR FUTURE RESEARCH

In light of the research objective of this thesis and theltesaachieved so far, we identify
and discuss next some stimulating opportunities for futesearch. In particular, if the
next step is to perform flight tests and achieve an experiahgatidation of an automatic
autorotation system, then the general control architecagrused in this thesis, and outlined
in Fig. 1.150f Chapter 1, may have to be replaced by the one given in/Figln the sequel
we will elaborate on the new blocks of Fig.1, as well as several other areas that warrant
further exploration.
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Figure 7.1: Upgraded two degree of freedom control architec

o For the case of an engine failure, thengine OFF event" first needs to be recog-
nized. Here the use of an engine torque sensor could prove verylugelr example,
a sudden reduction in measured torque, if accompanied iy rinegn rotor collective
input and a decelerating main rotor speed, could be indieati an engine failure.
However, a sudden reduction in engine torque if accompamecither, reduced
main rotor collective input or accelerating main rotor ghesould not indicate an
engine failure f]. An additional clue for the detection of engine failure wbalso
come from the yaw channel. Indeed, a jerk is generally fethisixchannel, since the
tail rotor will tend to overcompensate the reduced mainrrtdoue [L]. As a final
point, it should be noted that, for the case where engine pimmet lost suddenly but
rather gradually, it may become much mor#éidult to quickly detect such a failure.

e Actuator dynamic models, with amplitude and rate constrairts, ought to be in-
cludedin the HOM of Chapter 2, and in any model used for control desiigdeed, it
is well-known that maximum control gains and crossoverdetcies may be limited
by actuator rate saturatiénFurther, actuator rate saturation can have a significant
detrimental &ect on the handling qualities of an aerospace vehiileand directly
lead into, either, degraded performance, limit cycles veneclosed-loop instability
[3, 4]. For example, the crashes of the SAAB Gripen fighter jet ibrBary 1989
and August 19937, 5], and the crash of the Lockheed Martin YF-22 fighter jet in
April 1992 [2, 6] are all primarily related to actuator rate saturations.egésatu-
rations resulted in so-called Pilot-Induced-Oscillat{etO), and subsequent loss of
vehicle control. Several approaches could be adopted id aaturation problems in
systems which are known to have actuator limits. The firstlimes in the realm of
optimal control. Here the control action is decided throtighuse of constrained op-

2Actuator saturation or rate limits has even been implicatetle meltdown of the Chernobyl nuclear power plant,
in April 1986 [2].
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timization algorithms, known as Model Predictive ContddRC) [7]. Other options
are related to the so-called anti-windup compensationhiicliva nominal controller
(that does not explicitly take the saturation constraints account) is first designed.
Then, in a second step, an anti-windup compensator is desigrhandle the satura-
tion constraints. Anti-windup approaches are attractivpractice because: 1) they
allow for control design in a linear framework; and 2) no nesibns are placed upon
the nominal controller design. Excellent tutorials existhis area, see3f10]. Re-
cently, promising extensions have even considered theafassimultaneous design
of both the nominal controller and the anti-windup compémsé. 1, 17].

An estimation filter, e.g. a state estimator, is typically an integral part of & BES.
Indeed, the quantities required for flight control, like pios, velocity, and attitude,
are not measured directly or, if measured, are noisy and ofteéavailable at the re-
quired frequency. Hence, an estimation filter is often regfito derive smooth, and
high-frequency state updates, from available sensor memsunts. For example, our
Align T-REX helicopter is fitted with a flight computer feaing data logging capa-
bilities, as well as a variety of low-cost sensors, such asnlinertial Measurement
Unit (IMU) containing three accelerometers and three gyopses that measure ac-
celerations and angular velocities, respectively, intieetial body frame; 2) a Global
Positioning Sensor (GPS) providing a direct measuremethiedtfielicopter’s inertial
position and velocity; 3) a compass measuring the vehiohgignetic heading; 4) a
barometric pressure sensor for altitude measurementglaririse flight; and a 5)
a Laser Range Finder (LRF) for altitude measurement dugkeg-tif and landing.
Hence, the helicopter’s position, velocity, and attituéa ©e obtained through the
integration of the high-frequency, noisy, biased, andtidgfIMU outputs, with the
noisy, low-frequency outputs, with bounded error chardsties, of the remaining
sensors. Since in our case the vehicle’s kinematic and merasmt equations are
nonlinear, the nonlinear extension to the original Kalmdtef;, i.e. the Extended
Kalman Filter (EKF) [L3, 14], represents the most common approach for our real-
time estimation problem. However, since based upon limations and calculation
of Jacobian matrices, the EKF is also known to exhibit nuoaiissues and even
divergence in some situations. To mitigate such problehessb-called Unscented
Kalman Filter (UKF) [L5, 16] has been developed. For all its benefits, it was reported
in [17-19 that, for the case of aerospace applications, the UKF didffier substan-
tial performance gains, when compared to the EKF. Hencegdompplication, we
would recommend evaluating first the simpler EKF filter.

