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Summary

Over the past thirty years, significant progress related to sensors technology and minia-
turized hardware has allowed for significant improvements in the fields of robotics and
automation, leading to major advancements in the area of flying robots, also known as Un-
manned Aerial Vehicles (UAVs). In particular, small-scalehelicopter UAVs represent at-
tractive systems, as they may be deployed and recovered fromunprepared or confined sites,
such as from or above urban and natural canyons, forests, andnaval ships. Currently, one of
the main hurdles for UAV economic expansion is the lack of clear regulations for safe oper-
ations. UAVs operated in the so-called non-segregated airspace, for civilian or commercial
purpose, are only approved by airworthiness authorities ona case-by-case basis. A number
of complex issues, particularly related to UAV operationalsafety and reliability, need to be
resolved, before seeing widespread use of UAVs for civilianor commercial purposes.

A failure of the power or propulsion unit, resulting in an engine OFF flight condition,
represents one of the most frequent UAV failure modes. For the case considered in this the-
sis, this would mean flying, and landing, a small-scale helicopter UAV without a working
engine, i.e. the autorotation flight condition. Helicopterautorotation is a highly challenging
flight condition in which no power plant torque is applied to the main rotor and tail rotor,
i.e. a flight condition which is somewhat comparable to gliding for a fixed-wing aircraft.
During an autorotation, the main rotor is not driven by a running engine, but by air flowing
through the rotor disk bottom-up, while the helicopter is descending. The power required
to keep the main rotor spinning is obtained from the vehicle’s potential and kinetic ener-
gies, and the task during an autorotative flight becomes mainly one of energy management.
As small-scale helicopter UAVs have higher levels of dynamics coupling and instability
when compared to either larger-size helicopter UAVs or full-size helicopter counterparts,
performing a successful autorotation maneuver, for such small-scale vehicles, is considered
to be a great challenge.

Our research objective consists in developing a, model-based, automatic safety recov-
ery system, for a small-scale helicopter UAV in autorotation, that safely flies and lands the
helicopter to a pre-specified ground location. In pursuit ofthis objective, the contributions
of this thesis are structured around three major technical avenues.

First we have developed a nonlinear, first-principles based, high-order model, used as
a realistic small-scale helicopter UAV simulation. This helicopter model is applicable for
high bandwidth control specifications, and is valid for a range of flight conditions, includ-
ing (steep) descent flight and autorotation. This comprehensive model is used as-is for
controller validation, whereas for controller design, only approximations of this nonlinear
model are considered.

xi



xii Summary

The second technical avenue addresses the development of a guidance module, or Tra-
jectory Planner (TP), which aims at generating feasible andoptimal open-loop autorotative
trajectory references, for the helicopter to follow. In this thesis, we investigate two such
TP methods. The first one is anchored within the realm of nonlinear optimal control, and
allows for an off-line computation of optimal trajectories, given a cost objective, nonlinear
system dynamics, and controls and states equality and inequality constraints. The second
approach is based upon the concept of differential flatness and aims at retaining a high com-
putational efficiency, e.g. for on-line use in a hard real-time environment.

The third technical avenue considers the Trajectory Tracker (TT), which compares cur-
rent helicopter state values with the reference values produced by the TP, and formulates the
control inputs to ensure that the helicopter flies along these optimal trajectories. Since the
helicopter dynamics is nonlinear, the design of the TT necessitates an approach that tries to
respect the system’s nonlinear structure. In this thesis wehave selected the robust controlµ

paradigm. This method consists in using a, low-order, nominal Linear Time-Invariant (LTI)
plant coupled with an uncertainty, and applying a small gainapproach to design a single
robust LTI controller. This robust LTI controller has proven to be capable of controlling
and landing a helicopter UAV in autorotation. In particular, our simulations have shown
that the crucial control of vertical position and velocity exhibited outstanding behavior, in
terms of tracking performance. However, the tracking of horizontal position and velocity
could potentially be improved by considering some other control methods, such as Linear
Parameter-Varying (LPV) ones. To this end, we present an approach that approximates a
known complex nonlinear model by an affine LPV model. The practicality of this LPV
modeling method is further validated on a pointmass pendulum example, and in the future
this LPV method could prove useful when applied to our helicopter application.

To conclude, we illustrate in this thesis—using a high-fidelity simulation of a small-
scale helicopter UAV—the first, real-time feasible, model-based optimal trajectory planning
and model-based robust trajectory tracking, for the case ofa small-scale helicopter UAV in
autorotation.



Samenvatting

In de afgelopen dertig jaar heeft een aanzienlijke vooruitgang aan sensoren technologie en
geminiaturiseerde hardware gezorgd voor belangrijke verbeteringen op het gebied van ro-
botica en automatisering, wat leidt tot grote vooruitgang op het gebied van vliegende robots,
ook bekend als onbemande luchtvaartuigen ’Unmanned AerialVehicles (UAV’s)’. In het
bijzonder kleinschalige helikopter UAV’s worden gezien als aantrekkelijke systemen omdat
zij kunnen worden ingezet vanuit ruwe of begrensde gebieden, zoals van of boven stedelijk
gebied, ravijnen, bossen en marineschepen. Op dit moment iséén van de belangrijkste hin-
dernissen voor economische expansie van onbemande luchtvaartuigen het ontbreken van
duidelijke voorschriften voor veilige operaties. UAV’s bediend in een zogenaamd niet-
gescheiden luchtruim, voor civiel of commercieel doel, worden alleen goedgekeurd door
luchtwaardigheid instanties op een ’case-by-case’ basis.Een aantal complexe kwesties,
met name met betrekking tot operationele veiligheid en betrouwbaarheid van UAV’s, moet
worden opgelost voordat er sprake zal zijn van wijdverbreidgebruik van UAV’s voor civiele
of commerciële doeleinden.

Een fout in het voortstuwing systeem, wat resulteert in een ’motor uit’ vliegconditie,
vertegenwoordigt één van de meest voorkomende UAV pech gevallen. In het geval be-
schouwd in dit proefschrift, zou dit betekenen het vliegen en landen van een kleinschalige
onbemande helikopter zonder werkende motor, dat wil zeggende autorotatie vlucht con-
ditie. Helikopter autorotatie is een zeer uitdagende vliegconditie waarbij geen krachtbron
is geplaatst op de hoofd - en staartrotor, dat wil zeggen een vliegconditie die enigszins
vergelijkbaar is met zweven voor een vliegtuig. Tijdens eenautorotatie wordt de hoofd-
rotor niet aangedreven door een lopende motor, maar door lucht die van onder naar boven
door de rotor stroomt, terwijl de helikopter aan het dalen is. De kracht die nodig is om
de hoofdrotor draaiende te houden wordt verkregen uit potentiële en kinetische energie
van het voertuig, en de taak tijdens een autorotatie vlucht wordt er voornamelijk één van
energie management. Aangezien kleinschalige onbemande helikopters hogere niveaus van
dynamica, koppeling en instabiliteit hebben in vergelijking met grotere UAV helikopters
of grootschalige helikopter tegenhangers, is het uitvoeren van een succesvolle autorotatie
manoeuvre voor dergelijke kleinschalige voertuigen, een nog grotere uitdaging.

In dit proefschrift bestaat onze onderzoeksdoelstelling uit het ontwikkelen van een,
model-gebaseerde, automatisch veiligheid herstelsysteem voor een kleinschalige onbemande
helikopter in autorotatie, dat de helikopter veilig laat vliegen naar, en landen op een vooraf
opgegeven locatie op de grond. Bij het nastreven van deze doelstelling zijn de bijdragen
van dit proefschrift gestructureerd rond drie belangrijketechnische domeinen.

Het eerste betreft het modelleren van de niet-lineaire dynamica van een kleinschalige
helicopter. We hebben een niet-lineaire, eerste-principes gebaseerde, hogere-orde model
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ontwikkeld, en die wordt gebruikt als een realistische kleinschalige helikopter simulatie-
omgeving. Dit helikopter model is toepasbaar voor hoge-bandbreedte regel specificaties,
en is geldig voor een scala aan vliegcondities, waaronder (steile) afdaling en autorotatie.
Dit uitgebreide model wordt gebruikt voor de regelaar validatie, terwijl voor de regelaar
ontwerp slechts benaderingen van dit niet-lineaire model worden beschouwd.

Het tweede technische domein behandelt de ontwikkeling vaneen sturings module, of
’Trajectory Planner (TP)’, die gericht is op het genereren van haalbare en optimale open-
lus autorotatieve traject referenties, die de helikopter dient te volgen. In dit proefschrift
onderzoeken we twee van zulke TP methoden. Het eerste is verankerd in het domein van
de niet-lineaire optimale controle en zorgt voor een ’off-line’ berekening van optimale tra-
jecten, gegeven een doelstelling, niet-lineaire systeemdynamica en randvoorwaarden. De
tweede benadering, gebaseerd op het concept van differentiële vlakheid, beoogt het behoud
van een rekenkundige doelmatigheid, bijvoorbeeld voor ’on-line’ gebruik in een harde ’real-
time’ omgeving.

Het derde technische domein beschouwt het ’Trajectory Tracker (TT)’, die de huidige
waarden van de staat van de helikopter vergelijkt met de referentiewaarden geproduceerd
door de TP, en die de controle ingangen formuleert om ervoor te zorgen dat de helikopter
langs deze optimale trajecten vliegt. Aangezien de dynamica van de helikopter niet-lineair
is, vereist het ontwerp van de TT een aanpak die probeert de niet-lineaire structuur van
het systeem te behouden. Wij hebben in dit proefschrift de robuuste controleµ paradigma
geselecteerd. Deze methode bestaat uit het gebruik van een,lagere-orde, nominale Line-
aire Tijd-Invariant (LTI) model in combinatie met een onzekerheid en het toepassen van
een ’small-gain’ aanpak voor het ontwerpen van een enkel robuuste LTI regelaar. Deze
robuuste LTI regelaar heeft bewezen in staat te zijn om een onbemande helikopter te kun-
nen controleren en te laten landen in autorotatie. In het bijzonder blijkt uit onze simulaties
dat de cruciale controle van de verticale positie en snelheid uitstekend gedrag vertonen, in
termen van het bijhouden van prestaties. Echter, het bijhouden van de horizontale positie
en snelheid zou kunnen worden verbeterd door het in overweging nemen van andere con-
trolemethoden, zoals ’Linear Parameter-Varying (LPV)’. Te dien einde presenteren we een
aanpak die een bekend complex niet-lineaire model door een ’affine’ LPV model wordt
benaderd. De uitvoerbaarheid van deze LPV modelleringmethode is verder gevalideerd op
een slinger voorbeeld, en in de toekomst zou deze methode nuttig kunnen blijken wanneer
toegepast op onze helikopter applicatie.

Tot slot illustreren we in dit proefschrift—met behulp van een hoog betrouwbare si-
mulatie van een kleinschalige onbemande helikopter—de eerste ’real-time’ haalbare auto-
matische autorotatie, die gebruik maakt van een model-gebaseerde, optimale ’Trajectory
Planner’ en robuuste ’Trajectory Tracker’.
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Introduction

Begin with the End in Mind.

Stephen R. Covey
The 7 Habits of Highly Effective People, Free Press, 1989

In this Chapter we present the background and motivation forthe research addressed in this
PhD thesis. We start by a general introduction on the subjectof Unmanned Aerial Vehicles
(UAVs), helicopter mini-UAV, and helicopter autorotation. Then we formulate the central
research objective of this thesis. We conclude this Chapterwith the thesis roadmap, and a
list of the main contributions.

Parts of this Chapter have been published in [25].

1



1

2 1. Introduction

1.1.Unmanned Aerial Vehicles (UAVs)

Over the past thirty years, significant scientific progress related to sensors technology
and computational miniaturized hardware has allowed for sustained improvements in

the fields of robotics and automation, leading to major advancement in the area of flying
robots, also known as Unmanned Aerial Vehicles (UAVs)1 [1], see Fig.1.1. A UAV is
further defined as a powered aerial vehicle, not carrying a human operator, that

• Uses aerodynamic forces to provide vehicle lift

• Is expendable or recoverable (in contrast to missile systems)

• May fly autonomously, or may be piloted remotely

• Carries a payload

Unmanned systems are typically associated with the so-calledDDD missions:Dull i.e.
long duration,Dirty i.e. sampling for hazardous materials, andDangerousi.e. extreme
exposure to hostile action [2].

Figure 1.1: Two small drones, Insitu’s Scan Eagle X200 and AeroVironment’s PUMA—both weighing less than
25 kg and having a wingspans of approx. 3 m—have become the first certified UAVs, by the Federal Aviation
Administration (FAA), for civilian use in the USA. They willoperate off the Alaska coast to survey ice floats and
wildlife, and to conduct commercial environmental monitoring in the Arctic Circle, and further assist emergency
response teams in oil spill monitoring and conduct wildlifeobservations. Huffington Post, July 2013.

1Although recently industry and the regulators have adoptedUnmanned Aerial System (UAS) as the preferred
term for unmanned aircrafts, as the UAS term encompasses allaspects of deploying such vehicles, and hence not
just the vehicle platform itself.
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1.1.1.Candidate applications
UAVs have been developed for both civilian and military missions. Examples of such ap-
plications in the civilian sector include: agricultural fertilizer dissemination, animal density
determination, area illumination, area mapping, area pollution measurements, communica-
tion relay, dam observation, flooded areas and forest fires inspection, object delivery, oil
spills detection, power line and pipeline inspection, radioactivity measurement, searching
for missed or shipwrecked persons, sports and cultural event transmission, traffic surveil-
lance, video and film industry, volcano observation, and weather forecast [3].

In the military sector, UAVs have been around for a long time.Actually pilot-less
aircrafts, whether as aerial targets or for more belligerent purposes, have a history stretching
back to World War I. A multitude of candidate military missions could be performed by
unmanned systems. Some could be performed by a single UAV vehicle, whereas others
could necessitate a co-operative engagement of several UAVs. A non-exhaustive shortlist
of candidate missions is given here: Battle Damage Assessment (BDA), border monitoring,
Intelligence Surveillance and Reconnaissance (ISR), miniature scout helicopter (team with
attack helicopter), naval gunfire support, precision strike and Suppression of Enemy Air
Defenses (SEAD), range safety monitor, Search And Rescue (SAR) operations, support to
special operations forces, and surface search and correlation [2].

1.1.2.Markets
Several UAV markets exist, i.e. the military market, the civilian government market, and
the civilian commercial market, with a current worldwide UAV expenditures of $5.2 billion
[4]. The military and civilian government markets contain a small number of customers that
potentially may buy a large amount of unmanned systems, whereas the civil commercial
market is defined by a larger number of customers which are interested in buying only
a small number of systems [5]. The military market developed first due to the operational
advantages of UAVs, the civil government market followed next as it was driven by security
needs (law enforcement, and fire and rescue agencies), and recently the civilian commercial
market has started to expand.

1.1.3.Development and acquisition programs
On a worldwide stage, there are nowadays at least 40 to 50 nations involved in at least
one UAV development and/or acquisition program, resulting in a total of over 600 UAV
programs [6], with approximately 20% of which are rotary-wing vehicles, see Fig.1.2and
Fig.1.3. The U.S.A., Israel, and France represent the three major players in this UAV arena,
combining more than half of worldwide UAV development and acquisition programs; al-
though other countries, such as China and others in South-East Asia, have been heavily in-
vesting in this sector for the past few years. About two thirds of the worldwide systems have
the military as an end-user, the remaining systems being dedicated to civilian or Research
and Development (R&D) programs in academia and research institutions. Based upon the
Maximum Take-Off Weight (MTOW), approximately half of the developed systemsfall
into one of the three following categories [6]: micro-UAV (MTOW < 5 kg), mini-UAV
(MTOW < 30 kg), or close-range UAV (MTOW< 150 kg).
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Figure 1.2: The MQ-8B Fire Scout rotary-wing UAV approachesthe frigate USS McInerney. US Navy photo.

Figure 1.3: Delft Dynamics’s RH4 Spyder quadcopter UAV. Photo from [7].

1.1.4.Airworthiness and safety aspects
Currently one of the main hurdles for UAV economic expansionis the lack of clear reg-
ulations for safe operations. So far, an internationally accepted regulatory basis for UAV
operations does not yet exist [5, 8], although many efforts are underway [9, 10]. This
said, UAVs operated by the military, police, and fire brigades are so-called Operational
Air Traffic, meaning that they do not abide to the International Civil Aviation Organization
(ICAO) rules. Especially, for cases involving emergenciesor crises, UAVs may benefit from
exemptions from civil regulations. However, UAVs operatedin so-called non-segregated
airspace2, for civilian or commercial purposes, do not inherit these advantages. In general,
airworthiness authorities tend to be rather cautious, and for good reasons, when evaluating
the insertion of UAVs into civilian airspace. The reliability of UAVs has been a concern for

2For instance a country’s national airspace.
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many years, due to the high accident rates [11]. For instance, the reliability of UAVs would
need to improve by one to two orders of magnitude, in order to reach an equivalent general
aviation3 safety level [11, 12]. Hence, it is clear that an increase in UAV system integrity,
reliability, and safety could only facilitate the introduction of UAVs into non-segregated
airspace for civilian or commercial purposes. In fact, a safety analysis would need to ad-
dress each part of the UAV system, from the structural integrity of the vehicle, its engine
and electronics, to the data links and embedded software.

1.2.The helicopter
In some cases, UAV deployment and recovery from unprepared or confined sites may be
required, such as when operating from or above urban and natural canyons, forests, or from
naval ships. These specific missions would require very versatile flight modes, such as
vertical takeoff/landing, hovering, and longitudinal/lateral flight. Here, a helicopter UAV
capable of flying autonomously, in and out of such restrictedareas, would represent a par-
ticularly attractive asset. Hence, in the sequel, we brieflyreview some helicopter concepts.

The four forces acting on a helicopter are denoted by: thrust, drag, lift and weight,
see Fig.1.4. The thrust overcomes the force of drag; the drag is a rearward force caused
by the disruption of airflow by the moving rotors and vehicle;lift is produced by the dy-
namic effect of the air flowing on the main rotor blades, opposing the downward force of
the vehicle weight. On a standard helicopter configuration,the tail rotor is a small rotor,
traditionally mounted vertically at the end of the tail-boom of a helicopter. The tail rotor’s
thrust, multiplied by the distance from the vehicle’s center of gravity, allows it to counter
the torque effect created by the main rotor, see Fig.1.5. A typical helicopter has four sep-
arate flight control inputs, which allow to control the attitude—roll, pitch, and yaw angles,
see Fig.1.6—of the helicopter.

Figure 1.4: The four forces acting on a helicopter. Picture
from [13].

Figure 1.5: Top view of a counter-clockwise rotating
main rotor. Picture from [14].

3Roughly speaking, general aviation refers to all civil aviation operations other than scheduled air services (i.e.
other than commercial airlines). General aviation flights range from gliders and powered parachutes to corporate
jet flights.
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Figure 1.6: Attitude angles and control axis of an aerospacevehicle. Picture from [15].

The controls are known as main rotor collective, main rotor longitudinal cyclic, main
rotor lateral cyclic, and tail rotor anti-torque pedals, see Fig.1.7.

Figure 1.7: Helicopter flight controls. Picture from [16].

Some smaller helicopters have also a manual throttle neededto maintain rotor speed.
The main rotor collective changes the pitch angle of all mainrotor blades collectively, and
independently of the blade rotational position. Through the collective, one can increase
or decrease the total lift derived from the main rotor. On theother hand, the main rotor
cyclics change the pitch angle of the main rotor blades cyclically, i.e. the pitch angle of the
rotor blades changes depending upon their position, as theyrotate around the main rotor
hub [16]. For example in Fig.1.7, pushing the cyclic forward results in a pitch-down of
the helicopter, and consequently produces a thrust vector in the forward direction. If the
cyclic is moved to the right, the helicopter starts rolling to the right and produces thrust in
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that direction, causing the helicopter to move sideways [16]. The anti-torque pedals change
the pitch of the tail rotor blades. The anti-torque pedals allow to increase or decrease the
thrust produced by the tail rotor, causing the nose of the vehicle to yaw. For each control
input channel, Table1.1 summarizes the primary, and secondary, impacts on the vehicle
response.

Table 1.1: Typical input-output coupling, for a helicopterwith a single main rotor (derived from [17]).

Input Response
Axis Roll (φ) Pitch (θ) Yaw (ψ) Climb/Descent (w)

Main rotor Due to Due to Power change Prime
collective transient transient varies response

(θ0) & steady & steady requirement
lateral longitudinal for TR

flapping flapping thrust
& sideslip

Main rotor Prime Due to Undesired Descent
lateral cyclic response longitudinal (especially with

(θ1c) flapping in hover) roll angle
Main rotor Due to Prime Negligible Desired

longitudinal cyclic lateral response in forward
(θ1s) flapping flight

Tail rotor Roll due to Negligible Prime Undesired,
collective TR thrust response due to

(θ0TR) & sideslip power changes
in hover

1.2.1.Helicopter mini-UAVs
In many cases small size and low purchase cost, of the helicopter UAV, represent the pri-
mary driving system specifications. In these situations helicopter mini-UAVs, see Fig.1.8,
provide clear inherent strengths, albeit at the cost of decreased capabilities, when compared
to the larger-size helicopter UAVs [18, 19]. Helicopter mini-UAVs can even be deployed
in large numbers, at an acceptable cost. Briefly summarized,helicopter mini-UAVs are
commonly upgraded from Remote-Controlled (RC) hobby helicopters, by assembling an
avionics suite. The role of this avionics suite is to collectand integrate various measure-
ment signals, drive the actuators, provide communicationswith a Ground Control Station
(GCS), and support real-time operations of autonomous flight control laws [20]. Helicopter
systems can be characterized as Multiple-Input Multiple-Output (MIMO), under-actuated,
nonlinear, and unstable dynamics4. In addition helicopter mini-UAVs5, when compared to
their full-size helicopter counterparts, or even to larger-size helicopter UAVs (i.e. in the

4And time-varying in some cases, e.g. when a gasoline engine is used, implying fuel consumption and hence
vehicle mass variation.