Small-scale UAVs are far more sensitive to atmospheric vaimd gust disturbances,
than their full-scale counterparts, since the mean windmitade is often compara-
ble to the speed of the UAV, and consequently this bringsamfthe relevance od
mean wind estimation capability. The knowledge of the mean wind profile mag-
nitude, and direction, is indeed helpful for two reasonsstFit allows to enhance
the accuracy and feasibility of the computed trajectorigsng) the planning phase,
since knowledge of the wind can be included in the model useglanning. Sec-
ond, for good trajectory trackingthe velocities of the vehicle with respect to the

3In flight dynamics models, the aerodynamic forces are fonstiof the vehicle aerodynamic velocities, not of
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relative wind, i.e. the vehicle aerodynamic velocitiespld be made available to
the controller. Direct wind measurement can be obtainealiin, either, a ground-
based anemometer, or through some sort of weather ballooa fif6t option does
not provide information on wind profile (as a function of altle), whereas the sec-
ond may be costly, and potentially impractical. Hence, thedifor wind estimation,
rather than wind measurement, becomes obvious. With rég&idematics, the ve-
hicle’s ground track velocity vector (i.e. the inertial veity, measured with GPS)
can be decomposed into the sum of a vehicle’s airspeed vaotba wind vector.
As stated earlier, GPS data is available on-board the hécoHence, if the wind
velocity vector is known, it can be subtracted from the GPBaity to obtain an
air-relative velocity. Alternatively, if the air-relatévwvelocity vector is known, it can
be subtracted from the GPS velocity vector to obtain the wigldcity vector. The
determination of the vehicle’s air-relative velocity vectan be done through two
approaches. The first approach, and widely used approadixédrwing aircrafts,
consists in mounting an air-data unit, combining precisasueements of airspeed
amplitude, through a pitot-static pressure sensor, arsppedrd orientation, through
angle-of-attack and angle-of-sideslip vanes. The secpptbach is a model-based
one (often derived from relatively simple models) in whible tzehicle’s air-relative
velocity vector is estimated based upon the knowledge ofitbdel, and based upon
the measured control inputs. Here, the first approach isrgiyeuled out for heli-
copters, since such an air-data system needs to operaigeoiis main rotor down-
wash and, even if placed at the front of the fuselage, may lo@lgffective when the
vehicle is traveling at high forward speed. Hence, the preteapproach for wind
and airspeed estimation, for helicopters, consists ingugimodel-based estimation
procedure, together with GPS and control input measuresr(eotetimes also in
combination with heading measurements from the compas®gersuch a strategy
has often successfully been applied to the case of autonoguidied airdrop systems
(i.e. paraplanes), see alsty 21].

e For theLow-Order Model (LOM) of Chapter 3, the empirical céiecients are es-
timated in a multiple-model structure, meaning that forrepeint in the operating
grid, a set of cofficients is being identified thanks to data generated from igba-H
Order Model (HOM). However, as stated earlier, this idecuifion method becomes
rather tedious for large grids. An alternative approachepitally easier to imple-
ment since not based upon the multiple-model concept, sisnisi identifying the
codficients using the optimal control framework. Here, the erogircodficients
constitute the unknown control inputs of a continuous-timenlinear, dynamical
system. These inputs are obtained by solving a constraipidyal control problem,
which goal is to fit the outputs of the LOM with those of the HOMsome optimal
sense. Once identified, a model defining the relation betweese empirical cdi-
cients and the helicopter control inputs and states, needs found (e.g. through a
Neural Networks (NN) representation). 157 we presented preliminary results for
such a LOM approach.

e With regard to theoff-line Trajectory Planning of Chapter 3, we discuss several

vehicle inertial velocities.
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areas that may benefit from further improvements

1. As stated in Sectiof.4, direct optimal control methods have several advantages
when compared to indirect methods. Specifically, the firdeonecessary con-
ditions do not need to be explicitly derived, and the larg#iraf convergence
allow for less accurate initial guess on states and contplts. Hence, direct
methods are appealing for complicated applications. EurfAseudoSpectral
(PS) discretization methods have the known advantage wiging exponential
rate of convergence for the approximation of analytic fionet. For all those
benefits, the direct optimal method used in our applicatamdiso shown some
inherent limitations. For example, it was in some cases maicewhether the
solution obtained was truly optimal. Indeed, fluctuatedisohs were observed
as the number of discretization nodes was varied.

2. We also noticed that the use of lookup tables, within thé/,®ad a negative
impact on the exponential convergence of the method, evemwheried with
cubic B-Splines interpolating functions. Solving the ol control problem
became at times computationally intractable, and at tintbgreinfeasible, or
feasible but very probably sub-optimal. This said, nonstinpooblem formu-
lations are far from uncommon in aerospace. To mitigate Khiswn issue,
several approaches could be investigated such as: 1) a Ri#hgmoethod as in
[23]; or 2) a hybrid globalocal collocation method as ir2{].

3. We solved the NonLinear Programming problem (NLP) viagu@atial Quadratic
Programming (SQP) approach. SQPs belong to the class afiveergradient-
based methods, and gradient methods are known as local dsetiwe did
notice this sensitivity to local minima, by obtaining distt optimal solutions,
for distinct initial guesses.

4. Since in our case we did not use any mesh refinement grid k&ep the prob-
lem computationally tractable), the obtained optimal 8oluprovided only the
state and control values at the discrete nodes. Hence, timeadgolution satis-
fied only the discretized constraints (i.e. the problemid &abe discrete-time
feasible P5]). This implies that, for a small number of nodes, no guazast
may be given regarding the solution of the original contimxtime problem
[25). Obviously, one way to mitigate such a problem would be tréase the
number of nodes, at the cost of higher computational time.

5. Finally a robustness analysis of the obtained trajeztqnvith respect to model
and signal uncertainties, potentially within the realmtotiastic optimization,
- would represent an interesting avenue for future research.

o With regard to theon-line Trajectory Planning (TP) of Chapters 4 and 5, we rec-
ommend considering the following aspects

1. It may be beneficial to add a feedback path into the trajgqitanning, de-
noted by a dashed line in Fig.1, which would allow to re-generate an optimal
reference trajectory, based upon the current state. Thidifwinality may, for

4This could also apply to the flatness-based trajectory jgan
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example, be of interest in the following cases: 1) within fitzenework of an
obstacle avoidance capability; or 2) if the helicopter eigees an increasing
difficulty at tracking the current reference trajectory.

2. One could also consider adding an optical sensor, coupigdan on-board
3D map of the environment, in order to identify suitable gepdpical locations
for a safe landing. If in addition the set of reachable statedd dficiently be
computed on-line, then one would be able to provide feasinlding positions
to the TP.

3. The optical sensor could also potentially be fused wighatther sensors in order
to increase the accuracy of the estimated helicopter st (computed in
the estimation filter).

o With regard to theon-line Trajectory Tracking (TT) of Chapters 4 and 5, we rec-
ommend considering the following aspects