5In this thesis, the termshelicopter mini-UAV, andsmall-scale helicopter UAV, are used interchangeably.
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Figure 1.8: NLR’s mini-UAV project (2004-2006) based on a modified Bergen Industrial Twin helicopter.

close-range UAV class), feature an increased power-to-mass ratio, an increase in stiffness
of the main rotor assembly, and a higher torque-to-inertia ratio. Consequently, small-scale
helicopter UAVs are much more agile, and have higher levels of dynamics coupling and
instability, than larger-size helicopters [21].

1.2.2.Helicopter main rotor hubs
For the case of a fully articulated main rotor system, each rotor blade is attached to the rotor
hub through a series of hinges, which allow each blade to moveindependently of the others,
see for example Fig.1.9for the case of a full-size helicopter main rotor hub. The flaphinge
allows the blade to move in a plane containing the blade and the rotor shaft; the lag hinge
allows the blade to move in the plane of rotation; whereas thepitch hinge allows the blade
to rotate about its pitch (feathering) axis.

For small-scale helicopters, the rotor hub generally includes a pitch hinge close to the
shaft, and a lead-lag hinge6 further outboard. Besides the hub is typically not equippedwith
a flap hinge, this latter is often replaced by stiff rubber rings, hence a so-called hingeless
flap mechanism, see Fig.1.10. But for the purpose of helicopter flight dynamics modeling,
it is standard practice to model a hingeless rotor (and its flexible blades) as a rotor having
rigid blades attached to a virtual hinge [23], this latter being offset from the main rotor axis.
This virtual hinge is often modeled as a torsional spring, implying stiffness and damping7.

1.3.Helicopter autorotation
As discussed in Section1.1.4, the overall system safety of unmanned systems has to be
improved, if not guaranteed, in order to prevent harms to humans and materials, and to allow
for sustained helicopter UAVs expansion into the civilian market segment. For unmanned

6On small-scale helicopters this is technically not a hinge,rather we refer here to the blade fixation bolt.
7Adjusting the virtual hinge offset distance, stiffness, and damping, allows to recreate the correct blade motion in
terms of amplitude and frequency [24].
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Figure 1.9: Agusta-109 fully articulated 4-blades main rotor. Photo from [22].

Figure 1.10: NLR’s Facility for Unmanned ROtorcraft REsearch (FURORE) project. Typical main rotor hub for a
(small-scale) UAV helicopter.
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systems, a failure of the power or propulsion units represents currently the most frequent
failure mode of the vehicle, accounting for more than a thirdof all failure events [11]. For
a helicopter, such failures would mean flying and landing thevehicle without a working
engine, which is also known as theautorotationflight maneuver in helicopter jargon.

1.3.1.Autorotation: a three-phases maneuver
Helicopter power-OFF flight, or autorotation, is a condition in which no power plant torque
is applied to the main rotor and tail rotor, i.e. a flight condition which is somewhat com-
parable to gliding for a fixed-wing aircraft. During an autorotation, the main rotor is not
driven by a running engine, but by air flowing through the rotor disk bottom-up, while
the helicopter is descending [25, 26]. In this case, the power required to keep the rotor
spinning is obtained from the vehicle’s potential and kinetic energy, and the task during an
autorotative flight becomes mainly one of energy management[27]. An autorotative flight
is started when the engine fails on a single-engine helicopter, or when a tail rotor failure
requires engine shut-down. Unfortunately, autorotation maneuvers are known to be difficult
to perform, and highly risky. From a flight maneuver standpoint, a complete autorotation
generally contains three phases [28–32], detailed below8

• The entry. First, the tail rotor thrust needs to be reduced to account for the loss
of main rotor torque (since not driven anymore by an engine).Next a reduction of
main rotor thrust, as to prevent main rotor blade stall9 and rapid decay in main rotor
Revolutions Per Minute (RPM), is often required. In addition, it is recommended
to pitch the helicopter nose down in order to gain some forward airspeed. Indeed,
attaining higher airspeed avoids entering the so-called Vortex-Ring-State (VRS)10

[25], and allows for a buildup of rotor RPM while lowering the helicopter vertical
sink rate.

• Steady autorotation. This is the stabilized autorotation, at a constant main rotor
RPM, in which the helicopter also descends at a constant rate, which may be chosen
for minimum rate of descent, or maximum glide distance. Here, some rotor blade sta-
tions on the main rotor will absorb power from the air, whereas others will consume
power, such that the net power at the main rotor shaft is zero,or sufficiently negative
to make up for losses in the tail rotor and transmission system [33, 34].

• Flare for landing . The purpose of the flare is to reduce the sink rate, reduce forward
airspeed, maintain or increase rotor RPM, and level the attitude for a proper landing,
i.e. achieve appropriate tail rotor ground clearance. The helicopter flare capability is
the most important of the three autorotation phases [35, 36], and depends particularly
on a high main rotor kinetic energy, which requires a high main rotor RPM and/or a
large main rotor blade moment of inertia.

8Although the precise characteristics of the autorotation maneuver depends upon the initial flight condition, i.e.
the helicopter flight condition just prior to the engine OFF situation [27].

9Stall corresponds to a sudden reduction in lift coupled witha large increase in drag.
10Briefly summarized, the VRS corresponds to a condition wherethe helicopter is descending in its own wake,

resulting in a chaotic and dangerous flight condition.
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1.4.Problem formulation
First, we summarize the following observations

• In order to support the economic growth of the small-scale helicopter UAV market,
particularly within the civilian segment, the overall UAV system safety has to be
improved, especially when considering the case of engine failure. This requires for
an autorotative flight capability of the unmanned helicopter system11.

• An autorotation maneuver is a highly challenging flight maneuver for a helicopter.
For the case of manned helicopters, it is long known that a good deal of pilot training
is required if disaster is to be avoided. In fact, quick reaction and critically timed
control inputs by the pilots are required for a safe autorotative landing [37–40]. The
autorotative flight maneuver is actually so risky that full touchdown autorotations
(i.e. including flare and landing), as a training scenario, are nowadays very rarely
practiced by pilots. It is even reported in [41] that both the U.S. Army and U.S. Air
Force have stopped practicing full autorotation flights dueto the high level of injuries
and vehicle damage.

• As pointed out in Section1.2.1, small-scale unmanned helicopters have higher lev-
els of dynamics coupling and instability, when compared to larger size UAVs or to
full-size counterparts. Hence, for such small-scale unmanned systems, performing a
successful autorotation maneuver becomes even more problematic.

The here-above observations and challenges have inspired the following central prob-
lem formulation, or research objective, for this thesis

For the case of a small-scale helicopter UAV in un-powered flight, de-
velop a model-based automatic safety recovery system that safely flies
and lands the helicopter to a pre-specified ground location.

1.5.Analysis of available options
A general solution framework to the research objective, formulated here-above in Sec-
tion 1.4, is depicted in Fig.1.11. The ’Helicopter Dynamics’ block refers to the helicopter
experimental system, which is interfaced through various ’Actuators’ and ’Sensors’. Here,
signaluact refers to the output of the actuators, whereas measurement signal y refers to the
output of the sensors, generally a subset of the helicopter internal state variables (or state-
vector)x. The aim of the ’Optimization’ block consists in generatingsignalu, using the
measured signaly, such that a cost function (i.e. the objective formulated here-above in
Section1.4) can be optimized, while enforcing various environmental and vehicle physical
constraints. We also know, from previous research on small-scale helicopter UAVs [42–46],
that the feedback loop, in Fig.1.11, has to be run at a relatively high rate for good system
performance, i.e. at least 50 Hz or preferably higher.

11Due to cost factors, most small-scale helicopter UAVs are single-engine.
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Figure 1.11: Small-scale helicopter UAV automatic autorotation: the feedback loop.

To this end, the ’Optimization’ block, in Fig.1.11, has to perform, at least, the follow-
ing three tasks [47]: 1) Navigation, by determining the current position, orientation, and
velocity of the helicopter, delivering the filtered state-vectorxfilt in Fig. 1.12; 2) Guidance,
by computing the trajectory or path12 to the destination point; and 3)Control by ensuring
that the helicopter stays on the computed trajectory or path. Although there is quite a bit
of synergism between these three disciplines, a natural separation does exist between the
Navigationtask on the one hand, and theGuidanceandControl tasks on the other.

Figure 1.12: Small-scale helicopter UAV automatic autorotation: Guidance, Navigation, and Control (GNC) feed-
back loop.

1.5.1.Model-free versus model-based options
Now, as hinted upon in Fig.1.11, the goal of this thesis is set upon the design and evaluation
of the ’Optimization’ block. More specifically, the focus shall be upon theGuidanceand
Control tasks, as shown in Fig.1.12. Before discussing further the content of this thesis, let
us first briefly review what are, to-date, the various available options, in terms ofGuidance

12The termtrajectory denotes a route that a vehicle should traverse as a function of time, whereas apathdenotes
an obstacle-free route without temporal restrictions [48].
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andControl, for our UAV application. First, theGuidanceandControl tasks, in Fig.1.12,
can be designed using

• A model-freeapproach. Various methods are here available, e.g. model-free fuzzy
logic13 [49], with applications to UAV control in [50, 51]; model-free reinforcement
learning14 [52], with applications to UAV control in [50, 53–55]; and evolutionary
and genetic algorithms15 [56–58], with applications to UAV control in [59–63].

• A model-basedapproach, where a model of the helicopter system is made avail-
able. There are three different philosophies that form the basis of modeling, namely
the white-box modeling (also known as mechanistic or first-principles models), the
black-box modeling (also known as empirical models), and the gray-box modeling
(also known as hybrid models [64]) which is a mixing of the previous two [65].
In the first case, a model is developed on the basis of detailedunderstandings of the
generic underlying physical laws, that govern the system. In the second case, a model
is developed on the basis of empirical knowledge, i.e. a sufficiently large number of
consistent observations [65, 66]. In the third case, a model is developed by combining
the strengths of the previous two approaches. A rather wide spectrum of model-based
approaches exists, which will be discussed in more detail inthe sequel.

1.5.2.Integrated versus segregated options
Next, theGuidanceandControl tasks, in Fig.1.12, can be designed using

• An integratedapproach, where theGuidanceandControltasks are performed within
a single optimization process. Again, either a model-free or model-based approach
can be applied. For model-free approaches, these are identical to the ones listed here-
above. For model-based approaches, we distinguish betweenthe following three
options

1. The first one is the so-calledModel Predictive Control (MPC) theory [67,
68], also known as Receding Horizon Control (RHC)16. Starting with the early
works in [69–73], the MPC has become one of the most popular tools for con-
strained industrial control applications. Based upon a model of the system, an
MPC controller generates an optimal state feedback controlsequence, by mini-
mizing, at each time step, an open-loop, quadratic performance objective, while
explicitly including input and state operating constraints [74–78]. Specifically,
for each new measurement, the MPC predicts the future dynamic behavior of
the system over a prediction horizonTp, and determines the input sequence
over a control horizonTc, with Tc ≤ Tp, such that the performance objective
is minimized. Then the first control input of the computed optimal sequence is

13Fuzzy control is a method based upon a representation of the knowledge, and the reasoning process, of a human
operator [49].

14Reinforcement learning is an area of machine learning, concerned with how a system ought to respond, in an
environment, so as to maximize some notion of cumulative reward [52].

15Evolutionary and genetic algorithms use mechanisms inspired by biological evolution [56–58].
16Thereceding horizonterminology corresponds to the behavior of the Earth’s horizon, i.e. as ones moves towards

it, it recedes, hence remaining a constant distance away.
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applied to the system, and the optimization is repeated at each subsequent time
step. Obviously, lowering the prediction horizonTp allows to lower the compu-
tational time (at the cost of complications with respect to stability). This mech-
anism of having a new on-line solution at each time step, results in a so-called
sampled-data feedback law [79, 80], hence bringing alongside the classical ben-
efits of feedback. Now depending on the nature of the model, either linear or
nonlinear, a corresponding linear or nonlinear MPC optimization problem has
to be solved. An array of applications of linear MPC to various UAVs can be
found in [81–84], whereas specific applications of nonlinear MPC to helicopter
UAVs can be found in [85–90], and to fixed-wing UAVs in [91–96].

2. The second option assumes that the nonlinear helicopter plant can be modeled
as a Linear Parameter Varying (LPV) system. The latter can thus be used with
one of the manyMPC-LPV , i.e. MPC for LPV algorithms [97–113]. This
MPC-LPV approach, most often resulting in a Semi-Definite Program (SDP)
optimization, can be seen as a middle-way between the linearand nonlinear
optimization paradigms.

3. The third option extends the framework of MPC, for the caseof infinitely long
horizonsTp and Tc, and naturally brings us to the field ofconstrained op-
timal control [114–116]. Here too, based upon a model of the system, and
given a performance objective (which need not be quadratic), and suitable in-
put and state operating constraints, the solution to the optimal control problem
yields the optimal input and state time histories. Again, the first control input
of the computed optimal sequence is applied to the system, and the optimiza-
tion is repeated at each subsequent time step. Also, depending on the nature of
the model, either linear or nonlinear, a corresponding linear or nonlinear con-
strained optimal control problem is solved. Applications of nonlinear optimal
control17 to helicopter UAVs can be found in [117, 118], and to fixed-wing
UAVs in [119–123].

• A segregatedapproach, in which theGuidanceandControl tasks are split into two
distinctive optimization processes. This approach separates theGuidancetask, i.e.
the Trajectory Planning (TP), from theControl task, i.e. the Trajectory Tracking
(TT)18. Although potentially sub-optimal, this philosophy offers the advantage of
effectively exploiting the nonlinear nature of the system (to generate trajectories),
while also making use of the linear structure of the error dynamics (to stabilize and
control the helicopter) [124]. This divide-and-conquer strategy is also known as the
classical two-degree of freedom Flight Control System (FCS) paradigm, as depicted
in Fig. 1.13. Here, the TP shall be capable of generating open-loop, feasible, and
optimal autorotative trajectory referencesxTP, for the small-scale helicopter, subject
to system and environment constraints, and additionally though not necessarily, the
feedforward nominal control inputsuTP, needed to track these trajectories. On the
other hand the TT shall compare current estimated state valuesxfilt with the reference

17Most often applied in open-loop, rather than in the closed-loop setting described here.
18Within this thesis, the terms ’Trajectory Planning’ (resp.’Trajectory Tracking’) and ’Trajectory Planner’ (resp.

’Trajectory Tracker’) are used interchangeably.
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Figure 1.13: Two degree of freedom Flight Control System (FCS) architecture, implemented on the true helicopter
system.

valuesxTP produced by the TP, and shall formulate the feedback controlsuTT to en-
sure that the helicopter flies along these optimal trajectories. The additional feedback
path, denoted by a dashed line in Fig.1.13, allows for updating the generated tra-
jectory based upon the current state. In Fig.1.13, the ’Helicopter Dynamics’ block
refers to the helicopter experimental system. The role of theNavigationtask, defined
as the ’Estimation Filter’ in Fig.1.13, shall be to estimate the helicopter unmeasured
states, the wind, and low-cost sensors characteristics such as scale factors and biases.

The segregated approach: Trajectory Planning (TP)and Trajectory Tracking (TT)
With regard to the segregated approach, let us now separately address the various options
available for theGuidancetask, i.e. Trajectory Planning (TP), and theControl task, i.e.
Trajectory Tracking (TT).

• Over the years, researchers have addressed theTrajectory Planning (TP) problem
through several techniques, namely: cell decomposition, potential fields, roadmaps
and hybrid systems, inverse dynamics and differential flatness, Mixed Integer Linear
Programming (MILP), MPC, optimal control, and finally evolutionary/genetic algo-
rithms [125, 126], with specific benefits and drawbacks for each method, see also
[127–129]. Some of the aforementioned planning techniques—cell decomposition,
potential fields, and roadmaps—either ignore the differential constraints associated
with the vehicle’s dynamics (i.e. are model-free approaches), or use simplified kine-
matic models. With regard to the TP of a helicopter in autorotation, model-based
indirect optimal control methods have been used in [130–135], whereas model-based
direct optimal control methods have been explored in [37, 38, 136–145]. Aside from
these optimal control strategies, three other methods havealso been investigated for
helicopter autorotation: 1) a model-free learning-based approach in [51, 146]; 2) a
model-based parameter optimization scheme to find a backwards reachable set lead-
ing to safe landing in [147, 148]; and 3) and a model-free parameter optimization
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scheme generating segmented routes, selecting a sequence of straight lines and curves
in [149–151].

• With respect to theTrajectory Tracking (TT) , virtually any control methods can
be applied to a helicopter UAV. For instance, for the specificcase of TT for a heli-
copter with the engine ON, a vast array of technical avenues have been investigated
over the years, with the application of: classical control [152], gain-scheduling of
Proportional-Integral-Derivative (PID) controllers [153], Linear Quadratic Regula-
tor (LQR) [154, 155], Linear Quadratic Gaussian (LQG) [155, 156], LPV [157], H2

[158], H∞ [43, 158–160], µ [157, 161], (nonlinear) MPC [87, 89, 155], feedback
linearization, (incremental) nonlinear dynamic inversion and nested saturated con-
trol [20, 161–163], adaptive control [164–167], backstepping [166, 168–170], and
model-based learning approaches [171–174]. For additional results relative to fuzzy
logic-based controllers, artificial Neural Network (NN), or vision based controllers,
refer also to [18, 175]. Conversely, very few papers have addressed the subject of
helicopter TT with the engine OFF (i.e. autorotation), while concurrently validating
their results by experiments, or three-dimensional (3D) high-fidelity simulations. In
[146], a model-based Differential Dynamic Programming (DDP)19 method is used;
in [151] a model-based Nonlinear Dynamic Inversion (NDI) with PID loops is used;
in [51] a model-free fuzzy logic method is used; and in [149, 177] a model-basedH∞
method is used. Finally, none of the previous results, except for [177] which used a
2D lower-fidelity model, did consider a robust TT approach.

1.5.3.Summary of previous analysis
Summarizing the previous discussion, wee make the following comments.

• Although very powerful and potentially very promising, model-free (machine learn-
ing) approaches have also some liabilities. First, the lackof a model makes it difficult
to analyze their stability and robustness characteristics[49]. Second, the compu-
tational complexity of the model-free approaches may oftenbe prohibitive for our
application (recall that the feedback loop in Fig.1.11 has to be run at a relatively
high rate, at least 50 Hz or equivalently 20 msec).

• From a conceptual viewpoint, an integrated model-based approach may potentially
provide the best answer to our helicopter autorotation problem. This said, it is essen-
tially the linear MPC approach that has shown to be implementable on-line, even for
high bandwidth systems [178–181]. As stated in Section1.2.1, a helicopter has an
intrinsically nonlinear behavior, which renders the application of linear MPC rather
questionable. For the case of nonlinear MPC or nonlinear constrained optimal con-
trol, these methods are still time-consuming optimizationtechniques, currently un-
likely to be run on-line, within a 20 msec time frame.

• Although potentially much faster than a nonlinear MPC approach, the integrated
model-based MPC-LPV approach, with todays SDP solvers, would unlikely run
within the 20 msec time frame. This said, this comment shouldnot be taken as

19DDP is an extension of the Linear Quadratic Regulator (LQR) formalism for non-linear systems [176].
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conclusive on the viability of the MPC-LPV method. Indeed, agreat deal of current
MPC research is devoted to reducing the computational cost [182, 183]. In fact, a
clear trend of the last ten years is to move off-line as much computational burden
as possible. One such approach is the so-called explicit MPC[184–187], which has
shown to be an attractive solution, but so-far (and to the best of our knowledge) only
for low-order systems. However, we do expect a bright futurefor the integrated,
model-based, MPC-LPV approach.

• For the Trajectory Planning (TP), model-free approaches (or alternatively model-
based approaches using a simplified kinematic model) may lead to infeasible20 plan-
ning results or, at best, conservative solutions. In addition, failing to incorporate some
(sufficiently) realistic vehicle dynamics, during the planning phase, will increase the
on-line workload of the TT.

• For the Trajectory Tracking (TT), it is best practice to include some form of robust-
ness during the controller design.

• Only four publications have addressed the aggregated planning and tracking function-
alities, for a helicopter in autorotation, with validationthrough either experiments, or
3D high-fidelity nonlinear simulations [51, 146, 149, 151]. The contribution in [146]
has shown successful experimental demonstrations, whereas the other three contribu-
tions have been validated on 3D high-fidelity simulations. The methods in [51, 146]
use a model-free, learning-based TP approach. For the TT, [146] uses a model-based
DDP approach, whereas [51] uses a model-free fuzzy logic approach. The methods in
[149, 151] use a model-free, (modified) Dubin procedure (i.e. a sequence of straight
lines and curves), for their TP algorithms. For the TT, [151] uses a model-based
combined NDI-PID method, whereas [149] uses a model-basedH∞ method.

• The results from [51, 151] are for the case of a full-size helicopter, whereas the results
in [149] involve a so-called short-range/tactical size helicopter UAV (approximately
200 kg). Only the results in [146] are for a small-scale helicopter UAV. As outlined
earlier, when compared to larger and heavier helicopter vehicles, the control of small-
scale helicopters (i.e. under 10–20 kg) represents a much more challenging problem.

1.6.Research objectives and limitations
Based upon the previous discussion, we define the following objectives for this thesis, refer
also to Fig.1.14:

1. A model-based TP approach shall be selected, allowing to compute trajectories which
are potentially less conservative than the ones originating from model-free approaches.

2. A model-based, robust, TT approach shall be selected, in order to obtain a closed-
loop system which is less sensitive to modeling uncertainties.

20This is precisely the reason why nonholonomic constraints,i.e. constraints that not only involve the state but
also state derivatives, which cannot be eliminated by integration, play a crucial role in the subsequent design of
feedback controllers [127].
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Figure 1.14: Helicopter autorotation: available options for the Guidance and Control.

3. The combined TP and TT shall be computationally tractable, i.e. to be run within a
20 msec time frame.

We also limit the scope of this thesis, by adding the following boundaries:

1. The combined TP-TT shall not be validated experimentally, but rather on a 3D high-
fidelity helicopter UAV simulation, serving as a proxy for the real helicopter system.

2. The effects of sensors, actuators21, and the ’Estimation Filter’, are excluded from the
simulation environment.

With this in mind, the control architecture, defined in Fig.1.13, becomes the one defined
in Fig. 1.15, where the output signaly represents now a subset of the state-vectorx.

1.7.Solution strategy
Here, we briefly introduce the research areas addressed within this thesis.

21The actuators are indeed not included in the simulation. However, for a realistic control design, we do include
the actuators characteristics into the control design specifications.
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Figure 1.15: Two degree of freedom control architecture, asimplemented in this thesis, within a simulated envi-
ronment.

1.7.1.Modeling of the nonlinear helicopter dynamics
This section addresses the ’Helicopter Dynamics NonlinearSimulation’ block in Fig.1.15.
A wide range of small-scale helicopter simulation models have been developed in academia
[18, 19]. For low to medium control input bandwidth, demonstration(or simulation) of au-
tomatic helicopter flight, for the case of hover and low speedflight conditions, has been
shown in [188–196]. On the other hand, for high bandwidth system specifications, at still
these conventional flight conditions, model-based automatic flight results can be found in
[42, 43, 45, 197–204], and model-free examples (in the areas of machine learning, evo-
lutionary, and genetic algorithms) have been documented in[50, 53, 172, 205], whereas
vision based systems have been reported in [206–210]. For the case of high bandwidth sys-
tem specifications, at non-conventional flight conditions (e.g. aggressive/aerobatic flights),
model-based approaches have been described in [21, 211, 212], whereas model-free ap-
proaches have been reported in [146, 173, 174]. However, and to the best of our knowledge,
none of the previous model-based results are applicable forsteep descent flight conditions,
such as in the Vortex-Ring-State (VRS) or autorotation (helicopter flight with engine OFF).

Aside from these academic, white-box, helicopter models, there also exists several ad-
ditional commercial, general-purpose, helicopter simulation codes. These latter are often
based upon the so-called multi-body22 concept, and have been extensively used by industry,
research institutes, and academia. Examples include CAMRAD [213], FLIGHTLAB [ 214],
GenHel [215], and HOST [216], to name a few. These simulation codes, with a proven track
record, often stretching back three or four decades, are in general very reliable. They rep-
resent excellent tools for among others helicopter flight simulation purposes, operational
analysis, crew training, flying qualities investigations,load prediction, vibrations analysis,
and control design. However, for all their benefits, these simulation codes have also some
(specific) drawbacks:

• First, these codes may be seen as third-party black-box models, since often one does
not have complete access to their detailed analytical expressions, nor to the corre-
sponding software algorithms and implementations. This may be seen as a liability,

22A multi-body system is used to simulate the dynamic behaviorof interconnected rigid and flexible bodies, where
each body may undergo translational and rotational displacements. The dynamic behavior of the complete sys-
tem, i.e. multi-body system, results from the equilibrium of applied forces and the rate of change of momentum
at each body.
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when the end-goal is model-based control design. In addition, a physical understand-
ing of the to-be controlled system is often necessary in order to be able to make
judicious structural choices during the control design (e.g. adequate model order
selection). This may become rather difficult if little is known about the system.

• Second, even when analytical expressions are available, the multi-body model struc-
ture adds a huge amount of detail, resulting in very high-order dynamical systems,
effectively inhibiting any further manipulation of the analytical expressions.

• Third, the black-box nature of these codes restrict the range of control techniques
that could potentially be used. For example, these models cannot be used for con-
troller design when nonlinear control techniques, that explicitly require closed-form
modeling, are sought.

• Finally, for the specific case of FLIGHTLAB, which is available at NLR, and al-
though it is now possible to configure it in an autorotation mode for a small-scale
helicopter, it was unfortunately not possible to do so yearsago, at the start of this
PhD project. The problem was related to the way FLIGHTLAB dealt with the main
rotor shaft inertia, engine drive-train, and gearbox23.

Hence, these aspects have led us towards the development of our own comprehensive,
white-box, flight dynamics model, particularly suited for small-scale helicopter UAVs, and
valid for a range of flight conditions, including steep descent flight and autorotation. More
specifically, the model represents the nonlinear flight dynamics of a flybarless24 helicopter
main rotor, with rigid blades. The complete model incorporates the main rotor, tail rotor,
fuselage, and tails of a modified Align T-REX helicopter, seeFig. 1.16.

In terms of dynamics, the state-vectorx given in Fig.1.15is of dimension twenty-four.
The states include the twelve-states rigid-body motion, and the dynamics of the main rotor.
The former include the three-states inertial position, thethree-states body linear velocities,
the three-states body rotational velocities, and the three-states attitude (orientation) angles.
The dynamics of the main rotor include the helicopter higher-frequency phenomena, which
exist for both the engine ON or OFF (i.e. autorotation) flightcondition. These higher-
frequency phenomena include the main rotor three-states dynamic inflow [218, 219], and
main rotor blade flap-lag dynamics (each blade defined by the four-states flap/lag angles and
rotational velocities) [220]. Regarding the main rotor Revolutions Per Minute (RPM), itis

23To be able to run the FLIGHTLAB simulation, the combined inertia of the rotor shaft, drive-train, and gearbox
had to be set to at least one third the main rotor inertia, which represents an unrealistically high value for the
case of small-scale helicopters.

24The flybar is a mechanical component of the helicopter’s mainrotor system, and consists of a rod carrying small
aerofoils (paddles), with the Angle Of Attack (AOA) of thesepaddles being set by the main rotor cyclic control.
The AOA is the angle between a reference line on a body and the velocity vector representing the relative motion
between the body and the air [217]. It is best to think of the flybar as a gyroscope that, when notsteered, tends
to maintain its rotation axis fixed relative to the earth. A flybar on a main rotor enhances the stability of the heli-
copter and hence, for a pilot using a Remote-Control (RC) device, the flybar system makes the helicopter easier
to fly. This said, small-scale flybarless (i.e. without theseso-called Bell-Hiller stabilizing paddles) helicopters
are becoming increasingly popular. Most RC helicopter manufacturers are nowadays offering most of their RC
helicopter kits in flybarless versions as well, since flybarless rotors allow for increased helicopter agility and
performance, and reduced rotor mechanical complexity.
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Figure 1.16: NLR’s mini-UAV project (2012-2014) based on a modified Align T-REX helicopter.

generally assumed fixed for the engine ON case25, whereas for the engine OFF case it is not
fixed anymore. The main rotor RPM represents an essential part of the autorotative flight
condition, and this additional state is also included in thestate-vectorx when consider-
ing the engine OFF case. This MATLABR©-based, nonlinear, continuous-time, High-Order
Model (HOM) is used as a realistic small-scale helicopter simulation environment, for the
validation of the FCS.

1.7.2.The Trajectory Planning (TP)
This section addresses the ’Trajectory Planner’ block in Fig. 1.15. The TP aims at gener-
ating a feasible and optimal autorotative trajectory referencexTP, for the helicopter to fol-
low, and additionally, though not necessarily, the feedforward nominal control inputsuTP,
needed to track this trajectory. The TP computes an open-loop optimal trajectory, given a
cost objective, nonlinear system dynamics, and controls and states equality and inequality
constraints. The additional feedback path, denoted by a dashed line in Fig.1.15, allows
for updating the generated trajectory based upon the current state and, if used, would result
in a closed-loop calculation of the reference trajectory. In this thesis, we investigate two
model-based TP options. The first is an off-line approach, whereas the second is on-line
feasible.

The off-line approach
From our previous discussion in Section1.5.2, it became clear that the most natural frame-
work for addressing TP problems was probably through optimal control theory [114].
Hence, we choose to set the off-line TP approach within the continuous-time, nonlinear,
constrained optimal control paradigm. Now, given that mostnonlinear constrained opti-
mization problems are typically either computationally intensive (real-time computation),
or memory intensive (off-line computation) [139], solving the TP optimization problem,
within the MATLAB environment, in the full vehicle state space (including the higher-
order main rotor modes of the helicopter HOM in Section1.7.1) has shown to be rather

25Although this is a simplification, since in the engine ON casethe main rotor RPM is being regulated by the
governor.
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costly from a computational viewpoint. The two, not mutually exclusive, options to mit-
igate such a problem are: 1) converting the helicopter HOM simulation, from a flexible
MATLAB code into a more constrained programming language (such as the C language),
which does provide a highly optimized performance and memory environment; or 2) de-
velop a Low-Order Model (LOM) better suited for nonlinear optimization problems. The
first option lives in the Information Technology (IT) realm,and requires some design effort
at the interface of various softwares26, whereas the second option is more interesting from
a system and control viewpoint, and is more in line with the personal interests of the author.
Hence, in this thesis, we opted for the development of a LOM.

Low-Order Model (LOM) We discuss here the method used to construct such a small-
scale helicopter LOM, which combines the required modelingaccuracy with the computa-
tional tractability. In our case, the high computational cost of the HOM comes primarily
from the main rotor model. With this in mind, we considered two main avenues for the
derivation of a simplified model.

The first, and most straightforward one, consists in adapting the HOM, by replacing
all main rotor higher-order dynamics (i.e. rotor inflow, andblade flap/lag) by their corre-
sponding steady-state expressions. Although this resulted in a cheaper simulation cost, the
complex, nonlinear formulations of the main rotor forces and moments (and their corre-
sponding numerical integrations) had still a detrimental effect on the overall computational
cost. Hence, we opted for an alternative approach, which consisted in retaining the low-
order dynamics of the HOM, i.e. the rigid-body dynamics and the main rotor RPM dynam-
ics, and then replacing the costly computations of the main rotor high-order dynamics, and
main rotor forces and moments, by closed-form ’textbook’-like expressions: i.e. a static ro-
tor uniform inflow model from [218, 221] with a VRS correction from [222], a steady-state
rotor Tip-Path-Plane (TPP) model from [223, 224], and rotor forces and moments expres-
sions from [36]. The remaining helicopter model components, i.e. tail rotor, fuselage, and
tail, are further re-used, as-is, from the HOM. To compensate for the modeling inaccura-
cies introduced by the use of simpler closed-form expressions in this, so-far, white-box
model, we added a black-box component to it, in the form of eight empirical coefficients,
set at specific ’locations’ within this simplified white-boxmodel. Subsequently, simulated
input-output data, from the HOM, was used to fit these empirical coefficients. The latter
have also been scheduled on helicopter horizontal and vertical velocities. Compared to the
HOM, the domain of validity of this gray-box model is much smaller, since the data-set
used to estimate the empirical coefficients is not representative of the full helicopter flight
envelope. However, this simplified model did provide a decrease in the associated CPU
time, per model evaluation, of approximately 60 %.

Once the LOM is obtained, the solution of the continuous-time optimal control problem
requires a discretization method. Here, we apply the pseudospectral discretization numer-
ical scheme [225–227] to the optimal autorotation problem. The pseudospectral method is
known to provide exponential convergence, provided the functions under considerations are
sufficiently smooth. Once discretized, the problem is then transcribed into a NonLinear Pro-

26Although automatic MATLAB to C translation tools do exist.
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gramming problem (NLP) [228], this latter being solved numerically by a well known and
efficient optimization technique, in our case a Sequential Quadratic Programming (SQP)
method [229–231]. The knowledge of these optimally defined autorotative trajectories, de-
fined through this off-line approach, has proved to be useful. In particular, for the case of
our Align T-REX helicopter, we found an existing bound on thetotal flight time based upon
the initial altitude and the rotor induced27 velocity in hover. Knowledge of this bound has
shown to be relevant for the subsequent on-line TP approach.

The on-line approach
The TP can either be run once, just after an engine failure hasbeen detected, or can be
continuously recomputed (see the dashed line in Fig.1.15). For both options, the TP op-
timization framework of Section1.7.2, which combines an optimal control approach with
a LOM, would need to see its computational cost decrease by approximately four to five
orders of magnitude, in order to retain high computational efficiency for on-line use28.

Hence, we present here an alternative TP approach, applicable for on-line use, and based
upon the concept of differential flatness. The seminal ideas of differential flatness were in-
troduced in the early 1990s in [232–234] as part of a paradigm in which certain differential
algebraic representations of dynamical systems are equivalent. In other words, a complete
parametrization of all system variables—inputs, states, and outputs—may be given in terms
of a finite set of independent variables, called flat outputs,and a finite number of their
derivatives [235, 236]. This results in optimization problems with fewer variables [237],
i.e. by the complete elimination of the dynamical constraints. In this case the trajectory
generation problem is transformed from a dynamic to an algebraic one, in which the flat
outputs are parametrized over a space of basis functions. The generation of optimal trajec-
tories is then reduced to a classical algebraic interpolation or collocation problem [80, 238].

It is in general difficult to determine whether a given nonlinear system is flat, although
several methods for constructing flat outputs have been documented in the literature [235,
239–241]. With regard to applications, it has been shown that simplified dynamics of air-
craft and Vertical Take-Off and Landing (VTOL) aircraft are flat [242–247], and simplified
helicopter dynamics is flat [235, 248, 249], whereas more realistic vehicle models are in
general non-differentially flat, e.g. [235, 250]. In fact, high-fidelity helicopter models are
known to be non-differentially flat. To circumvent this difficulty, a standard approach, by
the research community, has consisted in progressively simplifying the model until it in-
deed becomes flat. Rather than generating optimal trajectories based upon such simplified
representations of the helicopter dynamics, we present in this thesis an alternative approach,
consisting in using only the rigid-body dynamics, with total aerodynamic forces and total
moments as the new plant inputs. Although the relationship with the helicopter true control
inputs29 is lost, the advantage consists in having a model which does not include approx-
imations, while being exactly flat. Now, since the rigid-body dynamics does not include

27The main rotor induced flow corresponds to the flow field induced by the rotation of the main rotor blades.
28For on-line use in a hard real-time environment where stringent timing constraints exist (e.g. in our case the 50

Hz closed-loop update rate).
29Main rotor collective, lateral and longitudinal cyclic, and tail rotor collective.
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the main rotor and RPM dynamics, and in order to obtain feasible autorotative trajecto-
ries, we will constrain the trajectory flight time by the bound deduced using the off-line TP
approach.

Combining the off-line and on-line approaches
We summarize now the main idea behind our TP methodology:

• Step 1.Base the TP optimization on the concept of differential flatness, using a lower-
complexity model (in our case the rigid-body dynamics). Combining the flatness with
a lower-complexity model allows for on-line tractable computations.

• Step 2. Derive additional trajectory constraints (in our case a bound on total flight
time), obtained from the analysis of off-line optimization results, using a nonlinear
optimal control approach combined with a higher-complexity model (in our case,
either the HOM helicopter of Section1.7.1, or the LOM of Section1.7.2).

• Step 3. Use the optimization framework of Step 1, combined with the additional
constraints from Step 2 (in our case a bound on total flight time), to generate, on-line,
feasible and optimal trajectories, for the original HOM helicopter.

1.7.3.The Trajectory Tracking (TT)
This section addresses the ’Trajectory Tracking’ block in Fig. 1.15. The TT shall com-
pare current output valuesy with the optimal reference valuesxTP produced by the TP,
and shall formulate the feedback controlsuTT aimed at decreasing the tracking error, hence
ensuring that the helicopter flies along the optimal trajectory. The tracking error may be
due to a combination of model uncertainty (unmodeled higher-order dynamics, unmodeled
static nonlinearities, parametric uncertainties, delays), and signal uncertainty (wind distur-
bances and noise). As stated earlier, very few papers have addressed the subject of tracking
an autorotative trajectory, with validation through experimental results or 3D high-fidelity
simulations [51, 146, 149, 151]. None of the previous results considered a robust TT ap-
proach. Hence, we select here a model-based, robust, TT approach, in order to obtain a
closed-loop system which is less sensitive to modeling uncertainties.

Robust control based TT
Since the helicopter dynamics is highly nonlinear, the design of the TT necessitates an
approach that effectively respects or exploits the system’s nonlinear structure. To this end,
several control methods are available: from 1) robust control; 2) classical gain-scheduling,
and Linear Parameter-Varying (LPV) approaches; to 3) trulynonlinear control methods
(e.g. nonlinear MPC, Lyapunov based methods such as slidingmode and backstepping,
adaptive control, or even passivity-based approaches). Inthis thesis we choose to apply a
robust controlµ strategy. This method consists in using a nominal Linear Time-Invariant
(LTI) plant coupled with an uncertainty, and applying a small gain approach [251, 252]
to design a single robust LTI controller. This approach, when implemented on-line, is
computationally very efficient. Now, rather than modeling the uncertainty in a detailed
manner, an input multiplicative uncertainty is added here to compensate for the unmodeled
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plant nonlinearities and unmodeled higher-order rotor dynamics30, by lumping all types
of model uncertainty together into a complex, full-block, input multiplicative uncertainty.
Finally, the robust controller synthesis consists in obtaining a controller insensitive to this
multiplicative uncertainty at the plant input.

Affine LPV Modeling
Rather than using a robust controlµ strategy, one could also consider some other control
method, as listed in Section1.7.3. In particular, LPV systems have become celebrated as
they represent an attractive midway approach between LTI, and nonlinear or time-varying
structures [253, 254]. LPV systems allow to enclose nonlinear behaviors into a linear
framework, where LPV control methods can be seen as an extension of the standardH2

andH∞ LTI synthesis techniques [255–262]. The LPV method amends also the main draw-
backs of classical gain-scheduling [263, 264]: 1) by eliminating the need for repeated de-
signs/simulations in order to handle the global control problem; and 2) by guaranteeing both
stability and performance along all possible parameter trajectories. In addition, LPV control
design problems are efficiently solved, by first expressing the problems as Linear Matrix In-
equality (LMI) optimizations [265]—subsequently formulated as Semi-Definite Programs
(SDP) [266]—for which there are several powerful numerical solutions[267, 268]. This re-
sulted in a growing number of applications, such as in aerospace [269–274], wind turbines
[275], wafer steppers [276, 277], Compact-Disk players [278], and robotic manipulators
[279]. Now, and for all its benefits, the LPV control paradigm typically takes the exis-
tence of the plant, in LPV form, as a starting point. However,a systematic formulation
of a nonlinear system into a suitable LPV model remains oftenproblematic [280]. Hence,
the problem of simplifying a large scale, nonlinear model, such as our helicopter HOM of
Section1.7.1, into a LPV representation is thus highly relevant.

With this in mind, and for the case where a plant’s nonlinear model already exists, we
present in this thesis an affine LPV modeling methodology. This LPV modeling method has
subsequently been applied to a modified pointmass pendulum,and to the helicopter HOM
of Section1.7.1. For the pointmass pendulum example, the LPV modeling approach was
validated in open- and closed-loop (using robust and LPV controllers). For the helicopter
HOM case, the LPV modeling approach resulted in a LPV model having a large number of
(more than thirty) scheduling parameters. Unfortunately,it became impossible to synthesize
LPV controllers with such a high-order LPV model. In fact, itis well-known that the
numerical conditioning and solvability of LMI problems play a crucial role in LPV practical
design methods [275–278]. A way to mitigate such problems would consist in applying
some LPV model reduction techniques [281, 282], in order to obtain a LPV model having
fewer scheduling parameters, hence better suited for LPV controller synthesis.

1.8.Overview of this thesis
The development of an autonomous helicopter system requires for an elaborate synergy
between various engineering fields, including: 1) modeling; 2) system identification; 3)
estimation and filtering; and 4) optimization and control (e.g. guidance and control). In this

30Unmodeled in the nominal LTI plant used for controller design; the higher-order dynamics are however modeled
in the nonlinear HOM plant of Section1.7.1.
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thesis, aspects of modeling, guidance and control for a small-scale helicopter in autorotation
are discussed, and new solutions are presented. This thesisis organized as follows:

• In Chapter 2 we present a helicopter flight dynamics nonlinear model for aflybar-
less, articulated, Pitch-Lag-Flap (P-L-F) main rotor withrigid blades, particularly
suited for small-scale UAVs. This high-order nonlinear model incorporates the main
rotor, tail rotor, fuselage, and tails. This model is further applicable for high band-
width control specifications, and is valid for a range of flight conditions, including
the Vortex-Ring-State and autorotation. The goal of this comprehensive nonlinear
model is twofold: 1) it serves as a nonlinear simulation environment on which the
flight control system can be tested; and 2) it provides a basisfor model-based control
design.

• In Chapter 3 optimal engine OFF (autorotative) landing trajectories are derived
through a model-based, direct optimal control framework. These open-loop opti-
mal trajectories, generated by a trajectory planner, represent the solution to the min-
imization of a cost objective, given low-order nonlinear system dynamics, controls
and states equality and inequality constraints. The optimization setting, developed
in this Chapter, allows to test and evaluate various cost objectives. Once the final
cost objective and constraints have been frozen, optimal autorotative trajectories can
be computed off-line, for a range of initial conditions, and could even be stored as
lookup tables on-board a flight control computer. These trajectories provide both the
optimal states to be tracked by a feedback controller, and optionally the feedforward
nominal controls.

• In Chapter 4 we present a model-based, trajectory planning and trackingframework,
for a helicopter with engine OFF, anchored within the combined paradigms of dif-
ferential flatness based planning and robust control based tracking. The advantage of
this methodology is that it is model-based and real-time feasible, since: 1) it allows
for a computationally tractable determination of the optimal trajectories; and 2) it is
based upon an easy to realize and implement LTI trajectory tracker. A similar flight
control system, for the engine ON condition, is also provided.

• In Chapter 5 the methodology of Chapter 4 is validated on the high-order nonlinear
helicopter model of Chapter 2. To better illustrate the various challenges encoun-
tered when designing a planning and tracking system for the engine OFF condition,
a comparison with some engine ON automated flight maneuvers is also provided.

• In Chapter 6 we tackle the problem of approximating a known complex nonlinear
model by an affine LPV model. To illustrate the practicality of the presented LPV
modeling strategy, we apply it to a pointmass pendulum example, and provide exten-
sive analysis in, both, open- and closed-loop simulation settings. When applied to
the high-order nonlinear helicopter model of Chapter 2, theLPV modeling approach
resulted in a LPV model having an excessive number of scheduling parameters, ef-
fectively impeding any LPV control design.

• Finally Chapter 7 summarizes the results of this thesis, and outlines directions for
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future research, such as the experimental validation of thehere-presented guidance
and control system.