1. The NL helicopter model of Chapter 2 is subject to peritalicis, due to blades
rotation, that result in a time-varying trim condition. lkeiarizing the NL heli-
copter dynamics, around this trim condition, can be donaei e€otor position,
to yield a Periodic Linear Time-Varying (PLTV) system, wighperiod equal
to one rotation of the rotor. For PLTV systems the classicatlah analysis
methodologies, based upon time-invariant eigenstrustures not applicable
anymore P6]. Hence, if one wants to apply the well-established analgsid
control tools for LTI systems, a transformation of the PLTyétem into a LTI
one becomes necessary. There are roughly four main meth@esform such
a transformation or approximatiod{]. The first, and simplest one, consists
in evaluating the PLTV system at a single rotor position. (ata single blade
azimuth position), and obtain a LTI system. Clearly thisrapgh may lead to
poor results. An already better method would consist inayieg the PLTV
state-space matrices over one or more rotor periods. Thetwexmethods
provide LTI models with higher accuracy, but require addiil mathematical
steps. The third method uses Floquet the@dy Pd], and the associated char-
acteristic exponents called Floquet multipliers, to abtednstant state-space
matrices. The fourth method uses the so-called Multi-Bladerdinate (MBC)
transformation (also known as the Coleman transformafiaf)29-31], i.e.
by transforming quantities from rotating blade coordisdtéo a non-rotating
frame. Basically the MBC describes the overall motion of tatiog blade ar-
ray in the inertial frame of reference. The MBC transformatresults in a
weakly periodic system which is subsequently convertea ént Tl system by
averaging over one perio@]]. In this thesis, obtaining an LTI approximation
from the PLTV system was done using the second method assdisdin Sec-
tion 2.4.10of Chapter 2, by averaging over four rotor periods. Althowehy
easy to implement, it is well-known that this method may nmivixle an LTI
model of highest accuracy. Hence, we recommend trying a saphisticated
approach to derive the LTI system. With regard to the MBC meéfthis latter
is particularly well-suited for rotors having three or mdlades, and may in-
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volve significant inaccuracies for a two-bladed r64&?]. The Flogquet method

is numerically more intensiVethan the averaging method used in this thesis
[35], however it may potentially provide LTI models with highaecuracy and
hence would deserve further investigations.

. For a digital implementation of the controller, sevemhtinuous- to discrete-

time transformations exist (depending on the type of cdriteanework used
[36, 37]). The goal, obviously, is to select a transformation thegtlpreserves
the properties of the continuous-time design.

. A general approach to mitigate the interaction probleetwken the FCS and

the main rotor dynamics, could be to use higher-order LTI el®(.e. contain-
ing the main rotor flap-lag and inflow dynamics), for contresayn, possibly in
combination with a reduced-order observer in order to estrthe unmeasured
main rotor states.

. The addition of a roll and pitch attitude stabilizatioopomay potentially allow

to increase the tracking bandwidth. The complete contrsiesy would then
involve multiple nested control loops, namely: 1) the irmest-loop, which
controls the attitude of the vehicle; 2) the middle-loopjehhcontrols the ve-
locity; and 3) the outer-loop, which controls the position.

. Since system delays impose severe limitations on thevidtidof the closed-

loop system 38], all hardware delays—due to actuator dead-time, senger pr
cessing, and theflects of digital implementation on-board the embedded com-
puter—need to be estimated, modeled, and added to all mibelsdtoped within
this thesis.

. Helicopter dynamics is highly coupled, especially dgrrover and low-speed

flight. In order to reduce the couplingfects, and hence simplify the subsequent
controller design, it may be worthwhile to add a decouplirggoie, in the form

of open-loop dynamic crossfeeds, inserted in-betweernghialer outputs and
the plant inputs, seep, 40.

. Itis customary to place the closed-loop poles in a susteddion of the complex

plane. This is often done in order to guarantee satisfadgsjem transients
behavior, and to indirectly enforce constraints on the et bandwidth, and
hence: 1) minimize any controller interaction with actuahpnamics, structural
modes, or any other vehicle higher-order dynamics; andl@ydbr a digital
implementation of the controller dynamics. This can be ddama systematic
way for LTI controllers, in the Linear Matrix Inequality (LMframework, see
[41, 42).

. In Chapters 4 and 5, a single nominal LTI model was usedherdesign of

a single robust LTI TT controller. Relatively good trackirgsults have been
obtained, although the tracking of horizontal velocity @adition could poten-
tially be improved, by considering one of the two followingtmns: 1) remain-
ing in the framework of a single robust LTI controller, hoveecombined with

5As a reminder, our Remote-Controlled (RC) Align T-REX hefiter has a two-bladed main rotor.
6Although some progress has been done with Fast-Floqueoatefhs, 34].
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10.

11.