1.8.1.Contributions
• A comprehensive helicopter nonlinear high-order modelingframework, valid for a

range of flight conditions including steep descent flights and autorotation, and partic-
ularly suited for small-scale helicopter UAVs has been presented in [25, 283, 284].

• The determination of optimal autorotative landing trajectories, by solving an off-line
nonlinear optimal control problem, for the case of a small-scale helicopter UAV, has
been presented in [285–287].

• The first demonstration—using a high-fidelity, high-order,nonlinear helicopter simu-
lation—of a real-time feasible, model-based optimal trajectory planning, and model-
based robust trajectory tracking, for the case of a small-scale helicopter UAV in au-
torotation, has been presented in [288].

• A novel affine LPV modeling framework has been presented in [289].
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2
High-OrderModeling of the

Helicopter Dynamics

All models are wrong, but some are useful.

George E. P. Box
Robustness in the strategy of scientific model building, 1979

In this Chapter we present a high-order, helicopter flight dynamics NonLinear (NL) model
for a flybarless main rotor, with rigid blades. The model incorporates the main rotor, tail
rotor, fuselage, and tails. The novel part of this Chapter istwofold. Our first contribu-
tion consists in deriving the coupled flap-lag equations of motion, for a rigid, flybarless,
articulated rotor, with a Pitch-Lag-Flap (P-L-F) rotor hinge sequence, particularly suited
for small-scale Unmanned Aerial Vehicles (UAVs). The second contribution is the devel-
opment of a comprehensive flight dynamics model for a small-scale helicopter UAV, for
both ClockWise (CW) or Counter-ClockWise (CCW) main rotor rotation, applicable for
high bandwidth control specifications, and valid for a rangeof flight conditions, including
(steep) descent flight into the Vortex-Ring-State (VRS)1 and autorotation. Additionally, the
Chapter reviews all assumptions made in deriving the model,i.e. structural, aerodynamics,
and dynamical simplifications. Simulation results show that this high-order NL model is in
good agreement with an equivalent FLIGHTLAB2 model, for both static (trim) and dynamic
conditions.

Parts of this Chapter have been published in [1–3].
1Briefly summarized, the VRS corresponds to a condition wherethe helicopter is descending in its own wake,
resulting in a chaotic and dangerous flight condition [1].

2FLIGHTLAB is a state of the art modeling, analysis and real-time simulation tool, used world-wide to simulate
helicopter flight dynamics [4].

47



2

48 2.High-Order Modeling of the Helicopter Dynamics

2.1. Introduction

I n this Chapter we develop a comprehensive, MATLAB-based, white-box3, nonlinear,
continuous-time, High-Order Model (HOM), used as a realistic small-scale helicopter

simulation environment, for the validation of the Flight Control System (FCS). This heli-
copter model is applicable for high bandwidth control specifications, and is valid for a range
of flight conditions, including (steep) descent flight into the VRS and autorotation [1, 5].
This HOM will, in subsequent Chapters, be used for controller validation. For controller
design however, and due to its complexity, only approximation of this HOM will be used in
the upcoming Chapters.

The helicopter model, developed in this Chapter, replaces the true system, and is based
upon our work presented in [2, 3]. This model aims at simulating the helicopter flight dy-
namics for the case of a flybarless, articulated, Pitch-Lag-Flap (P-L-F) main rotor with rigid
blades, for both ClockWise (CW) or Counter-ClockWise (CCW)main rotor rotation4. The
model incorporates the rigid-body dynamics, main rotor, tail rotor, fuselage, and tails. The
complete simulation environment, i.e. including the control system, is sketched in the block
diagram of Fig.2.1, which illustrates all internal subsystems.

Figure 2.1: Helicopter simulation environment (derived from [6]). The components of the helicopter simulation
are visualized in blue, whereas in yellow we visualize the helicopter simulation components that are not relevant
for our autorotation application, and thus neglected (i.e.not modeled).

3Based upon first-principles.
4A CW or CCW main rotor refers to the main rotor blade rotation when viewed from above. CCW rotation is
common to American, British, German, Italian, and Japanesehelicopter designs, whereas CW rotation is standard
on Chinese, French, Indian, Polish and Russian helicoptersdesigns.
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In Fig. 2.1, the Main Rotor (MR) determines the aerodynamic lift force that supports
the weight of the helicopter, and the thrust that counteracts aerodynamic drag in forward
flight. It is also through the main rotor that vehicle roll angle, vehicle pitch angle, and ve-
hicle vertical motion are controlled, see also Section1.2. On the other hand, the Tail Rotor
(TR) provides torque balance, directional stability, and yaw angle (heading) control of the
helicopter. The role of the Vertical Tail (VT) is twofold: 1)in forward flight, it generates
a sideforce and yawing moment, hence reducing the tail rotorthrust requirement; and 2)
during maneuvers, and during wind gusts, it provides yaw damping and stiffness, enhanc-
ing directional stability [7]. The role of the Horizontal Tail (HT) is also twofold: 1) in
forward flight, it generates a load that reduces the main rotor fore-aft flapping; and 2) dur-
ing maneuvers, and during wind gusts, it provides pitch damping and stiffness, enhancing
pitch stability [7]. The Ambient Conditions defines the outside air density andtemperature,
whereas the Rigid-Body Equations Of Motion computes the positions, orientations, and ve-
locities of the vehicle in three-dimensional (3D) inertialspace.

The remainder of this Chapter is organized as follows. In Section 2.2, our small-scale
helicopter modeling framework is outlined. In Section2.3, model validation results are
analyzed. In Section2.4, an analysis of the rigid-body dynamics, in open-loop, is presented.
In Section2.5, conclusions and future directions are presented. Further, in Appendix A and
B the nomenclature and frames are presented. In Appendix C, the rigid-body equations of
motion are summarized. In Appendix D and E, main and tail rotor models are discussed.
In Appendix F, the fuselage model is reviewed. In Appendix G,comments are made on the
vertical and horizontal tail models.

2.2.Helicopter modeling: general overview
From Fig.1.15, and zooming on the ’Helicopter Dynamics Nonlinear Simulation’ block,
we obtain Fig.2.2which gives additional insight into the model. We have the control input-
vectoru of dimension four, and the state-vectorx of dimension twenty-four. The states
include the twelve-states rigid-body motion (states givenin blue), and the dynamics of the
main rotor (states given in red). The former include the three-states inertial position, the
three-states body linear velocities, the three-states body rotational velocities, and the three-
states attitude (orientation) angles, see Fig.2.2. The dynamics of the main rotor include the
helicopter higher frequency phenomena, which exist for both the engine ON or OFF (i.e.
autorotation) flight condition. These include the main rotor three-states dynamic inflow
[8, 9], and main rotor blade flap-lag dynamics, derived through the Lagrangian method [10]
(each blade is defined by the four-states flap/lag angles and rotational velocities) [11], see
Fig. 2.2. Regarding the main rotor Revolutions Per Minute (RPM), it is generally assumed
fixed for the engine ON case5, whereas for the engine OFF case it is not fixed anymore.
Indeed, the main rotor RPM represents an essential part of the autorotative flight condition,
and this additional state needs to be included in the state-vectorx when considering the
engine OFF case, see Fig.2.2.

5Although this is a simplification, since in the engine ON casethe main rotor RPM is being regulated by the
governor.
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Figure 2.2: Helicopter Inputsu (in green), Statesx (in blue the rigid-body states, in red the main rotor states), and
Measurementsy (measured states).
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Other model components include: 1) the tail rotor, modeled as a standard Bailey type
rotor [12]; 2) the fuselage, based upon aerodynamic lift and drag coefficients, which are
tabulated as a function of airflow Angle Of Attack (AOA)6 and sideslip7 angles; and 3) the
horizontal and vertical tails, based upon standard flat plate models. Next, there is the vector
of measured outputsy of dimension twelve. The measurements are given byy = x(1:12),
with x(1:12) a shorthand for the first twelve states ofx, i.e. the rigid-body states (see also
the nomenclature in Appendix A). Expressing the fundamental Newtonian laws [14] in the
vehicle body frameFb, we get (refer also to Appendix B and Fig.2.16)

mV .Ab
CG = mV.gb + Fb

CG
dHb

CG

dt = Mb
CG

(2.1)

with Ab
CG the inertial (i.e. relative to frameFI , refer also to Appendix B and Fig.2.15)

acceleration of the vehicle Center of Gravity (CG) inFb, Hb
CG the inertial angular momen-

tum of the vehicle CG inFb, Fb
CG the aerodynamic forces experienced by the vehicle CG in

Fb, Mb
CG the moments of aerodynamic forces experienced by the vehicle CG inFb, mV the

vehicle mass,gb the acceleration due to gravity inFb (refer also to the nomenclature given
in Appendix A).

Now, Hb
CG is given by

Hb
CG = IV.Ω

b
bI (2.2)

with IV the vehicle inertia matrix inFb, andΩb
bI the vehicle angular velocity with respect to

FI projected inFb. Combining Eq. (2.1) and Eq. (2.2), we can express the helicopter flight
dynamics model as a set of first-order, Ordinary Differential Equations (ODEs) of the form

∀t ≥ 0 ẋ(t) = f
(

x(t), u(t)
)

(2.3)

with f (·) a continuous-time function,x the state-vector of dimension twenty-four, andu the
input-vector of dimension four. Appendices C through G present a detailed derivation of
the model given in Eq. (2.3).

2.3.Model evaluation and validation
The purpose of this section is to evaluate, and validate, theopen-loop behavior of our white-
box helicopter mathematical model. Model validation can either be done by comparing the
model’s behavior with several recorded experimental data sets (i.e. flight tests), or by com-
paring the model’s behavior with another simulation model,which is often a third-party,
high-fidelity black-box model. In this thesis, since flight data is not available, we opted for
the second option, namely the use of the FLIGHTLAB [4] helicopter simulation environ-
ment. For aerospace systems, the model validation task generally involves the validation
of, both, the static (trim) behavior as well as the dynamic response. A trim condition sets

6The AOA is the angle between a reference line on a body and the velocity vector representing the relative motion
between the body and the air [13].

7Sideslip flight refers to a vehicle moving somewhat sidewaysas well as forward, relative to the oncoming airflow.
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the helicopter in some, user-defined, steady-state (i.e. equilibrium) flight condition, by sat-
isfying the system’s equations of motion. Trim settings areoften a prerequisite for stability
analysis, vibration studies, and control system design. For instance, for linear control de-
sign, the linear models are generally obtained through analytical or numerical linearizations
of the NL model, around various trim conditions. Next, for the validation of the dynamic
behavior, either time-domain model responses or frequency-responses can be used.

We compare next trim and time-response outputs of our MATLAB-based model with
those from a FLIGHTLAB model, for the case of a small-scale helicopter UAV. This mod-
eled UAV is an instrumented Remote-Controlled (RC) Align T-REX helicopter, belonging
to the flybarless two-bladed main rotor class, with a total mass of 7.75 kg, a main rotor
radius of 0.9 m, a main rotor nominal angular velocity of 1350RPM, a NACA 0015 main
rotor airfoil, and with fuselage aerodynamic lookup tablesobtained by scaling-down a full-
size Bo-105 helicopter fuselage aerodynamic model. The NACA 0015 and fuselage lookup
tables are not reproduced here due to space constraints, however the remaining parame-
ters have been listed in Table2.18. For this helicopter UAV, the Reynolds numbers vary
approximately in the range 105 –7.105, and hence these Reynolds numbers do not induce
any particular limitations from an aerodynamic standpoint. For example, The Pitt-Peters
dynamic inflow model (used in our main rotor model) has been successfully applied on
systems with Reynolds numbers as low as 104 [15].

Our model is compared to an equivalent FLIGHTLAB model, the latter having the
following options selected:

• Articulated main rotor.

• Blade element model and quasi-steady airloads.

• Peters-He three-state inflow model, with no stall delay.

• Bailey-type tail rotor.

2.3.1.Trim results
A trim condition is equivalent to an equilibrium point of Eq.(2.3) [16, 17], which can be
thought of as a specific flight condition, in which the resultant forces and moments on the
vehicle are equal to zero. For helicopters however, the concept of trim is more complicated
than that of fixed-wing aircrafts [18], since a helicopter has components that rotate with
respect to each other and with respect to the air mass. To circumvent this problem we de-
veloped a trim module, in the form of a constrained, nonlinear, optimization problem. At
trim, the resultant forces and moments on the vehicle shouldbe equal to zero, hence for the
engine ON flight condition, the objective of the trim module is to set to zero the three ve-
hicle inertial linear accelerations (V̇N, V̇E, V̇Z) and the three vehicle rotational accelerations
(ṗ, q̇, ṙ). On the other hand for the engine OFF flight condition (i.e. autorotation), the main
rotor RPMΩMR is not fixed anymore as it is allowed to vary according to its own dynamics.
Thus, we consider here two cases for the engine OFF trim module.

8In this table the acronymwrt stands forwith respect to.
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Table 2.1: Align T-REX physical parameters for the environment, vehicle, and actuators.

Name Parameter Value Unit

Environment

Air density ρ 1.2367 kg/m3

Static temperature T 273.15+ 15 K
Specific heat ratio (air) γ 1.4

Gas constant (air) R 287.05 J/kg.K
Gravity constant g 9.812 m/s2

Total mass m 7.75 kg
Inertia moment wrtxb A 0.2218 kg.m2

Inertia moment wrtyb B 0.5160 kg.m2

Vehicle Inertia moment wrtzb C 0.3141 kg.m2

Inertia product wrtxb D 0 kg.m2

Inertia product wrtyb E 0.0014 kg.m2

Inertia product wrtzb F 0 kg.m2

X-pos. of Fus. CG wrt total CG xFus 0 m
Y-pos. of Fus. CG wrt total CG yFus 0 m
Z-pos. of Fus. CG wrt total CG zFus 0.017 m

MR collective θ0 [-13,13].π/180 rad
MR lateral cyclic θ1c [-6,6].π/180 rad

Actuators MR longitudinal cyclic θ1s [-6,6].π/180 rad
TR collective θTR [-20,20].π/180 rad

MR collective rate θ̇0 [-52,52].π/180 rad/s
MR lateral cyclic rate θ̇1c [-52,52].π/180 rad/s

MR longitudinal cyclic rate θ̇1s [-52,52].π/180 rad/s
TR collective rate θ̇TR [-120,120].π/180 rad/s

1. The objective of the first engine OFF trim consists in setting to zero the previous
six accelerations, defined for the engine ON case, together with an additional ac-
celeration, namely the one related to main rotor RPMΩ̇MR. This allows to find the
steady-state autorotative flight conditions.

2. For low altitude engine OFF conditions, e.g. below 30–40 min the case of our
helicopter, as well as during the autorotation entry phase,and flare9 phase, see Sec-
tion 1.3.1, we observed, through various simulation runs, that steady-state autorota-
tions was seldom reached. Rather, for those situations, thehelicopter is in a contin-
uous transition from one non-equilibrium condition to the next. Hence, the objective
of the second engine OFF trim consists in only setting to zerothe six accelerations
defined for the engine ON case10.

9The flare refers to the landing maneuver just prior to touch-down. In the flare the nose of the vehicle is raised in
order to slow-down the descent rate, and further the proper attitude is set for touchdown.

10This second engine OFF trimming approach has shown to be feasible only for low-speed flight conditions.
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(Table 1 cont’d): Align T-REX physical parameters for the main rotor.

ClockWise direction of rotation Γ -1
Main Number of blades Nb 2
Rotor Nominal angular velocity ΩMR100% 141.37 rad/s
(MR) Rotor radius from hub Rrot 0.9 m

Blade mass Mbl 0.2875 kg
Spring restraint coef. due to flap KSβ

162.69 N.m/rad
Spring damping coef. due to flap KDβ

0 N.m.s/rad
Spring restraint coef. due to lag KSζ

0 N.m/rad
Spring damping coef. due to lag KDζ

5 N.m.s/rad
Offset distance eP 0.03 m
Offset distance eL 0.06 m
Offset distance eF 0.01 m

Distance between hub and flap hinge ∆e 0.1 m
Root cutout from flap hinge rc 0.0 m

Blade chord cbl 0.064 m
Blade twist at tip θwash 0 rad

Y-pos. blade CG wrt flap hinge yGbl 0.4 m
Swashplate phase angle ψPA 0 rad

Precone angle βP 0 rad
Pitch-flap coupling ratio K(θβ) 0
Pitch-lag coupling ratio K(θζ) 0

Tip loss factor B 0.97
Airfoil lift coef. clbl NACA0015

Airfoil drag coef. cdbl NACA0015
Airfoil pitching moment coef. cM NACA0015

X-pos. of MR hub wrt total CG xH 0.01 m
Y-pos. of MR hub wrt total CG yH 0 m
Z-pos. of MR hub wrt total CG zH -0.213 m

Note that both of these engine OFF trim modules will be used inthe sequel. Now,
the variables that the trim algorithm is allowed to manipulate include the four control in-
puts (θ0, θ1c, θ1s, θTR), and the vehicle roll and pitch angles (φ, θ), since the latter two in-
fluence the projection of the gravity vector on the body frame. Besides, the set-point at
which the equilibrium is computed has to be specified in the form of additional constraints,
i.e. by assigning fixed values to the three vehicle inertial linear velocities11 (VN,VE,VZ),
and the three vehicle rotational velocities (p, q, r). Now regarding the dynamic inflow
states (λ0, λs, λc), and the periodic states, i.e. blade flap and lag angles and velocities
(βbl, ζbl, β̇bl, ζ̇bl), these states are handled by time-marching the NL helicopter model long
enough until the transients have decayed. Finally, the remaining four states which include

11The three vehicle inertial linear velocities may be assigned any fixed values, hence for non-zero values this
implies that the vehicle position is not in trim. Seen from this perspective, not all the states are in equilibrium.
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(Table 1 cont’d): Align T-REX physical parameters for the tail rotor.

Number of blades NbTR 2
Tail Nominal angular velocity ΩTR100% 612.61 rad/s

Rotor Rotor radius from rotor hub RrotTR 0.14 m
(TR) Pitch-flap coupling δ3TR 0 rad

Preset collective pitch bias θbiasTR 0 rad
Partial coning angle wrt thrust β0TR 0 rad/N

Tail blockage constant bt1 0.927
Transition velocity vbl 20 m/s

Blade chord cTR 0.0316 m
Tip loss factor BTR 0.92

Airfoil lift curve slope cl(0,TR) 5.92 rad−1

Blade drag coef. CDTR 0.0082
X-pos. of TR hub wrt total CG xTR -1.015 m
Y-pos. of TR hub wrt total CG yTR -0.0575 m
Z-pos. of TR hub wrt total CG zTR -0.034 m

the three vehicle Cartesian position (xN, xE, xZ) and the vehicle headingψ are left free,
since the position of the helicopter does not influence12 its dynamic behavior or stability.
Our trim optimization is further based upon a Newton iteration scheme, similar to that of
[19], which is simple to implement and has been widely used [20]. The Newton method
guarantees quadratic local convergence, but is known to be sensitive to starting values13.

We compare next our model trim results, with those obtained from FLIGHTLAB, for
the engine ON case only. Comparison of our model with FLIGHTLAB, for the engine OFF
case, is presented within the context of dynamic results in Section2.3.2. First, Table2.2
gives the maximum absolute trim deviations, as a function ofinertial linear velocities14

(VN,VE,VZ), between our model and FLIGHTLAB, for the six trim variables, i.e. the four
control inputs (θ0, θ1c, θ1s, θTR) and roll and pitch angles (φ, θ). Table2.2has to be read in
conjunction with Fig.2.3–Fig.2.8, where the trim results are plotted, along each motional
axis. These motional axes are: longitudinal alongVN, lateral alongVE, vertical climb along
VZ (VZ > 0), and vertical descent alongVZ (VZ < 0). Basically, Fig.2.3–Fig. 2.8 visual-
ize the trim results for each motional axis at a time, i.e. by setting to zero the velocities
along the remaining motional axes, whereas Table2.2 compiles the worst-case data from
Fig. 2.3–Fig. 2.8 by reporting the worst-case trim deviation, for each of the six trim vari-

12Although strictly speaking this is not true in vertical flight, due to the ground effect when trimming near the
ground, and due to changes in air density when trimming with anon-zero vertical velocity; however for the
case of air density variations, these may be neglected when considering small-scale UAV applications, since the
maximum flight altitude is generally below 150m above ground.

13Even with good starting values, it is well-known that the Newton method may at times exhibit erratic divergence
due to for example numerical corruption [20]. Hence, several other trim approaches have been researched over
the past years, for a review of helicopter trim strategies see among others [7, 16, 18, 20–24].

14With VZ positive up.
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Table 2.2: Trim: maximum absolute deviations between our model and FLIGHTLAB, for the engine ON case.

Name Maximum absolute deviations
longi- lateral climb descent
tudinal alongVZ alongVZ

alongVN alongVE (VZ > 0) (VZ < 0)

Roll φ (◦) 1.0 0.7 1.5 0.5
Pitchθ (◦) 0.3 0.7 0.3 0.1

MR Collectiveθ0 (◦) 0.5 0.5 0.5 1.5
TR CollectiveθTR (◦) 0.9 0.9 1.0 2.1
MR Lat. Cyclicθ1c (◦) 0.4 0.04 0.04 0.05

MR Long. Cyclicθ1s (◦) 0.1 0.5 0.1 0.3
MR PowerPMR (W) 59 58 76 156

ables, along each motional axis. In addition, Table2.2reports the results for the main rotor
powerPMR, as this latter gives extra insight into the fidelity of our model.

We see that the maximum absolute deviations, between both models, for roll and pitch
angles, are almost negligible, respectively below 1.5◦ and 0.7◦, see Table2.2. For the
remaining variables, we also explore the relative deviations between both models. Regard-
ing the control inputs, Table2.3gives their relative deviations in %, namely the maximum
absolute deviations divided by the full actuator ranges.

Table 2.3: Trim: maximum relative deviations between our model and FLIGHTLAB, for the control inputs in %
of full actuator ranges, for the engine ON case.

Name Maximum relative deviations (in %)
longi- lateral climb descent
tudinal alongVZ alongVZ

alongVN alongVE (VZ > 0) (VZ < 0)

MR Collectiveθ0 1.9 1.9 1.9 5.8
TR CollectiveθTR 2.2 2.2 2.5 5.2
MR Lat. Cyclicθ1c 3.3 0.3 0.3 0.4

MR Long. Cyclicθ1s 0.8 4.2 0.8 2.5

Overall, we see that the differences between both models are rather small, e.g. below 6
% for the Main Rotor (MR) collectiveθ0, below 5.5 % for the Tail Rotor (TR) collectiveθTR,
below 3.5 % for the MR lateral cyclicθ1c, and below 4.5 % for the MR longitudinal cyclic
θ1s. From Fig.2.3, Fig. 2.5, and Fig.2.7, we also see that the maximum relative trim devi-
ation does not exceed 10 % for the main rotor powerPMR, for the longitudinal, lateral, and
climb motions. However, we do notice, as can also be seen in Table 2.2, some higher dis-
crepancies between both models in descending flight (particularly inside the VRS), where
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for instance the maximum relative trim deviation reaches 26% for the main rotor power
PMR. This could probably indicate that both models are implementing distinct simulations
of the induced rotor flow inside the VRS. The plot of the MR collective inputθ0, on Fig.2.4,
reveals also the minimum power speed, sometimes called thebucket speed, predicted to be
around 11–13 m/s by both models. From the MR power plotPMR, in Fig. 2.5, we can also
see that, as expected, for a CW main rotor for which the tail rotor thrust is oriented towards
port-side (i.e. to the left), it takes more power for vehiclestarboard flight (i.e. to the right)
than for port-side flight. Finally, for our helicopter, the VRS region at (VN,VE) = (0, 0) m/s
is approximately defined by−6 < VZ < −3 m/s (see also our discussion in [1]). Here,
we clearly see form Fig.2.7 and Fig.2.8 that MR collectiveθ0 and MR powerPMR, as
expected, start to increase inside the VRS, e.g. compare their values atVZ = −4 m/svs. at
VZ = −3 m/s. Hence, more engine power is required from a VRS descent thanfrom hover.
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Figure 2.3: Trim along inertial North velocityVN: roll and pitch angles, and main rotor power (–FLIGHTLAB,∗
Our Model).
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Figure 2.5: Trim along inertial East velocityVE: roll and pitch angles, and main rotor power (–FLIGHTLAB,∗
Our Model).
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Figure 2.6: Trim along inertial East velocityVE: control inputs (–FLIGHTLAB,∗ Our Model).
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Figure 2.7: Trim along inertial Vertical velocityVZ (> 0 up): roll and pitch angles, and main rotor power
(–FLIGHTLAB, ∗ Our Model).
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Figure 2.8: Trim along inertial Vertical velocityVZ (> 0 up): control inputs (–FLIGHTLAB,∗ Our Model).
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2.3.2.Dynamic results
For the dynamic response comparison, we compare the time histories of our model with
those of FLIGHTLAB. Basically, the tests are set to evaluatethe open-loop response of our
helicopter model. Both models have a simulation time-step set equal to 1/24th of a main
rotor revolution15. First, the rotor is allowed to reach a steady-state condition during a time
period of 1 s. (this is a purely software initialization matter, since the simulation starts with
all states at zero). Then, for the following 3 s. we simultaneously apply sine-sweeps from
0 to 2 Hz on the four input channels16, see Fig.2.9. Next, we evaluate the responses of
the following ten states: attitude angles (φ, θ, ψ), body linear velocities (u, v,w), body rota-
tional velocities (p, q, r), and MR RPMΩMR (the RPM is included for the autorotation case
only). For a quantitative evaluation we use the Variance-Accounted-For (VAF), defined as:
VAF ≔ 100%.max

(

1 − var(xk−x̃k)
var(xk) , 0

)

with x̃k one of the ten states in our model, andxk its

FLIGHTLAB counterpart, see Table2.4. The VAF is a widely used metric17 in the realm
of system identification18

Table 2.4: Vehicle dynamic response to sine-sweeps on the four input channels: Variance-Accounted-For (VAF)
by our model with respect to FLIGHTLAB.

Name VAF (%)
hover VN = steady-state autorotation

10m/s (VN,VZ) = (6,−6) m/s

Roll φ 51 76 86
Pitchθ 73 84 59
Yawψ 61 50 96

Long. velocityu 79 84 84
Lat. velocityv 62 91 96

Vertical velocityw 93 28 92
Roll ratep 67 45 76
Pitch rateq 43 68 77
Yaw rater 95 70 97

MR RPMΩMR N.A. N.A. 82
Average over all states 69 66 85

15The default value in FLIGHTLAB.
16The relatively short experiment time of 3 s. is explained by the short time-to-double amplitude, found to be

in the range of 0.9–2.3 s., this latter being derived from theeigenvalues of local LTI models. Since the total
experiment time is rather short, we chose to focus the model validation on its low-frequency behavior, hence the
2 Hz limit on the applied input signal.

17VAF values above 75 % suggest a high-quality model, whereas values in the range 50–75 % would indicate an
average–to–good model quality.

18Note that, usually, the VAF is used in a parameter-estimation context where one tries to ’match’ the outputs of a
model with the data gathered from various experiments, or alternatively when one tries to ’match’ the outputs of
a lower-order model with those from a more complex, often higher-order, model. In our case, we simply use the
VAF to compare two models, without any ’tuning’ or ’fitting’ of coefficients. Hence, in our case, the obtained
VAF values tend to be lower than VAF values typically seen in asystem identification context.
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Three test cases are presented, all starting at an altitude of 30 m. The first two with
the engine ON, and the third with the engine OFF. The first testcase is run from the hover
trim condition, see Fig.2.10, where it can be seen that the overall fit with FLIGHTLAB
is good to very good (see also Table2.4). The second test case is run to evaluate the high
speed flight condition, atVN = 10 m/s, see Fig.2.11, where we can see that the overall fit
with FLIGHTLAB is again good, except for the low VAF value (of28 %) reported forw
(although the plot on thew channel is rather good, as can be seen in Fig.2.11). Indeed, if
the to-be-compared values are close to zero (as is here the case forw), the VAF metric will
tend to artificially amplify any discrepancies.
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Figure 2.9: Vehicle dynamics: sine-sweep inputs for test cases 1, 2, & 3 (–FLIGHTLAB, – –Our Model)

The third test case is run to check the steady-state autorotative flight condition. In this
test case the helicopter is first trimmed at (VN,VZ) = (6,−6) m/s and at a MRΩMR as near
as possible to the nominal (i.e. engine ON) value of 1350 RPM,using the engine OFF trim
procedure, which also minimizes the MR RPM accelerationΩ̇MR. The results are shown in
Fig. 2.12, where we can see that the overall fit with FLIGHTLAB is again good.

Naturally our model does not perfectly match FLIGHTLAB. To some extent the ob-
served discrepancies, between both models, may originate from the fact that both models
are built upon distinct modeling philosophies. For instance, for the derivation of the flap-
lag dynamics as well as the computation of the rotor forces and moments, our model is
based upon a white-box, first-principles approach, i.e. a closed-form representation of the
system’s behavior. On the contrary, FLIGHTLAB is based uponthe so-called multi-body
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Figure 2.10: Vehicle dynamics (test case 1): response to sine-sweep inputs (the inputs are given in Fig.2.9), from
an initial condition in hover. The visualized states are: roll angleφ, pitch angleθ, yaw angleψ, body longitudinal
velocity u, body lateral velocityv, body vertical velocityw, body roll velocityp, body pitch velocityq, and body
yaw velocityr (–FLIGHTLAB, – –Our Model).

concept19. For instance for the case of a FLIGHTLAB main rotor blade, this latter is split
into N smaller bodies. Each body is undergoing a translational androtational displacement,
with the dynamic behavior of the complete system (here the complete blade, or multi-body
system) resulting from the equilibrium of applied forces and the rate of change of mo-
mentum at each body. This difference in modeling philosophies will inevitably result in
slight differences in, for instance, the magnitude of rotor forces and moments. Further, it
is well known that even small variations in the computation of forces and moments will
be integrated, over time, to large errors in velocities and positions20. Besides, this effect
gets exacerbated for highly unstable systems21, which is generally the case of highly agile
small-scale helicopters (on the one hand due to their very low inertia, and on the other due

19The multi-body concept may often be used to simulate the dynamic behavior of interconnected rigid and flexible
bodies.

20We note that the fit for test case 3 (autorotation) is better than the fit obtained for the first two test cases (with
engine ON). The explanation being as follows: in autorotation, main and tail rotor collective have much lower
values when compared to their engine ON values, and hence thegenerated aerodynamic forces are as well
smaller in magnitude. Smaller aerodynamic forces also imply smaller discrepancies, in magnitude, between the
forces computed by both models, resulting in smaller errorsin velocities and positions when integrated over
time.

21This is also why system identification of unstable systems ismost often done in closed-loop [25].
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Figure 2.11: Vehicle dynamics (test case 2): response to sine-sweep inputs (the inputs are given in Fig.2.9), from
an initial conditionVN = 10 m/s (VN is the vehicle inertial linear velocity in the direction of True North). The
visualized states are: roll angleφ, pitch angleθ, yaw angleψ, body longitudinal velocityu, body lateral velocity
v, body vertical velocityw, body roll velocityp, body pitch velocityq, and body yaw velocityr (–FLIGHTLAB,
– –Our Model).

to the high rotor stiffness resulting in high rotor moments). To conclude, as can beseen
from the last row in Table2.4, the model’s average VAF (over all states) is relatively high,
i.e. in the range 66–85 %, and hence the realism of our model isconsidered to be of good
quality.

2.4.Preliminary analysis of the rigid-body dynamics
The objective here is to obtain additional insight into the helicopter rigid-body dynamics,
in open-loop, at two trimmed (equilibrium) flight conditions, one for the engine ON case,
and one for the OFF case. At these two trimmed flight conditions, we first derive two
respective LTI plants by linearizing the NL helicopter model. These LTI plants describe
the small perturbation motion about these trimmed conditions, and will later on (in Chapter
4) be used for controller design. Since our focus is primarily on the low-frequency model
responses, i.e. the rigid-body motion, we define each plant as follows: the state-vector is
of dimension nine given byx = (u v w p q rφ θ ψ)⊤, the control input22 is of dimension
four given byu = (θ0 θ1c θ1s θTR)⊤, the wind disturbance (given in inertial frame) is of

22The nomenclature, given in Appendix A, states that all vectors are printed in boldface, hence the control input
vectoru should not be confused with the body longitudinal velocityu.
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Figure 2.12: Vehicle dynamics (test case 3): response to sine-sweep inputs (the inputs are given in Fig.2.9), from
an initial condition corresponding to a steady-state autorotation at (VN,VZ) = (6,−6) m/s (VN is the vehicle inertial
linear velocity in the direction of True North, andVZ is the inertial vertical velocity). The visualized states are: roll
angleφ, pitch angleθ, yaw angleψ, body longitudinal velocityu, body lateral velocityv, body vertical velocityw,
body roll velocityp, body pitch velocityq, and body yaw velocityr (–FLIGHTLAB, – –Our Model).

dimension three given byd = (VNw VEw VZw)⊤, and finally the measurements vector is given
by y = x. The state-space data of these LTI models is further reported in Appendix H. Next,
for these two LTI plants, we will analyze their pole maps in the complex plane, but first we
address the NL plant linearization issue.

2.4.1.Linearizing the nonlinear helicopter model
The NL helicopter model is subject to periodic loads, due to blades rotation, that result
in a time-varying trim condition. Linearizing the NL helicopter dynamics, around a trim
condition, can be done at each rotor position, to yield a Periodic Linear Time-Varying
(PLTV) system, with a period equal to one rotation of the rotor. Now, for PLTV systems,
the classical modal analysis methodologies, based upon time-invariant eigenstructures, are
not applicable anymore [26]. Hence, if one desires to apply the well-established analysis
and control tools for LTI systems, then a transformation of the PLTV system into a LTI one



2

66 2.High-Order Modeling of the Helicopter Dynamics

becomes necessary. There are roughly four main methods to perform such a transformation
or approximation [27]. The first, and simplest one, consists in evaluating the PLTV system
at a single rotor position (i.e. at a single blade azimuth position), and thus obtain a LTI
system. Clearly, this approach may lead to poor results. An already better method would
consist in averaging the PLTV state-space matrices over oneor more rotor periods. The next
two methods provide LTI models with higher accuracy, but require additional mathemati-
cal steps. The third method uses Floquet theory [26, 28], and the associated characteristic
exponents called Floquet multipliers, to obtain constant state-space matrices. The fourth
method uses the so-called Multi-Blade Coordinate (MBC) transformation (also known as
the Coleman transformation) [26, 29–31], i.e. by transforming quantities from rotating
blade coordinates into a non-rotating frame. Basically, the MBC describes the overall mo-
tion of a rotating blade array in the inertial frame of reference. The MBC transformation
results in a weakly periodic system, which is subsequently converted into a LTI system,
by averaging over one period [31]. Now, for our application, the first and fourth methods
were deemed inappropriate. For the first, it is well-known that this method may not pro-
vide an LTI model of high accuracy. The fourth is particularly well-suited for rotors having
three or more blades, and may involve significant inaccuracies for a two-bladed rotor23 [32].
The third is potentially more interesting, since providingLTI models with good accuracy.
However, in this thesis, we opted for the second method, since much simpler to use and
implement. Hence, the linearized models are computed usinga classical numerical pertur-
bation method, resulting in a first-order Taylor series approximation of the NL model, with
an averaging over several rotor periods.

Averaging: choice of the number of rotor periods
We compare here the dynamic response, i.e. rigid-body time histories, from the NL heli-
copter plant with the dynamic response from five LTI models, i.e. the latter obtained by
averaging from one to five rotor periods. Again, the rotor is first allowed to reach a steady-
state condition during a time period of 1 s. Then, for the following 3 s. we simultaneously
apply, on the four input channels, the same sine-sweep inputs that were used during the
model validation, see Fig.2.9. We further only analyze here the case for an engine ON in
hover (similar results have been observed for other flight conditions), see Fig.2.13.

For a quantitative evaluation we again use the VAF, with Table 2.5 reporting the VAF
values, accounted by each LTI model with respect to the NL model, corresponding to the 3
s. long experiment depicted in Fig.2.13. Interestingly, we see that the LTI model obtained
by averaging after only one period is rather poor, particularly on the pitchθ, pitch rateq,
and longitudinal velocityu axes, where these LTI outputs are moving in opposite directions
with respect to the NL ones. Increasing the number of averaged periods was thus deemed
necessary. Obviously, a high number of averaged periods will tend to filter out the helicopter
higher-order dynamics, resulting in a lower-quality LTI model. Hence, some trade-offmay
need to be considered here. From the last row in Table2.5, giving the LTI model’s average
VAF (over all states), we see that averaging over three or four periods may provide the
best compromise. Now, since an LTI model should describe thesmall perturbation motion
about a trimmed condition, we also evaluated the VAF values for a shorter experiment time

23As a reminder, our Remote-Controlled (RC) Align T-REX helicopter has a two-bladed main rotor.
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Table 2.5: Effect of averaging when linearizing the NL plant in order to obtain LTI models. Vehicle dynamic
response to sine-sweeps on the four input channels: Variance-Accounted-For (VAF) by each LTI model with
respect to the NL model, for a 3 seconds long flight time.

Name VAF (%) when averaging over
1 rotor 2 rotor 3 rotor 4 rotor 5 rotor
period period period period period

Roll φ 0 63 86 92 90
Pitchθ 0 80 75 63 63
Yawψ 0 37 60 64 56

Long. velocityu 11 74 80 85 87
Lat. velocityv 63 78 74 72 78

Vertical velocityw 58 70 78 83 83
Roll ratep 0 67 49 12 12
Pitch rateq 0 74 74 70 73
Yaw rater 62 89 93 95 92

Average over all states 22 70 74 71 70

Table 2.6: Effect of averaging when linearizing the NL plant in order to obtain LTI models. Vehicle dynamic
response to sine-sweeps on the four input channels: Variance-Accounted-For (VAF) by each LTI model with
respect to the NL model, for a 1.5 seconds long flight time.

Name VAF (%) when averaging over
1 rotor 2 rotor 3 rotor 4 rotor 5 rotor
period periods periods periods periods

Roll φ 0 78 96 100 99
Pitchθ 0 26 47 59 38
Yawψ 0 0 0 0 0

Long. velocityu 0 49 73 86 80
Lat. velocityv 0 57 82 89 85

Vertical velocityw 70 90 98 100 99
Roll ratep 0 87 71 46 52
Pitch rateq 0 92 99 96 99
Yaw rater 0 0 0 6 0

Average over all states 8 53 63 65 61
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Figure 2.13: Effect of averaging when linearizing the NL plant in order to obtain LTI models. The figure compares
the vehicle rigid-body outputs for the NL model, with those from five linearized models. The responses correspond
to sine-sweep inputs from hover (black line is the NL model, red line is the LTI model by averaging over one rotor
period, magenta line is the LTI model by averaging over two rotor periods, green line is the LTI model by averaging
over three rotor periods, blue line is the LTI model by averaging over four rotor periods, and cyan line is the LTI
model by averaging over five rotor periods).

(as to better fit the helicopter linear behavior), by considering only the first 1.5 s. of the
experiment depicted in Fig.2.13. This resulted in the VAF values given in Table2.6. Based
on the last row of Table2.6, we finally settled on using four rotor periods, for the averaging,
when computing LTI models from the NL helicopter model.
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2.4.2.The engine ON case
The hover trim was here selected as it is known to provide a good representation of heli-
copter behavior for hover and low-speed flight. Specifically, we consider a trimmed hover,
outside ground effect (at an altitude of 30 m), with a fixed and nominal main rotorRPM
value of 1350. The eigenvalues of theA matrix are plotted in Fig.2.14, for both the en-
gine ON and OFF cases (the engine OFF case will be discussed inSection2.4.3). For each
eigenvalue we also give, in Fig.2.14, the associated dominant eigenvectors. For the engine
ON case, we note the following:

• An inherent difficulty for control design will come from two, lightly-damped, com-
plex pair of poles; one stable pair with a damping ofζ = 0.53, at a natural frequency
of ωn = 1.07 rad/s, and one unstable pair with a damping24 of ζ = −0.42, at a natural
frequency ofωn = 1.05 rad/s. Their respective eigenvectors associate these modes
with a combined longitudinal-lateral-yaw motion, on theu, v, r, andψ channels.

• There is a pole at the origin (not visible in Fig.2.14), associated with the headingψ.

• The time-to-double amplitude25 is rather fast, equal to 1.54 seconds.

• To stabilize the plant, the bandwidth26 of the input complementary sensitivity func-
tion Ti(s), defined in Section4.4.2of Chapter 4, needs to be at least twice the modulus
of the unstable pole [34], hence in our case at least 2.1 rad/s.
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Figure 2.14: Eigenvalues and associated dominant eigenvectors, of the state (or system) matrix, of the LTI models
used for control design in Chapter 4, for the engine ON and OFFcases.

24We use here the MATLAB convention, consisting in using negative damping values when characterizing a
complex pair of unstable poles.

25The time-to-double amplitude is equal to 0.693/|(ωnζ)| [33].
26For MIMO systems this is done by checking the plot of the maximum singular value of the input complementary

sensitivity function [34].
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2.4.3.The engine OFFcase
In the engine OFF case, i.e. autorotative landing, the main rotor RPM is not fixed anymore,
and hence main rotor RPM dynamics will impact the overall vehicle flight dynamics. How-
ever, we choose here not to include the main rotor RPMΩMR to the state-vector, and hence
keep the same state-vector that was used for the engine ON case. The advantage is that it
becomes much easier to find equilibrium points of the NL system27. Indeed, by using this
"quasi-steady" modeling approach, it becomes possible to find equilibrium points outside
of steady autorotation, e.g. while transitioning between the instant of engine failure into
steady autorotation, or alternatively during flare (the maneuver just prior to landing). Ob-
taining these equilibrium points allows for subsequent linearizations of the NL model, and
consequently for control design in the LTI framework.

For the trimmed flight condition, we opt for a condition in hover with engine OFF
(note that now the main rotor RPM is not in equilibrium anymore). Choosing such a flight
condition, with an associated initial velocity of zero, could potentially provide the best
description of helicopter behavior during landing (where the helicopter velocity is also very
low). The state-space data of the LTI model is further reported in Appendix H. Again, the
eigenvalues of theAmatrix are plotted in Fig.2.14, where for each eigenvalue we also give
the associated dominant eigenvectors. For the engine OFF case, we note the following:

• An inherent difficulty for control design will come from two, lightly-damped, com-
plex pair of poles; one stable pair with a damping ofζ = 0.54, at a natural frequency
of ωn = 0.99 rad/s, and one unstable pair with a damping ofζ = −0.37, at a natural
frequency ofωn = 1.02 rad/s. Their respective eigenvectors associate these modes
with a combined longitudinal-lateral motion, on theu andv channels.

• The time-to-double amplitude is also fast, equal to 1.83 seconds.

• To stabilize the plant, the bandwidth of the input complementary sensitivity function
Ti(s), defined in Section4.4.2of Chapter 4, needs to be at least 2.04 rad/s.

2.5.Conclusion
This Chapter has presented the first building-block, towards the development of an au-
tonomous helicopter system, that may be characterized as follows: a comprehensive model-
ing framework, particularly suited for small-scale flybarless helicopters. Comparisons with
an equivalent FLIGHTLAB simulation showed that our model isvalid for a range of flight
conditions, and preliminary insight into the open-loop dynamics was also given. This com-
prehensive helicopter nonlinear model will, in subsequentChapters, be used for controller
validation. For controller design however, and due to its complexity, only approximation of
this model will be used in the upcoming Chapters.

27This engine OFF trimming approach has shown to be feasible only for low-speed flight conditions.
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2.6.Appendix A: Nomenclature
Vectors are printed in boldfaceX. A vector is qualified by its subscript, whereas its super-
script denotes the projection frame: e.g.V I

a represents the aerodynamic velocity projected
on frameFI . Matrices are written in outline typeM, and transformation matrices are de-
noted asTi j , with the two suffices signifying from frameF j to frameFi . All units are in the
S.I. system.