12.

a higher-order LTI plant, instead of the low-order plantdiseSection4.5.10f
Chapter 4; or 2) by considering a more sophisticated contethod, which bet-
ter exploits the system’s nonlinear structure. If the nuadir HOM of Chapter
2 could somewhat be simplified, and written in closed-fotmentan additional
plethora of nonlinear control tools would become availableeh as: feedback
linearization, (incremental) nonlinear dynamic inversior nested saturated
control in 43-46], backstepping in47-50], adaptive control in $0-53], and
even passivity-based control approactied.[On the other hand, if a low-order
formulation of the LPV model of Chapter 6 could be obtaindant here too
another array of control options may become available: aksty LPV [55],
but also the application of Model Predictive Control (MPG)LtPV Systems
[56, 57], or PieceWise Aine (PWA) control p8-60]. To the best of our knowl-
edge, the last two control options have not even been apfiedsix degree
of freedom helicopter system, as yet. Beyond these welvknoptions, we
also mention the recent developments in the area of non$nogdimization
for control [61-63], which allow the formulation of multiple competing objec-
tives (in time- or frequency-domain), subject to additisteuctural constraints
such as: controller order, afat stat¢input time-domain specifications. Al-
though endowed with local convergence certificates onlyg,ritewly emerging
approach is very promising, since it avoids the use of Lyapwariables, and
hence is numericallyficient for large systems. Ultimately, it would be rather
fascinating to be able to compare some, or most, of the pusljionentioned
TT methods, and investigate the various pros and cons ofreatiod.

. Instead of using LTI control methods, and if blade azimusasurement is

available, one could also consider using a PLTV nominal rhfateontrol de-
sign, in combination with a periodic control methad|65], and check whether
better tracking performance could so be achieved. For tee oawind tur-
bines, it was shown in3[] that periodic Linear Quadratic Regulators (LQRS)
performed no better than LQRs synthesized in the LTI framkwélowever,
periodic control has also been extendedHto and MPC control method${]
and it would be interesting to further evaluate these adtidra control methods.

One could also consider adding some preview controlé¢athrent architec-
ture. Indeed, since the optimal trajectory is precompuiad,could use a non-
causal controller (based upon future information with redga the reference
signals) in order to increase the overall closed-loop badidhy38, 66].

In this thesis we used a TT approach, i.e. tracking a par@meterized refer-
ence trajectory. This said, within the field of motion cohfos autonomous ve-

hicles, the path-following approach is rather popular. itlea of path-following

is to have the vehicle converge to, and follow, a path withentporal restric-

tions. When compared to trajectory-tracking, path-follogvstrategies seem
to exhibit enhanced performance, smoother convergendesemiuced control

effort [67, 6¢].

Finally, a variety of robustness related topics could:desidered. First, our
nominal LTI controller designed with one linearized modalild be applied to
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other linearized modelsas a first step towards controller validati@®[70]. In
this thesis, we skipped this intermediate step to go diyeéatihe controller val-
idation on the nonlinear HOM of Chapter 2. Next, we only pd®d a prelim-
inary demonstration of the robustness of the FCS with régpesensors noise
and wind disturbance. Hence, we do recommend a more thormajiisis of
the wind disturbance rejection capability. Further, it vedso shown in 1]
that by adding an acceleration feedback loop, one couldwzte the fects of
model uncertainties and disturbances, and could imprae&itng performance.
Also, depending on the selected model-based control metbbdstness guar-
antees could either be providadriori, through e.g. LPV control techniques,
or a posteriorias in [7/2] by: 1) first applying classical gain-scheduling tech-
nigues in the control design process; 2) next, obtainingree&i Fractional
Representation (LFR) of the global closed-loop system3ffically analyzing
the system robustness by invoking results from Integraldgat&c Constraints
(IQC) theory [73].

o With regard to then-line Trajectory Planning and Trajectory Tracking of Chap-
ters 4 and 5, one could also consider an integrated apprather than our segregated
TP-TT approach, see our discussion in Seclicn2of Chapter 1. In particular if the
nonlinear helicopter plant can be modeled as a LPV systemdhe of the many
MPC-LPV algorithms, i.e. MPC for LPV systems{], 57, 74-8¢], could be used.

o With regard to theaffine LPV model of Chapter 6, the method was applied to the
helicopter HOM of Chapter 2 and resulted in a LPV model hawarigrge number
of scheduling parameters. Unfortunately, it became imptes$o synthesize LPV
controllers with such a high-order LPV model. In fact, themarical conditioning
and solvability of LMI problems play a crucial role in LPV mtécal design methods
[89-97]. As such, we recommend applying some LPV model reductiohrtigjues
[93, 94] in order to obtain a LPV model having fewer scheduling paetars, thus
better suited for LPV controller synthesis. Another aspettld be to consider re-
placing theH,, framework, used in the LPV modeling process, by the nu-gapiene
[95-97]. This latter provides a measure of the separation betwpen-toop systems,
in terms of their closed-loop behavior. Hence the nu-gap patgntially provide
some added-value, when modeling for control. Finally, oBVLmodeling method
was applied for the case of a single and simple example,hiepointmass pendu-
lum. Although preliminary encouraging results were oledirdefinitive conclusions
may only be drawn after some sort of Monte-Carlo type sintetperformed on a
variety of nonlinear plants.