Positions and Angles
xN, xE, xZ Coordinates of vehicle CG in frameFo

φ Vehicle bank angle (roll angle)
θ Vehicle inclination angle (pitch angle, or elevation)
ψ Vehicle azimuth angle (yaw angle, heading)
ψ f Wind heading angle

Linear velocitiesV and their componentsu, v,w
Vk,G Kinematic velocity of vehicle CG
Va,G Aerodynamic velocity of vehicle CG
uo

k = VN x component ofVk,G on Fo, North velocity
vo

k = VE y component ofVk,G on Fo, East velocity
wo

k = VZ zcomponent ofVk,G on Fo, Vertical velocity
ub

k = u x component ofVk,G on Fb

vb
k = v y component ofVk,G on Fb

wb
k = w zcomponent ofVk,G on Fb

uw Wind x-velocity inFE

vw Wind y-velocity inFE

ww Wind z-velocity inFE

Angular velocitiesΩ and their componentsp, q, r
Ωk = ΩbE Kinematic angular velocity of vehicle CG relative to the earth
pb

k = p Roll velocity (roll rate) of vehicle CG wrt to the earth
qb

k = q Pitch velocity (pitch rate) of vehicle CG wrt to the earth
rb
k = r Yaw velocity (yaw rate) of vehicle CG wrt to the earth

Main Rotor (MR) properties
α wake angle wrt to rotor disk
αbl Blade section angle of attack
B Tip loss factor
βbl Blade flap angle
β0 Rotor TPP coning angle
β1c Longitudinal rotor TPP tilt
β1s Lateral rotor TPP tilt
βP Rotor precone angle
C0 = Mbl.yGbl Blade 1st mass moment
cbl Blade chord
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Main Rotor (MR) properties (cont’d)
cdbl Blade section drag coefficient
clbl Blade section lift coefficient
cM Blade section pitching moment due to airfoil camber
eF Distance between lag and flap hinge
eL Distance between pitch and lag hinge
eP Distance between Hub and pitch hinge
∆e = eP + eL + eF Distance between Hub and flap hinge
ηβ = 0.5R2

bl/(1− (eP + eL + eF))
ηζ = 0.5R2

bl/(1− (eP + eL))
Γ MR rotation,CCW : Γ = 1. CW : Γ = −1
Ge f f Ground effect corrective factor
Ib Blade 2nd mass moment (inertia about rotor shaft)
Iβ Blade 2nd mass moment (inertia about flap hinge)
iS Shaft tilt-angle
KDβ

Hub spring damper coef. (due to flap)
KDζ

Hub spring damper coef. (due to lag)
KSβ

Hub spring restraints coef. (due to flap)
KSζ

Hub spring restraints coef. (due to lag)
λ0, λc, λs Uniform, longitudinal, lateral inflows
Mbl Blade mass from flap hinge
Nb Number of blades
ΩMR Instantaneous angular velocity
ΩMR100% Nominal (100%) angular velocity
ψbl Azimuthal angular position of blade
Rbl Blade radius measured from flap hinge
Rrot Rotor radius measured from hub center
rc Blade root cutout
rdm Distance from flap hinge to elementdm
θbl Blade pitch outboard of flap hinge
θwash Blade twist (or washout) at blade tip
xH , yH, zH Coordinates of MR Hub wrt vehicle CG inFb

VM Mass flow parameter
Vre f = ΩMR.Rrot Reference velocity
VT Non-dimensional total velocity at rotor center
vi Rotor uniform induced velocity
vi0, vic, vis Uniform, longitudinal, lateral induced velocities
yGbl Blade CG radial position from flap hinge
ζbl Blade lag angle
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Tail Rotor (TR) properties
BTR Tip loss factor, expressed as percentage of blade length
β0TR Tail rotor coning angle
bt1 Tail blockage constant
CDTR Mean drag coefficient (profile drag)
cl(0,TR) Blade section lift curve slope
cTR Blade chord
δ3TR Hinge skew angle for pitch-flap coupling
λdw Downwash
λTR Total inflow
µTRx, µTRy, µTRz x-, y-, and z-component of advance ratio
NbTR Tail rotor number of blades
ΩTR Instantaneous angular velocity
RrotTR Rotor radius measured from shaft
σTR = NbTR

cTR
πRrotTR

Solidity

θbiasTR Preset collective pitch bias
xTR, yTR, zTR Coordinates of TR Hub wrt vehicle CG inFb

vbl Transition velocity (vertical fin blockage)

Fuselage (Fus) properties
αFus Angle of attack
βFus Sideslip angle
Lre fFus Reference length
Sre fFus Reference area
xFus, yFus, zFus Coordinates of Fus aero center wrt vehicle CG inFb

Control Inputs
θ0 MR blade root collective pitch
θ1c MR lateral cyclic pitch
θ1s MR longitudinal cyclic pitch
θTR TR blade collective pitch angle

Miscellaneous
g Acceleration due to gravity
mV Vehicle mass
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Vehicle inertia matrix

M Mach number
ρ Air density

Blade angle conventions, according to [26]
βbl Blade flap angle is defined to be positive for upward motion of the blade
ζbl Blade lag angle is defined to be positive when opposite the direction of rotation of the rotor
θbl Blade pitch angle is defined to be positive for nose-up rotation of the blade
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2.7.Appendix B: Frames
The first five frames hereunder, i.e.FI –Fk, are the standard aircraft navigation frames, see
for example [14].
Frame names
FI Geocentric inertial frame (see Fig.2.15)
FE Normal earth fixed frame
Fo Vehicle carried normal earth frame (see Fig.2.16)
Fb Body (vehicle) frame (see Fig.2.16)
Fk Kinematic (flight path) frame
FHB Hub-Body frame (see Fig.2.17and Fig.2.18)
F1<i<6, Fbl Main Rotor frames (see Fig.2.17and Fig.2.18)

Frame origins
A Origin of frameFI , earth center
G Origin of framesFb andFk, vehicle CG
H Origin of frameFHB

O Origin of framesFE andFo

The inertial frame FI (A, xI , yI , zI )
The inertial frameFI , see Fig.2.15, is a geocentric inertial axis system. The origin of the
frameA being the center of the earth, the axis south-northzI is carried by the axis of the
earth’s rotation, while axesxI andyI are keeping a fixed direction in space. The angular
velocity of the earth relative toFI isΩEI .

Normal earth-fixed frame FE (O, xE, yE, zE)
This frame is attached to the earth. The originO is a fixed point relative to the earth and
the axiszE is oriented following the descending direction of gravitational attraction located
onO. The plane (xE, yE) is tangent to the earth’s surface. The pointO will be placed at the
surface of the earth’s geoid and the axisxE will be directed towards the geographical north.

Vehicle-carried normal earth frame Fo (O, xo, yo, zo)
The axiszo is oriented towards the descending direction of the local gravity attraction, at
the vehicle center of mass (Fo has the same originO asFE), but contrary to the latter it
follows the local gravity as seen by the vehicle. The axisxo will be directed towards the
geographical north (thusxo is not parallel toxE).

Body frame Fb (G, xb, yb, zb)
This frame is linked to the vehicle’s body. The fuselage axisxb is oriented towards the front
and belongs to the symmetrical plane of the vehicle. The axiszb is in the symmetrical plane
of the vehicle and oriented downwards relative to the vehicle. This definition assumes the
existence of a symmetrical plane.

Kinematic or flight-path frame Fk (G, xk, yk, zk)
The axisxk is carried by the kinematic velocity of the vehicleVk,G.
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Figure 2.15: Inertial frameFI . Figure from [14].

Figure 2.16: Vehicle carried normal earth frameFo, and body frameFb. Figure from [14].
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2.8.Appendix C: Rigid-body equations of motion
Classical Newtonian mechanics and the fundamental relationship of kinematics give the
standard twelve-states rigid-body equations of motion (following notations of [14] and the
nomenclature given in Appendix A):
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with Tob =





















cosθ cosψ sinθ sinφ cosψ − sinψ cosφ
sinψ cosθ sinθ sinφ sinψ + cosψ cosφ
− sinθ cosθ sinφ

cosψ sinθ cosφ + sinφ sinψ
sinθ cosφ sinψ − sinφ cosψ
cosθ cosφ





















(2.8)

with Fb
CG all external forces, excluding gravity, experienced by thevehicle CG in the

body frameFb, andMb
CG the moments of all forces expressed at the vehicle CG in frame

Fb. These total forces and moments include contributions fromthe Main Rotor (MR), Tail
Rotor (TR), Fuselage (Fus), Vertical Tail (VT), and Horizontal Tail (HT), and are given by

Fb
CG = Fb

MR + Fb
TR+ Fb

Fus+ Fb
VT + Fb

HT
Mb

CG = Mb
MR +Mb

TR+Mb
Fus+Mb

VT +Mb
HT

(2.9)

The derivation of the rigid-body dynamics, as given in Eq. (2.4)–Eq. (2.8), is based
upon the following assumptions

• The vehicle has a longitudinal plane of symmetry, and has constant mass, iner-
tia, and Center of Gravity (CG) position, hence fuel consumption and/or payload
pickup/release are neglected. The vehicle is also a rigid system, i.e. it does not con-
tain any flexible structures, hence the time derivative of the inertia matrix is zero.

• The vehicle altitude Above Ground Level (AGL) is very small compared to the earth
radius, implying a gravitation independent of height and thus constant.
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• The earth is assumed fixed and flat. There is thus no longer a distinction between
the directions of gravitational force and the force of gravity, hence the external force
becomes the force of gravity28.

• We neglect the effect of buoyancy (Armichedes force).

28For further details on the geoid earth and gravity see [14, 35].
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2.9.Appendix D: Main rotor
For a single main rotor, and briefly summarized, helicopter flight dynamics includes the
rigid-body responses (presented in Appendix C) combined with the main rotor higher-
frequency modes [36, 37]. For flight mechanics and control development purposes, the
three most important aspects of these higher-order rotor modes are: 1) blade flapping, which
allows the blade to move in a plane containing the blade and the shaft; 2) blade lead-lag,
which allows the blade to move in the plane of rotation; and 3)rotor inflow which is the
flow field induced by the main rotor. Now, for the purpose of modeling a generic flybarless
small-scale helicopter main rotor (such as the Align T-REX in Fig. 1.16), we have chosen
to model it as an articulated Pitch-Lag-Flap (P-L-F) hinge arrangement. This chosen hinge
configuration is particularly well suited for the case of small-scale helicopters. It allows to
keep the pitch and lag hinge offsets at their current physical values while replacing the rub-
ber O-rings, see Fig.1.10, by a virtual flap hinge (having stiffness and damping) outboard
of the lag hinge. The (P-L-F) hinge arrangement is visualized in Fig.2.17and Fig.2.18.

Assumptions
The presented assumptions are valid for stability and control investigations of helicopters
up to an advance ratio limit29 of about 0.3 [38–40].

Structural simplifications

• Rotor shaft forward and lateral tilt-angles are zero. Rotorprecone is also zero. The
blade has zero twist, constant chord, zero sweep, constant thickness ratio, and a uni-
form mass distribution.

• We assume a rigid rotor blade in bending. We neglect higher modes (harmonics),
since higher modes are only pronounced at high speed [7, 41]. Further, blade torsion
is neglected since small-scale helicopter blades are generally relatively stiff.

• Rotor inertia inboard of the flap hinge is also neglected.

Aerodynamics simplifications

• Uniform inflow is computed through momentum theory30.

• Vehicle flies at a low altitude, hence neglecting air densityand temperature variations.
Blade element theory is used to compute rotor lift and drag forces31. Radial flow
along blade span is ignored. Pitch, lag, and flap angles are assumed to be small.

• Compressibility effects are disregarded, which is a reasonable assumption consider-
ing small-scale helicopter flight characteristics. Viscous flow effects are also disre-
garded, which is a valid assumption for low AOA and un-separated flow [13, 42].

29The advance ratio is the ratio of forward vehicle speed to a main rotor blade tip speed. The flight envelope of
small-scale helicopters is well within this limit.

30Which states that the total force acting on a control volume is equal to the rate of change of momentum [26].
31Blade element theory calculates the forces on the blade due to its motion through air. It is assumed that a blade

section acts as a 2D airfoil producing aerodynamic forces [26].
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Figure 2.17: Main rotor frames (top-view).

Figure 2.18: Main rotor frames (side-view).
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• Aerodynamic interference effects between the main rotor and other helicopter mod-
ules, e.g. fuselage or tail rotor, are neglected.

• The presence of the fuselage just under the main rotor acts asa so-called pseudo-
ground effect [43], resulting in some thrust recovery. This phenomenon is also ne-
glected.

Dynamical simplifications

• Dynamic twist32 is neglected. Hence blade CG is assumed to be colocated with blade
section quarter chord line.

• Unsteady (frequency dependent) effects for time-dependent development of blade lift
and pitching moment, due to changes in local incidence, are ignored; e.g. dynamic
stall, due to rapid pitch changes, is ignored.

Comments on the modeling assumptions and model simplifications
Helicopter simulation codes may be developed for a variety of applications, ranging from
flight dynamics simulation purposes, flying qualities investigations, auto-pilot design, oper-
ational analysis, crew training, load prediction, and/or vibrations analysis. In our case, the
desired objectives (i.e. the application domain) for our model are: 1) flight dynamics sim-
ulation, in which the model can be used in a Hardware In The loop (HITL) environment to
simulate the helicopter dynamics, hence enabling the verification and validation of a flight
control system (i.e. the embedded system); and 2) the model should also be useful for con-
troller synthesis, i.e. the so-called modeling for controlparadigm. This sets the context of
the model presented in this Chapter.

Now once the intended model’s application domain has been defined, we need to ad-
dress the question of helicopter model fidelity. To this end,and according to [44], the level
of model sophistication, to conveniently describe a helicopter model complexity, may be
formulated by two criteria, namelymodel dynamicsandmodel validity, defined as fol-
lows:

1. Model dynamicsqualifies the level of detail in representing the dynamics ofthe he-
licopter. This criterium determines the fidelity of the model in terms of the frequency
range of applicability, e.g. a model consisting of only the rigid-body, actuators, and
main rotor RPM dynamics, versus a model which also includes additional main rotor
higher-frequency phenomena, such as blade flap-lag, rotor inflow dynamics, etc.

2. Model validity represents the level of sophistication in calculating the helicopter
forces, moments, and main rotor inflow. This criterium determines the domain of
validity in the flight envelope, e.g. a model which crudely reproduces the associated
laws of physics, versus a model which accurately simulates the vehicle (aerodynamic)
forces and moments, including at high speed flight, descending in the Vortex-Ring-
State (VRS), and the autorotation condition.

32Any offset in blade chordwise CG and/or blade aerodynamic center position will result in a coupling of the flap
and torsion degrees-of-freedom in blade elastic modes [7].
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In terms ofmodel dynamics, our model includes some of the main rotor higher-order
phenomena, such as blade flap-lag dynamics and main rotor inflow dynamics. Hence, for
its intended application domain, our model may be considered to be of good quality. This
said, and as mentioned here-above in the assumptions, the dynamical aspects related to
blade torsion, dynamic twist, and dynamic stall have been neglected. Thus, our model may
not be valid in the very high-frequency region, i.e. it probably can not be used for a de-
tailed analysis of vibrations and/or aeroelastic phenomena. However, as mentioned earlier,
these latter aspects do not belong to the intended application domain of the proposed model.

In terms ofmodel validity, the effects of compressibility and viscous flows have been
disregarded, since relatively negligible on small-scale helicopters33. On the other hand,
our model does include a sophisticated main rotor inflow model, valid also for high-speed
descent and VRS flight, but does not include any aerodynamic interference effects between
the main rotor and other helicopter components, although this aspect is generally a minor
one on small-scale vehicles. In summary we conclude that ourmodel may also have a
relatively high model validity for its intended application domain.

Position and velocity of a blade element
With reference to the frame’s originA, G, andH, see Appendix B, the inertial position of a
blade elementdm, located at positionPdm, see Fig.2.17and Fig.2.18, is given by

APdm = AG +GH + HPdm (2.10)

Projecting Eq. (2.10) onto the Hub-Body frameFHB we get
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with (xdm, ydm, zdm) the position of blade elementdm, with respect to (wrt) the main
rotor hub. Now the third term on the Right-Hand-Side (RHS) ofEq. (2.11) is given by (see
Fig. 2.17and Fig.2.18)

HPdm
HB = T(HB)6

{

T54





















T32

(

T1(bl)





















0
rdm

0





















+





















0
eF

0





















)

+





















0
eL

0









































+





















0
eP

0





















}

(2.12)

with Ti j rotation matrices34. The inertial velocity, i.e. relative to the inertial frameFI ,
of a blade elementdm, located at positionPdm, is defined byV I ,Pdm. Projecting it onto frame

33The blade tip Mach number is below 0.4.
34For exampleT(HB)6 represents the rotation from frameF6 to the Hub-Body frameFHB, T54 represents the

rotation from frameF4 to frameF5, andT1(bl) the rotation from the blade frameFbl to frameF1, etc.
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FHB, and using Eq. (2.10), we obtain

VHB
I ,Pdm
=

(

dAG I

dt

)HB

+
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+
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where the superscript (·)I , such as indAG I

dt , means that the derivative is taken relative to
inertial frameFI . For the first term on the RHS of Eq. (2.13), and assuming a flat and fixed
earth, we get (refer also to the nomenclature)
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with Vo
k,G the vehicle kinematic velocity projected onto the vehicle carried normal earth

frameFo, andT(HB)o the rotation matrix from frameFo to frameFHB. For the second term
on the RHS of Eq. (2.13) we obtain (using the kinematics rule)
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where× denotes the cross product, andΩHB
bI the angular velocity of body frameFb

relative to inertial frameFI , projected onto the Hub-Body frameFHB. Here the first term
on the RHS of Eq. (2.15) is zero since the hub center H is fixed in the body frameFb. The
second term on the RHS of Eq. (2.15) gives
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Since the earth is fixed we haveΩb
bI = Ω

b
bE (see nomenclature), and Eq. (2.15) is now
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Finally, for the third term on the RHS of Eq. (2.13) we have
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We can also expressΩHB
(HB)I as

Ω
HB
(HB)I = Ω

HB
(HB)b +Ω

HB
bI (2.19)

The first term on the RHS of Eq. (2.19) is zero since frameFHB is fixed wrt frameFb.
The second term on the RHS of Eq. (2.19) can be re-written as

Ω
HB
bI = T(HB)bΩ

b
bI = Ω

b
bI = Ω

b
bE =





















p
q
r





















b

(2.20)
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where we have usedT(HB)b = I since rotor shaft longitudinal and lateral tilt-anglesiS are
assumed to be zero on our helicopter UAV. Regrouping terms from Eq. (2.14), Eq. (2.17),
Eq. (2.18), Eq. (2.19), and Eq. (2.20), we can express the inertial velocity of a blade element
dm in FHB as

VHB
I ,Pdm

=





















uI ,Pdm

vI ,Pdm

wI ,Pdm





















HB

=





















u
v
w





















b

+ d
dt





















xdm

ydm

zdm





















HB

+





















p
q
r





















b

×











































xH

yH

zH





















b

+





















xdm

ydm

zdm





















HB




















(2.21)

where we have used

T(HB)o





















VN

VE

VZ





















o

= T(HB)b.Tbo.





















VN

VE

VZ





















o

(2.22)

together withT(HB)b = I, andTbo.
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VE

VZ


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
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o

=


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
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



u
v
w


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















b

from the nomenclature. Now

plugging Eq. (2.12) into Eq. (2.21), and using any symbolic math toolbox, we can obtain
an expanded expression forVHB

I ,Pdm
, as follows

uHB
I ,Pdm
= u+ ΩMR

(

sinψbl[eL + eP + cosζbl(eF + rdmcosβbl)]

− cosψbl[cosθbl sinζbl(eF + rdmcosβbl) + rdmsinβbl sinθbl]
)

+ ζ̇bl(eF + rdmcosβbl)[cosψbl sinζbl − sinψbl cosθbl cosζbl]

+ β̇blrdm[cosψbl cosζbl sinβbl + sinψbl(cosθbl sinζbl sinβbl − cosβbl sinθbl)]

+ θ̇bl sinψbl[sinθbl sinζbl(eF + rdmcosβbl) − rdmsinβbl cosθbl]

+ q
(

zH − rdmcosθbl sinβbl + (eF + rdmcosβbl) sinζbl sinθbl

)

− r
(

yH − Γ cosψbl(cosθbl sinζbl(eF + rdmcosβbl)

+ rdmsinβbl sinθbl) + Γ sinψbl(eL + eP + cosζbl(eF + rdmcosβbl))
)

(2.23)
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vHB
I ,Pdm
= v+ ΩMRΓ

(

(eL + eP) cosψbl + rdmsinψbl sinβbl sinθbl

+ (eF + rdmcosβbl)(cosψbl cosζbl + sinψbl cosθbl sinζbl)
)

− ζ̇blΓ(eF + rdmcosβbl)[cosψbl cosζbl cosθbl + sinψbl sinζbl]

+ β̇blrdmΓ(cosψbl cosθbl sinζbl sinβbl − cosψbl cosβbl sinθbl − sinψbl cosζbl sinβbl)

+ θ̇blΓ cosψbl[sinθbl sinζbl(eF + rdmcosβbl) − rdmsinβbl cosθbl]

− p

(

zH −
(

rdmcosθbl sinβbl − (eF + rdmcosβbl) sinζbl sinθbl

)

)

+ r

(

xH −
(

cosψbl(eL + eP + cosζbl(eF + rdmcosβbl))

+ sinψbl(cosθbl sinζbl(eF + rdmcosβbl) + rdmsinβbl sinθbl)
)

)

(2.24)

wHB
I ,Pdm
= w+ ζ̇bl cosζbl sinθbl(eF + rdmcosβbl)

− β̇blrdm(cosβbl cosθbl + sinβbl sinζbl sinθbl)

+ θ̇bl[rdmsinθbl sinβbl + (eF + rdmcosβbl) sinζbl cosθbl]

+ p
(

yH − Γ cosψbl(cosθbl sinζbl(eF + rdmcosβbl) + rdmsinβbl sinθbl)

+ Γ sinψbl(eL + eP + cosζbl(eF + rdmcosβbl))
)

− q
(

xH − cosψbl(eL + eP + cosζbl(eF + rdmcosβbl))

− sinψbl(cosθbl sinζbl(eF + rdmcosβbl) + rdmsinβbl sinθbl)
)

(2.25)

with the total blade pitch angle given by [11]

θbl = θ0 + θ1c cos(ψbl + ψPA) + θ1s sin(ψbl + ψPA) + θt,rdm − K(θblβbl)βbl − K(θblζbl)ζbl (2.26)

and the blade pitch component due to blade twist given by

θt,rdm = rdm
θwash

Rbl
(2.27)

Note also, as stated in the assumptions here-above, we neglect any effects due to rapid
pitch changes, e.g. dynamic stall effects. Hence, we will assume thatθ̇bl ≪ β̇bl, θ̇bl ≪ ζ̇bl,
and θ̇bl ≪ ΩMR. Consequently, in the sequel we will also assume to haveθ̇bl ≃ 0 in
Eq. (2.23)–Eq. (2.25).
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Flap-Lag equations of motion
Since the early 1950s it is known that including flapping dynamics in a helicopter flight
model could produce limitations in rate and attitude feedback gains [45]. Further, for heli-
copter directional axis control, blade lead-lag dynamics ought to be considered for control
system design [46]. Indeed, it is well known that blade lead-lag produces increased phase
lag at high frequency, in the same frequency range where flapping effects occur [47], and
that control rate gains are primarily limited by lead-lag-body coupling [47, 48]. Now, in
terms of blade flap-lag modeling, a foundational contribution was given in [11], where
derivations of the coupled flap-lag equations of motion for arigid articulated rotor, for the
(F-L-P), (F-P-L), and (L-F-P) hinge sequences, was laid out. The purpose of our work is
to present a model for a new hinge arrangement, i.e. the (P-L-F) sequence, which is much
more useful for modeling the rotor dynamics of a small-scalehelicopter. The equations
presented in the sequel (obtained by the Lagrangian method [10]) are valid for a single
articulated rotor with hinge springs and viscous dampers. Compared to [11] our approach
retains all three hinges physically separated and works also for both ClockWise (CW) and
Counter-ClockWise (CCW) rotating main rotors. Further, full coupling between vehicle
and blade dynamics is modeled. Now from Lagrangian theory, we have

d
dt

(

∂KE

∂ζ̇bl

)

− ∂KE

∂ζbl
= Qζbl (2.28a)

d
dt

(

∂KE

∂β̇bl

)

− ∂KE

∂βbl
= Qβbl (2.28b)

with KE the kinetic energy of a blade,βbl, ζbl, blade flap and lag angles, andQβbl , Qζbl ,
the generalized forces. These latter include the effect of gravity, aerodynamics, and spring
damping and stiffness, and are given by

Qζbl = Qζbl ,G + Qζbl ,A + Qζbl ,D + Qζbl ,S (2.29a)

Qβbl = Qβbl,G + Qβbl,A + Qβbl,D + Qβbl ,S (2.29b)

The kinetic energy of a single rotor blade is given by

KE =
1
2

∫ Rbl

0
VHB

I ,Pdm

⊤
.VHB

I ,Pdm
dm (2.30)

with VHB
I ,Pdm

computed in Eq. (2.21), and the limits of integration are from the flap hinge,
to the blade tip. The kinetic energy inboard of the flap hinge is neglected in our model since
assumed small in the case of small-scale UAVs. We provide next the procedure for the
blade lead-lag equations Eq. (2.28a), the blade flap equations Eq. (2.28b) follow a similar
reasoning and are thus omitted. Now we rewrite the first term on the Left-Hand-Side (LHS)
of Eq. (2.28a) as

d
dt

(

∂KE

∂ζ̇bl

)

=
d
dt

(

∂

∂ζ̇bl

1
2

∫ Rbl

0
VHB

I ,Pdm

⊤
.VHB

I ,Pdm
dm

)

(2.31)

And since the limits of integration are constant, Eq. (2.31) is equivalent to (using Leib-
niz’s integral rule)

1
2

∫ Rbl

0

d
dt

∂

∂ζ̇bl

(

VHB
I ,Pdm

⊤
.VHB

I ,Pdm

)

dm (2.32)
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Next using the chain rule, Eq. (2.32) is equivalent to

1
2

∫ Rbl

0
d
dt

(

2 VHB
I ,Pdm

⊤
. ∂

∂ ˙ζbl
VHB

I ,Pdm

)

dm=
∫ Rbl

0

[

VHB
I ,Pdm

⊤
.
( d

dt
∂

∂ ˙ζbl
V I

I ,Pdm

)HB

+
( d

dtV
I
I ,Pdm

⊤)HB
. ∂

∂ ˙ζbl
VHB

I ,Pdm

]

dm
(2.33)

with again the following convention for the time-derivatives:
( d

dt
∂

∂ζ̇bl
V I

I ,Pdm

)HB signifies

the time-derivative, wrt inertial frameFI , of vector ∂

∂ζ̇bl
V I ,Pdm, subsequently projected onto

frameFHB. Using Eq. (2.19), these derivatives can also be expanded as follows

( d
dt

∂

∂ ˙ζbl
V I

I ,Pdm

)HB
=

( d
dt

∂

∂ζ̇bl
VHB

I ,Pdm

)HB

+





















p
q
r





















b

× ∂

∂ζ̇bl
VHB

I ,Pdm

(2.34)

( d
dt

V I
I ,Pdm

⊤)HB
=

( d
dt

VHB
I ,Pdm

⊤)HB
+





















p
q
r





















b

× (

VT
I ,Pdm

)HB (2.35)

Next, for the second term on the LHS of Eq. (2.28a) we get

− ∂KE

∂ζbl
= − ∂

∂ζbl

1
2

∫ Rbl

0
VHB

I ,Pdm

⊤
.VHB

I ,Pdm
dm (2.36)

Again since the limits of integration are constant, and using the chain rule, Eq. (2.36)
reduces to

− ∂KE

∂ζbl
= −

∫ Rbl

0
VHB

I ,Pdm

⊤
.
∂

∂ζbl
VHB

I ,Pdm
dm (2.37)

Now, through the use of a symbolic math toolbox, an analytic expression for the LHS of
Eq. (2.28a) may readily be obtained, i.e. by utilizing the expression obtained forVHB

I ,Pdm
in

Eq. (2.21) and inserting it, together with the derivativesd
dtV

HB
I ,Pdm

, ∂
∂ζbl

VHB
I ,Pdm

, ∂

∂ζ̇bl
VHB

I ,Pdm
, into

Eq. (2.33), Eq. (2.34), Eq. (2.35), and Eq. (2.37). The blade flap equation Eq. (2.28b) fol-
lows a similar procedure, and will also require the computation of ∂

∂βbl
VHB

I ,Pdm
and ∂

∂β̇bl
VHB

I ,Pdm
.

Finally, using a symbolic math toolbox, the combined equations Eq. (2.28a) and Eq. (2.28b)
may be re-arranged as the following four-states nonlinear flap-lag equations of motion

d
dt




























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ζ̇bl

βbl

ζbl





























= A−1.
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
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
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−B.
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


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




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+
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
















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Qβbl − F1

Qζbl − F2

0
0


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








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






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(2.38)

with the followingA andBmatrices

A =





























Iβ 0 0 0
0 (e2

F .Mbl + 2eF .C0 + Iβ) 0 0
0 0 1 0
0 0 0 1





























(2.39)
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B =





























0 B12 0 0
B21 0 0 0
−1 0 0 0
0 −1 0 0





























(2.40)

with Mbl, C0, andIβ defined as (refer also to the nomenclature)

Mbl =
∫ Rbl

0
dm C0 =

∫ Rbl

0
rdm.dm= Mbl.yGbl

Iβ =
∫ Rbl

0
r2
dm.dm= Mbl.

R2
bl

3

(2.41)

We stress here that Eq. (2.38) is a nonlinear representation since the scalarsB12 andB21

in Eq. (2.40), andF1, andF2 in Eq. (2.38) are (nonlinear) functions of (̇ζbl, βbl, ζbl). Space
restrictions preclude a reprint of the lengthy expressionsB12, B21, F1, andF2, these can be
consulted in Appendix E of [49].

Flap angle as a Fourier series
Blade motion is 2π periodic around the azimuth and may hence be expanded as an infinite
Fourier series [26, 41]. Now for full-scale helicopters, it is well known that the magnitude of
the flap second harmonic is less than 10 % the magnitude of the flap first harmonic [41, 50].
We assume that this is also the case for small-scale helicopters and hence we neglect second
and higher harmonics in the Fourier series. This gives

βbl(ψbl) ≃ β0 + β1c cosψbl + β1s sinψbl (2.42)

with ψbl the blade azimuth angle. This harmonic representation of the blade motion
defines the rotor Tip-Path-Plane (TPP), resulting in a so-called cone-shaped rotor. The
non-periodic termβ0 describes the coning angle, and the coefficients of the first harmonic
β1c andβ1s describe the tilting of the rotor TPP, in the longitudinal and lateral directions
respectively. All three angles may readily be obtained through standard least-squares [51].
Now in steady-state rotor operation, the flap coefficientsβ0, β1c, β1s may be considered
constant over a 2π blade revolution. Obviously this solution would not be adequate for
transient situations such as maneuvering [52], hence in our model we compute, for each
new blade azimuth, the instantaneous TPP angles. With regard to TPP dynamics, three
natural modes can be identified, i.e. the so-called coning, advancing, and regressing modes.
In general, the regressing flapping mode is the most relevantwhen focusing on helicopter
flight dynamics, as it is the lowest frequency mode of the three, and it has a tendency to
couple into the fuselage modes [40, 47, 53].

Virtual work and virtual displacements
The determination of the generalized forcesQζbl , Qβbl in Eq. (2.29a) Eq. (2.29b) requires
the calculation of the virtual work of each individual external force, associated with each
respective virtual flapping and lead-lag displacements [11]. Let FXi , FYi , FZi be the compo-
nents of the ith external forceFi , acting on blade elementdmin frameFHB, then the resulting
elemental virtual work done by this force, due to the virtualflapping and lag displacements
∂βbl and∂ζbl, is given by

dWi = FXi dxdm+ FYi dydm+ FZi dzdm (2.43)
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with

dxdm =
∂xdm

∂βbl
∂βbl +

∂xdm

∂ζbl
∂ζbl (2.44a)

dydm =
∂ydm

∂βbl
∂βbl +

∂ydm

∂ζbl
∂ζbl (2.44b)

dzdm =
∂zdm

∂βbl
∂βbl +

∂zdm

∂ζbl
∂ζbl (2.44c)

Now summing up the elemental virtual work, over the appropriate blade span, results in
the total virtual workWi , due to external forceFi , as

Wi =
∫ Rbl

0

(

FXi

∂xdm

∂βbl
+ FYi

∂ydm

∂βbl
+ FZi

∂zdm

∂βbl

)

∂βbl

+
∫ Rbl

0

(

FXi

∂xdm

∂ζbl
+ FYi

∂ydm

∂ζbl
+ FZi

∂zdm

∂ζbl

)

∂ζbl

(2.45)

Which is set equivalent to

Wi = Qβbl,i .∂βbl + Qζbl ,i.∂ζbl (2.46)

The virtual displacement, in frameFHB, of a blade elementdm, located at a distance
rdm outboard of the flap hinge, is obtained using Eq. (2.44) and Eq. (2.12) as follows


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
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dxdm

dydm

dzdm


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


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







HB

= rdm.dPHB
β,r .∂βbl

+

[

dPHB
ζ,r̄ + rdm.dPHB

ζ,r

]

.∂ζbl

(2.47)

with

dPHB
β,r =



























cosψbl cosζbl sinβbl

Γ cosψbl

(

cosθbl sinζbl sinβbl − cosβbl sinθbl

)

− cosθbl cosβbl

+ sinψbl

(

cosθbl sinζbl sinβbl − cosβbl sinθbl

)

−Γ sinψbl cosζbl sinβbl

− sinζbl sinθbl sinβbl



























(2.48)

dPHB
ζ,r̄ = eF

































(

cosψbl sinζbl − sinψbl cosθbl cosζbl

)

−Γ
(

cosψbl cosθbl cosζbl + sinψbl sinζbl

)

cosζbl sinθbl

































(2.49)

dPHB
ζ,r = cosβbl

dPHB
ζ,r̄

eF
(2.50)
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Generalized forces (gravity)
The gravity force acting on a blade element with massdmcan be expressed inFHB as

FHB
Gbl
= T(HB)o


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






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



0
0
g.dm


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















o

(2.51)

with T(HB)o the transformation fromFo to FHB. Substituting Eq. (2.51) and Eq. (2.47)
into Eq. (2.45), the desired generalized forces due to gravity, outboard of the flap hinge, are
obtained as follows

Qζbl ,G = g.
(

eF .Mbl +C0 cosβbl

)

.

(

A1 cosψbl sinζbl

−A1 sinψbl cosθbl cosζbl

−A2Γ cosψbl cosθbl cosζbl

−A2Γ sinψbl sinζbl + A3 cosζbl sinθbl

)

(2.52)

Qβbl,G = g.C0.

(

A1 cosψbl cosζbl sinβbl

+A1 sinψbl cosθbl sinζbl sinβbl

−A1 sinψbl cosβbl sinθbl

+A2Γ cosψbl cosθbl sinζbl sinβbl

−A2Γ cosψbl cosβbl sinθbl

−A2Γ sinψbl cosζbl sinβbl

−A3 cosθbl cosβbl − A3 sinζbl sinθbl sinβbl

)

(2.53)

using
A1 = − sinθ
A2 = cosθ sinφ
A3 = cosθ cosφ

(2.54)

andMbl andC0 as defined in Eq. (2.41).

Generalized forces (aerodynamic)
The aerodynamic velocity, i.e. velocity relative to the air, of a blade elementdm, located at
positionPdm, is defined byVa,Pdm. Projecting it onto the blade frameFbl we get

Vbl
a,Pdm
= T(bl)(HB).

(

VHB
I ,Pdm
−
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0
0
vi
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
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



HB

− T(HB)E
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uw

vw

ww


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















E
)

(2.55)

with VHB
I ,Pdm

defined in Eq. (2.21), vi the rotor induced velocity35 from Eq. (2.70), (uw vw ww)⊤

the components of the wind velocity vector usually available in frameFE, andT(bl)(HB) the
rotation matrix from frameFHB to frameFbl. Now the section AOA of a blade elementdm

35Strictly speaking the induced velocity is perpendicular tothe Tip-Path-Plane (TPP). However since we make the
assumption of small tilt angles, as to simplify the model, weconsider here an induced velocity perpendicular to
the Hub-Body frameFHB.
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is defined byαbl in the interval [−π,+π] rad and, for each of the four quadrants, is readily
computed from the arctangent of the x- and z- components ofVbl

a,Pdm
. Further, the elemental

lift and drag forces of a blade segment of lengthdrdm are given by

dL =
1
2
.ρ.||Vbl

a,Pdm
||2.clbl .cbl.drdm (2.56)

dD =
1
2
.ρ.||Vbl

a,Pdm
||2.cdbl .cbl.drdm (2.57)

with the blade section lift and drag coefficientsclbl andcdbl given as tabulated functions36

of blade section AOA and Mach numberM, and all other coefficients defined in the nomen-
clature. The elemental lift and drag forces can now be expressed in the blade frameFbl, for
each of the four AOA quadrants. For example, for the case of a CCW main rotor, with the
AOA quadrantαbl ∈ [0,+π/2] rad, we have

dL bl = dL.


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
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




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


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0
− cosαbl
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













(2.58)

dDbl = −dD.


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cosαbl

0
sinαbl










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







(2.59)

Coming back to the generalized aerodynamic forces, we can now express them as the
sum of two contributions, one due to lift and one due to drag. For the lead-lag case in
Eq. (2.29a) we haveQζbl ,A = Qζbl ,AL + Qζbl ,AD . Similarly for the flap case in Eq. (2.29b) we
haveQβbl,A = Qβbl,AL + Qβbl,AD . Now keeping in mind Eq. (2.45) and Eq. (2.47), and using
Eq. (2.58) and Eq. (2.59), we obtain

Qζbl ,AL =

∫ B.Rbl

rc

(

T(HB)(bl)dLbl
)⊤
.

(

dPHB
ζ,r̄ + rdm.dPHB

ζ,r

)

.drdm (2.60)

Qζbl ,AD =

∫ Rbl

rc

(

T(HB)(bl)dDbl
)⊤
.

(

dPHB
ζ,r̄ + rdm.dPHB

ζ,r

)

.drdm (2.61)

Qβbl,AL =

∫ B.Rbl

rc

(

T(HB)(bl)dLbl
)⊤
.dPHB

β,r .rdm.drdm (2.62)

Qβbl,AD =

∫ Rbl

rc

(

T(HB)(bl)dDbl
)⊤
.dPHB

β,r .rdm.drdm (2.63)

For the lift contributionsQζbl ,AL andQβbl,AL , the integration is performed from the blade
root cutoutrc to a value denoted asB.Rbl, this latter accounts for blade tip loss [52]. Next by
plugging Eq. (2.48), Eq. (2.50), Eq. (2.49), Eq. (2.58), and Eq. (2.59), into Eq. (2.60)–Eq. (2.63),
one can derive final expressions for the generalized aerodynamic forces. Providing analyti-
cal expressions for Eq. (2.60)–Eq. (2.63) represents a rather tedious task, even more so for

36Where we neglect sideslip influence.
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twisted blades37 for which the blade pitch will also be function of the blade section length
rdm. Therefore, we opted for a numerical evaluation of these expressions, as is often done in
flight dynamics codes [54]. Here Gaussian quadrature integration was implemented, using
a low order (5th order) Legendre polynomial scheme [55, 56].

Generalized forces (hub damping and spring restraints)
The flap and lag hinges are modeled as springs with viscous dampers. The generalized
forces corresponding to the spring dampers can be obtained directly from the potential
energy of the dampers dissipation functions [10, 11] as

Qζbl ,D = −KDζ
.ζ̇bl Qβbl,D = −KDβ

.β̇bl (2.64)

Similarly the generalized forces corresponding to the spring restraints can be obtained
directly from the potential energy of the hub springs [10, 11] as

Qζbl ,S = −KSζ
.ζbl Qβbl,S = −KSβ

.βbl (2.65)

Rotor inflow
At the heart of the helicopter aerodynamics are the induced velocities, i.e. the induced flow
due to rotor blade motion, at and near the main rotor [57]. These induced velocities con-
tribute to the local blade incidence and local dynamic pressure, and can be divided into two
categories, static and dynamic inflow models. For low-bandwidth maneuvering applica-
tions, such as trim calculations or flying-qualities investigations, the dynamic effects of the
interaction of the airmass with the vehicle may be deemed negligible, hence static inflow
models may be acceptable [57]. But for high bandwidth applications, dynamic interactions
between the inflow dynamics and the blade motion must be considered. Conjointly dynamic
inflow models can be divided into two unsteady categories: the Pitt-Peters dynamic inflow
[8, 58–60], and the Peters-He finite-state wake model38 [9, 64, 65]. The finite-state wake
model is a more comprehensive theory than dynamic inflow, notlimited in harmonics and
allowing to account for nonlinear radial inflow distributions. This sophisticated model is
particularly attractive when rotor vibration and aeroelasticity need to be analyzed [66]. But
with respect to flight dynamics applications, we assume thatit is sufficient to consider the
normal component of the inflow at the rotor, i.e. the rotor induced downwash [7]. Further,
for such applications, it is reported in [66] that the Peters-He model is not remarkably better
than the Pitt-Peters formulation. Since our primary interest is flight dynamics, we choose to
implement the more straightforward Pitt-Peters model [8, 58], with a correction39 for flight
into the Vortex-Ring-State (VRS) from [68]. The VRS corresponds to a condition where
the helicopter is descending in its own wake. It is often associated with the following symp-
toms: excessive vibrations, large unsteady blade loads, thrust/torque fluctuations, excessive
loss of altitude, and loss of control effectiveness [69]. Its boundaries, in terms of helicopter
velocities, are well-known, see Fig.2.19.

37Although in our case the helicopter UAV blades have zero twist.
38Although recent advances in computing power and methodology have made it foreseeable to add a third category,

namely that of detailed free-wake models that may be run in real-time for flight dynamics applications [61–63].
39Note that, if required, additional enhancements could alsobe made by including a pseudo-harmonic term to

model VRS thrust fluctuations as in [67].
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Figure 2.19: Vortex-Ring-State (VRS) boundaries. The x-axis represents the helicopter horizontal velocity nor-
malized by the induced velocity in hover (namedvh in this figure), whereas the y-axis represents the helicopter
vertical velocity normalized by the induced velocity in hover. Figure from [70].

Concerning wake bending during maneuvering flight40, we choose at first not to imple-
ment it, as to lower model complexity. For the aspect of ground effect, only a static ground
effect has been accounted for, by a correction factor applied tothe non-dimensional total
velocity at the rotor disk center.