"These linearized models are obtained by griding the flightlepe.
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L I1IST OF ABBREVIATIONS

The following abbreviations are used in this thesis.

AGL Above Ground Level

AOA Angle Of Attack

BA BAsis

BDA Battle Damage Assessment

BFT Best-FiT

BRL Bounded Real Lemma

CCw Counter-ClockWise

CG Center of Gravity

CL Closed-Loop

CT Continuous-Time

cw ClockWise

DCSC Delft Center for Systems and Control
DT Discrete-Time

EC Expansion Cdécients

EKF Extended Kalman Filter

FAA Federal Aviation Administration

FCS Flight Control System

FFT Fast Fourier Transform

Fus Fuselage

GOA Global Orthogonal Approaches
GPOPS General Pseudospectral OPtimal control Software
GPS Global Positioning Sensor

HER High Energy Rotor

HJB Hamilton-Jacobi-Bellman

HOM High-Order Model

HT Horizontal Tall

H-V Height-Velocity diagram

ICAO International Civil Aviation Organization
IMU Inertial Measurement Unit

10 Input-Output

P Interior Point

IQC Integral Quadratic Constraints

ISR Intelligence Surveillance and Reconnaissance
KKT Karush-Kuhn-Tucker

KYP Kalman-Yakubovich-Popov

LFR Linear Fractional Representation
LFT Linear Fractional Transformations
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L1sT OF ABBREVIATIONS

LHS
LMI
LOM
LPV
LQG
LOR
LRF
LTI
MILP
MIMO
MPC
MR
MS
MTOW
NACA
NDI
NED
NL
NLP
NLR
NN
ODEs
oL
PDLF
PEM
PID
PILF
PIO
P-L-F
PS
PWA
gLPV

RHS
RPM
SAR
scP
SDP
SEAD
S.l.
SQP
SS
st.
SVD
TF

Left-Hand-Side

Linear Matrix Inequality
Low-Order Model

Linear Parameter-Varying
Linear Quadratic Gaussian
Linear Quadratic Regulator
Laser Range Finder

Linear Time-Invariant

Mixed Integer Linear Programming
Multiple-Input Multiple-Output
Model Predictive Control
Main Rotor

Multiple-Shooting

Maximum Take-Gf Weight

National Advisory Committee for Aeronautics

Nonlinear Dynamic Inversion
North-East-Down

Non-Linear

NonLinear Programming problem
National Aerospace Laboratory
Neural Networks

Ordinary Diferential Equations
Open-Loop

Parameter-Dependent Lyapunov Function

Prediction Error Methods
Proportional Integral Derivative

Parameter-Independent Lyapunov Function

Pilot-Induced-Oscillation
Pitch-Lag-Flap

PseudoSpectral

PieceWise Aine

quasi-LPV

RadigRemote Controlled
Right-Hand-Side

Revolutions Per Minute

Search And Rescue

State and Control Parameterization
Semi-Definite Programs
Suppression of Enemy Air Defenses
International unit System
Sequential Quadratic Programming
Single-Shooting

such that

Singular Value Decompositions
Transfer Function
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TP
TPP
TR
TRBT
TS
TT
UAS
UAV
UKF
VAF
VD
VRS
VT
VTOL
wrt
2D
3D

Trajectory PlanngPlanning
Tip-Path-Plane

Tail Rotor

Tail Rotor Blade Tip
Takagi-Sugeno
Trajectory Trackefracking
Unmanned Aerial System
Unmanned Aerial Vehicle
Unscented Kalman Filter
Variance-Accounted-For
Vehicle Dynamics
Vortex-Ring-State

Vertical Tail

Vertical Take-Gf and Landing
with respect to

2 dimensional

3 dimensional
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