Now, the induced inflow model implemented in this Chapter is based upon [8], and
is assumed to have the following variations in the TPP wind-axis coordinates (see [8] for
further details on TPP wind-axis coordinates)

d
dt
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

(2.66)

where the main rotor RPMΩMR has been added here in front of the RHS of Eq. (2.66)

40Wake bending may significantly change the inflow distribution over the rotor, resulting in a sign reversal in the
off-axis response [71–73], for which interesting implementation results can be found in [74–76].
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since the original expressions of the Pitt-Peters model arein non-dimensional time (see
also [64]). The subscript (·)aero in the forcing functionCaero indicates that only aerody-
namic contributions are considered, withCaero = (CT − CL − CM)⊤aero, andCT , CL, CM ,
the instantaneous main rotor thrust, roll, and pitching moment coefficients respectively, in
the TPP wind-axis system.CT is readily obtained from Eq. (2.71), whereasCL andCM

are simply derived from the forces Eq. (2.71) times their respective moment arms. Next
matricesM andL1 are defined from [8] as

M =





















8
3π 0 0
0 16
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0 0 16

45π
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
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(2.67)

L1 =


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(2.68)

whereα represents the wake angle with respect to the rotor disk [8]. Further matrixL2

is given by

L2 =














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



(Ge f f.VT)−1 0 0
0 V−1

M 0
0 0 V−1

M


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











(2.69)

with VT the total velocity through the rotor disk,VM the momentum theory mass flow
parameter, andGe f f the static ground effect factor added as a correction toVT . The expres-
sions forVT andVM can be found in [68], although simpler expressions also exist in [8].
However the former include a correction for flight into the VRS and hence are more attrac-
tive. TheGe f f coefficient is based upon the expression found in [52]. Finally the main rotor
induced velocityvi is computed as follows [77]: 1) solve Eq. (2.66); 2) rotate the obtained
inflow from the TPP wind-axis to the TPP axis (see [8]); and 3) use these expressions to
computevi in Eq. (2.70)

vi = Vre f .
(

λ0 + λs.
rdm

Rrot
. sinψbl + λc.

rdm

Rrot
. cosψbl

)

(2.70)

Forces and moments
For the rotor forces, the procedure consists in simulating the forces of each individual blade.
This process is repeated at each new blade azimuth position—rather than averaging the
results over one revolution—in order to recreate theNb/Revflapping vibration41. The rotor
forces are subdivided into three contributions: 1) aerodynamic lift and drag; 2) inertial;
and 3) centrifugal forces. The aerodynamic forcesFHB

MRa
are obtained by integrating the

elementary lift and drag forces Eq. (2.58) and Eq. (2.59) over the blade span

FHB
MRa
=

∫ B.Rbl

rc

T(HB)(bl)dLbl.drdm+

∫ Rbl

rc

T(HB)(bl)dDbl.drdm (2.71)

41Which may be useful when validating a complete auto-pilot system in a hardware in the loop simulation envi-
ronment.
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where the integrations are done numerically as in Eq. (2.60)–Eq. (2.63). The inertial
forcesFHB

MRi
, due to flap and lag, are approximated, from expressions in [26], as follows

FHB
MRi
=
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(2.72)

Centrifugal forcesFHB
MRc

are approximated, from [26], as

FHB
MRc
=


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(2.73)

Finally, for the total main rotor forces we haveFb
MR = Tb(HB).

(

FHB
MRa
+ FHB

MRi
+ FHB

MRc

)

,
with Tb(HB) = I, since, as mentioned earlier, rotor shaft tilt-angles are zero on our helicopter
UAV. For the rotor moments, they include contributions fromsix different sources: 1) aero-
dynamicsM HB

MRa
; 2) inertial loadsM HB

MRi
; 3) centrifugal loadsM HB

MRc
; 4) flap hinge stiffness

M HB
MRsti f

; 5) lag hinge dampingM HB
MRdamp

; and 6) due to airfoil camberM HB
MRcamber

. The last
two are neglected since assumed very small for small-scale helicopter rotors/blades. The
first three are simply computed by considering the forces Eq.(2.71)–Eq. (2.73) times their
respective moment arms. For the flap hinge stiffness, it is derived from [26] as

M HB
MRsti f

= − 1

1− eP+eL+eF
Rrot

.
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2





















Γβ1s

β1c

0





















(2.74)

Rotor RPM dynamics
The main rotor RPM dynamics is related to the available and required power by [43]

Nb.Ib.ΩMR.Ω̇MR = Psha f t− Preq (2.75)

with Psha f t the available shaft power, andPreq the required power to keep the vehicle
aloft. This latter is the sum of main rotor induced and profilepower, tail rotor induced
and profile power, power plant transmission losses, vehicleparasite power (i.e. drag due
to fuselage, landing skids, rotor hub, etc), and finally mainrotor, tail rotor, and fuselage
aerodynamic interference losses. In case of engine failure, a first-order response inPsha f t is
generally assumed to represent the power decay, we have

Ṗsha f t = −
Psha f t

τp
(2.76)

with τp a to-be-identified time constant. For the required powerPreq, we simplify the
model by only considering the contributions from the main rotor asPMR = MHB

z MRa
.ΩMR,

with MHB
z MRa

being the z- component of the aerodynamics momentM HB
MRa

(this latter being
referenced in the previous paragraph). Now if, at engine failure, we were to assume an
instantaneous power lossPsha f t= 0, then from Eq. (2.75) we obtain

Ω̇MR = −
MHB

z MRa

Nb.Ib
(2.77)
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2.10.Appendix E: Tail rotor
The tail rotor is a powerful design solution for torque balance, directional stability and
control of helicopters. We have implemented here a standardBailey type model [12], as is
done, among others, in [19, 51, 78].

Assumptions
Structural simplifications

• The blade has zero twist, constant chord, zero sweep, and hasconstant thickness
ratio. The blade is also rigid, hence torsion is neglected.

Aerodynamics simplifications

• Linear lift with constant lift curve slope, and uniform induced flow over the rotor are
assumed.

• Aerodynamic interference effects from the main rotor is neglected, although this may
well be an oversimplification, for some flight conditions [79, 80]. Similarly, the
aerodynamic interference from the vertical tail (due to blockage) is also neglected.

• Compressibility, blade stall, and viscous flow effects are also disregarded.

Dynamical simplifications

• Blade dynamics is disregarded, and simplified inflow dynamics is considered. Un-
steady effects are neglected.

Forces and moments
The theory we apply here is based on the work done by Bailey in [12], implemented among
others in [51, 78]. The model given here is a simplified approach of the Bailey model. First,
the total tail rotor blade pitch̃θTR is given by

θ̃TR = θTR− TTR
∂β0TR

∂TTR
tanδ3TR + θbiasTR (2.78)

with θTR the tail rotor control input, and all other coefficients defined in the nomen-
clature, except forTTR defined in Eq. (2.83). The Bailey coefficients are given next by

t1 =
B2

TR

2
+
µ2

TRxy

4
(2.79a)

t2 =
B3

TR

3
+

BTR µ
2
TRxy

2
(2.79b)

with BTR the tip loss factor andµTRxy defined in the sequel. Now, assuming zero twist
for the tail rotor blades, the downwash at the tail rotor is derived using momentum theory
as follows
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λdw =
cl(0,TR)σTR

2

(

µTRzt1 + θ̃TRt2

2
√

µ2
TRx+ µ

2
TRy+ λ

2
TR+

cl(0,TR)σTR

2 t1

)

(2.80)

with λTR the total tail rotor inflow,µTRxy =

√

µ2
TRx+ µ

2
TRy andµTRz non-dimensional

velocities in the tail rotor frame (see [51] for details of the tail rotor frame and the Bailey
model), and the remaining coefficients defined in the nomenclature. The total tail rotor
inflow λTR is further given by

λTR = λdw− µTRz (2.81)

where it is common practice to iterate between Eqn. (2.80) and Eqn. (2.81) until con-
vergence within a reasonable tolerance. Then, the tail rotor thrust is given by [51]
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with

TTR = 2.λdw.

√

µ2
TRxy+ λ

2
TR.ρ.π.

(
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2
rotTR

)2

(2.83)

Next, the tail rotor moments are primarily due to the rotor force times the respective
moment arms (where we neglect any sidewards rotor offset in they− direction). For com-
pleteness, we also add the rotor torque acting on the pitch axis [26]
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2.11.Appendix F: Fuselage
In the general case, the flow around the fuselage is rather complex, and is characterized
by strong nonlinearities, unsteady separation effects, and distortions due to the influence of
the main rotor wake [7]. For low speed sideways flight, the important fuselage character-
istics are the sideforce, vertical drag, and yawing moment;whereas in forward flight, the
important characteristics include drag, and pitching and yawing moments variations with
incidence and sideslip [7]. The fuselage rolling moment is usually small, except for config-
urations with deep hulls where the fuselage aerodynamic center may be significantly below
the vehicle CG [7], see also [81, 82] for additional information.

Assumptions
Aerodynamics simplifications

• Fuselage aerodynamic enter is collocated with vehicle CG. Further, only steady air-
loads effects are considered.

• Effect of rotor downwash on fuselage is neglected. It can however be modeled as in
[83], using a polynomial in wake skew angle, where the polynomial coefficients need
to be fit from flight data [84].

Forces and moments
The fuselage aerodynamic velocity, at its aerodynamic center, in frameFb, is given by

Vb
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E

(2.85)

Now the fuselage model is based upon aerodynamic lift and drag coefficients, which are
tabulated as a function of airflow AOAαFus and sideslipβFus angles [14]. These angles are
readily computed from the x-,y-, and z- components ofVb

a,Fus. The fuselage forces in the
body frameFb are

Fb
Fus =





















qFus.Cxb
Fus(αFus, βFus)

qFus.Cyb
Fus(αFus, βFus)

qFus.Czb
Fus(αFus, βFus)





















(2.86)

with qFus = 1/2.ρ.Sre fFus.||Vb
a,Fus||2. The moments are

Mb
Fus =


















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qFus.Mxb
Fus(αFus, βFus).Lre fFus

qFus.Myb
Fus(αFus, βFus).Lre fFus

qFus.Mzb
Fus(αFus, βFus).Lre fFus





















(2.87)

with the six aerodynamic coefficientsCxFus(·), CyFus(·), CzFus(·), MxFus(·), MyFus(·),
andMzFus(·) being tabulated as a function of airflow AOAαFus, and sideslip angleβFus. In
our case, these lookup tables are obtained by scaling-down afull-size, Bo–105 helicopter,
fuselage aerodynamic model.
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2.12.Appendix G: Vertical and horizontal tails
The role of the vertical tail is twofold: 1) in forward flight,it generates a sideforce and
yawing moment, hence reducing the tail rotor thrust requirement, in order to increase the
fatigue life of the tail rotor [7, 43]; and 2) during maneuvers, and during wind gusts, it
provides yaw damping and stiffness, enhancing directional stability [7]. The role of the
horizontal tail is also twofold: 1) in forward flight, it generates a trim load that reduces the
main rotor fore-aft flapping; and 2) during maneuvers, and during wind gusts, it provides
pitch damping and stiffness, enhancing pitch stability [7].

Assumptions
Aerodynamics simplifications

• The effect of main rotor downwash on both vertical and horizontal tails is neglected.
It can however be modeled by using flat vortex wake theory [85] (valid for small
sideslip angles), as presented in [54, 86], or it may be modeled as a polynomial in
wake skew angle [83].

• We neglect the erratic longitudinal trim shifts that may happen when the helicopter
is transitioning from hover to forward flight [7, 43] (as the main rotor wake impinges
on the tail surface).

• The effect of the main rotor downwash on the tail boom is neglected, but in some
cases may need to be considered during low speed flight, sinceit may influence yaw
damping [7].

Forces and moments
The vertical and horizontal tails, for the case of small-scale helicopters, can simply be
viewed as flat plate representations. The force equations are omitted since very similar
to those of the fuselage, and the moments are simply derived from the forces times their
respective moment arms.
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2.13.Appendix H: Problem data
The LTI state-space data used to design the inner-loop trajectory trackers is as follows: the
state-vector is of dimension nine given byx = (u v w p q rφ θ ψ)⊤, the control input is
of dimension four given byu = (θ0 θ1c θ1s θTR)⊤, the wind disturbance (given in inertial
frame) is of dimension three given byd = (VNw VEw VZw)⊤, and the measurement vector
y = x.

For the engine ON case, we have:ẋ = Ax + Bu + Bwindd with
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For the engine OFF case, we have:ẋ = Ax + Bu + Bwindd with
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3
Off-line Trajectory Planning

In preparing for battle I have always found that plans are useless, but planning is
indispensable.

Dwight D. Eisenhower
Quoted in Six Crises, 1962

In this Chapter, we focus on the ’optimal’ nature of the autorotative trajectories, gener-
ated by the guidance module, or Trajectory Planning (TP). Tothis end, we use an off-line
approach to compute open-loop autorotative trajectories,which represent the solution to
the minimization of a cost objective, given system dynamics, controls and states equality
and inequality constraints. We further analyze and comparevarious ’optimally’ defined,
power-off (i.e. autorotative), landing trajectories. The novel partof this Chapter is as fol-
lows. First, we define a new optimal cost functional, for the case of helicopter autorotation,
that maximizes helicopter performance and control smoothness, while minimizing roll-yaw
cross-coupling. Second, we include a trajectory constraint on the tail rotor blade tip, to
avoid ground strike just before touch-down. Third, we applythe recently developed Pseu-
doSpectral (PS) collocation discretization scheme, to solve our optimal control problem
through a direct method. The advantage of the PS method, compared to other direct opti-
mal control approaches, lies in its exponential convergence, provided the functions under
considerations are sufficiently smooth. Finally, we conclude this Chapter by a discussion of
several simulation examples.

Parts of this Chapter have been published in [1–3].
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3.1. Introduction

Control over position and velocity is a primary objective of an autonomous system.
An essential aspect resides in the design of an optimal route/trajectory1 planning, i.e.

a guidance system, that enables it to plan and execute a route/trajectory in a particular
environment. Developed originally to meet the specializedneeds of the robotics commu-
nity, route/trajectory planning has been an important research topic inthe field of artificial
intelligence and robotics for several decades [4–9]. One typically distinguishes between
two route/trajectory planning paradigms, namely motion planning methods that attempt to
generate a feasible route/trajectory without accounting for obstacles explicitly, and path
planning methods, where obstacles are included within the route/trajectory planning [10].
Both can be generated in real-time, on the basis of sensor readings, or generated in advance
(e.g. off-line), on the basis of a-priori knowledge.

One class of route/trajectory planning problems, which has seen considerableresearch
activity over the years, is related to the case where a UAV hasto travel from pointA to point
B, while optimizing a cost objective. This topic is also a maincomponent of our research
project. The goal of this thesis, indeed, consists in developing a model-based automatic
safety recovery system, for a small-scale helicopter Unmanned Aerial Vehicle (UAV), in
un-powered flight, that safely flies and lands the vehicle to apre-specified ground location.
A conceptual design solution, for this research objective,has already been formulated in
Section1.7 of Chapter 1, in the form of a guidance and control logic. Here, the philoso-
phy of the chosen architectural solution decouples the guidance module from the control
module. The guidance module, or Trajectory Planning (TP), shall be capable of generating
open-loop, feasible and optimal autorotative trajectories references, subject to system and
environment constraints, whereas the control module, or Trajectory Tracking (TT), shall
ensure that the helicopter flies along these optimal trajectories. Over the years, researchers
have addressed the TP problem through several techniques, namely: cell decomposition,
potential fields, roadmaps and hybrid systems, inverse dynamics and differential flatness,
Mixed Integer Linear Programming (MILP), Model PredictiveControl (MPC), optimal con-
trol, and finally evolutionary/genetic algorithms [11, 12]. Perhaps the most natural frame-
work for addressing TP problems is the use of optimal2 control [18]. Hence, optimal control
is the method adopted in this Chapter. We further evaluate various optimal autorotative tra-
jectories for the case of a small-scale helicopter. The optimal control inputs (and optimal
states), associated with these optimal trajectories, are further obtained using a direct opti-
mal control method, as follows.

First, the constrained, nonlinear, continuous-time, optimal control problem formulation
is discretized, using a PseudoSpectral (PS) numerical scheme [19–21]. PS discretization
methods exhibit a number of advantages when compared to other discretization methods,

1The termtrajectorydenotes theroute that a robot or vehicle should traverse as a function of time.
2As a historical note, it is perhaps worth noting that one of the first accounts of constrained optimization dates
back to theDido Problem, ca. 850 B.C. [13], where the legendary founder and first queen of Carthage, now in
modern-day Tunisia, solved the isoperimetric problem. Oneof the first publications in the field of optimization
can be traced back to the year 1696, and the brachystochrone problem by Johann Bernoulli [14, 15], whereas the
first numerical methods for solving optimal control problems date back to the 1950s and 1960s [15], with the
work of Bellman in the United States [16], and Pontryagin in the Soviet Union [17].
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even when compared to the popular spline parametrization [22–24]. PS methods are indeed
known to provide exponential convergence, provided the functions under considerations
are sufficiently smooth. PS methods have been extensively used for solving fluid dynamics
problems [19, 25]. However, only recently have these methods been used for solving a
variety of optimal control problems, e.g. in space and launch/reentry applications [26–43],
in aircraft applications [31, 44–47], in helicopter applications [48], in fixed-wing UAV ap-
plications [33, 49–52], and in helicopter UAV applications [53, 54]. This said, the work
presented in this Chapter represents the first application of the PS collocation discretization
scheme towards the helicopter optimal autorotation control problem. Second, and once dis-
cretized, the optimal control problem is transcribed to a NonLinear Programming problem
(NLP) [55], this latter being solved numerically by a well known and efficient optimization
technique, in our case a Sequential Quadratic Programming (SQP) method3 [60–63].

The remainder of this Chapter is organized as follows. In Section 3.2, the nonlinear
optimal control problem is formulated. In Section3.3 a solution strategy is presented. In
Section3.4, the direct optimal control method is reviewed, together with the pseudospectral
discretization approach. In Section3.5, simulation results are analyzed4. Finally, conclu-
sions and future directions are presented in Section3.6.

3.2.Problem statement
In this Chapter, we focus upon the ’optimal’ nature of the autorotative trajectories, gener-
ated by a TP. To this end, we use an off-line approach to compute open-loop autorotative
trajectories, which represent the solution to the minimization of a cost objective, given sys-
tem dynamics, controls and states equality and inequality constraints. We compare various
’optimally’ defined, power-off (i.e. autorotative), landing trajectories, and we presentwhat
we believe to be the ’best’ one.

To start, we need a mathematical model describing the helicopter dynamical behavior.
This model (briefly addressed in the sequel) is, to a large part, derived from first-principles,
and hence set-up in a nonlinear, continuous-time framework. Now, analytical solutions,
through the calculus of variations [64–66], of constrained, nonlinear, continuous-time op-
timal control problems, can only be derived in the realm of relatively simple mathematical
models. Unfortunately, this is not the case of our helicopter flight dynamics application.
Consequently, our constrained optimal control problem is not solved analytically, but rather
through a numerical algorithm. Now it is well known that solving optimal control problems,
numerically, is considered to be difficult, mainly due to the twin curses of dimensionality
and complexity. In addition, this difficulty gets exacerbated in the presence of state equal-

3Although Interior Point (IP) methods could also be used [56–59].
4Note that the modeled UAV, used in the simulations of this Chapter in Section3.5, corresponds to an instrumented
Remote-Controlled (RC) Bergen Industrial Twin helicopter, belonging to the flybarless two-bladed main rotor
class. This helicopter is different from the one used in the simulations of Chapter 2 (i.e. an instrumented RC
Align T-REX helicopter), although both are very similar in terms of size and mass. The reason is here historical:
the research described in this thesis started several yearsago and, over the years, the focus of the application at
NLR had shifted from the larger-size 100 kg Geocopter helicopter UAV, towards the small-scale Bergen Industrial
Twin, and finally towards the small-scale Align T-REX helicopter. The latter will also be used in the simulations
of Chapters 4 and 5.
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ity and inequality constraints. This means that the solution to the optimal control problem
may potentially be expensive to compute, and hence selecting a suitable numerical method
becomes primordial.

We consider now the following nonlinear optimal control problem, consisting in min-
imizing the cost functionalJ(x(t), u(t),To,T f ), with the state-vectorx, and control input-
vectoru, both defined on compact setsx ∈ X ⊆ Rnx, u ∈ U ⊆ Rnu, denoting the feasible
state and control spaces respectively. Here the control input vectoru, of dimension four,
has been defined in Section2.2, see Fig.2.2, as follows

u =
(

θ0 θ1c θ1s θTR

)T
(3.1)

with the Main Rotor (MR) blade collective pitchθ0 primarily controlling vertical helicopter
motion together with MR Revolutions Per Minute (RPM); the MRblade lateral cyclic pitch
θ1c primarily controlling lateral and roll motion; the MR bladelongitudinal cyclic pitchθ1s

primarily controlling longitudinal and pitch motion; and the Tail Rotor (TR) blade collective
pitch θTR primarily controlling directional (yaw) helicopter motion. The full state-vectorx,
of dimension twenty-four, has also been defined in Section2.2, see Fig.2.2 for the heli-
copter High-Order Model (HOM) of Chapter 2. Unfortunately,using the HOM of chapter 2
resulted in optimal control problems having a high computational cost. Hence, to lower this
computational cost, we developed a simplified model, also known as the Low-Order Model
(LOM) see Section1.7.2of Chapter 1, which combines the required modeling accuracy
with the computational tractability. The LOM uses a state-vector of dimension thirteen,
containing only the lower-frequency states, i.e. the twelve rigid-body states together with
the main rotor RPM, giving

x =
(

xN xE xZ u v w p q r φ θ ψ ΩMR

)T
(3.2)

with the nomenclature5 given in Appendix A of Chapter 2. Here, we have removed the
higher-order MR phenomena, i.e. dynamic inflow and blade flap/lag dynamics, from the
state-vectorx. The bandwidth of the neglected dynamics is generally higher than the band-
width of the vehicle flight mechanics and TP systems. Hence, and on the grounds of this
time-scale separation principle [67], the lack of high frequency modeling detail becomes
typically justifiable and acceptable for vehicle guidance applications [68]. The advantage
here is in terms of computational savings, with a minimal loss in accuracy and fidelity. We
discuss next, in more detail, the ’optimal’ nature of the autorotative trajectories generated
by our TP.

3.2.1.Cost functional
Over the last four decades, researchers have addressed the optimal autorotative flight prob-
lem through several optimization techniques. We start by mentioning the successful autoro-
tative flight demonstration in the case of a small-scale helicopter, through the use of rein-
forcement learning method in [69, 70]. Other approaches have also focused upon reinforce-
ment learning in [71, 72], and fuzzy-logic concepts in [73, 74]. Next, for the case of first

5In our nomenclature all vectors are printed in boldface, hence one should not confuse the control input-vectoru,
printed in boldface, with the vehicle body longitudinal velocity u, printed in regular font.
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principles based models, we briefly review the different optimization strategies that have
been investigated. Indirect optimal control methods have been used in [75–80], whereas
direct optimal control methods have been explored in [2, 3, 68, 81–91]. Aside from these
optimal control strategies, three other methods have also been investigated: 1) a nonlin-
ear, neural-networks augmented, model-predictive control method in [92]; 2) a parameter
optimization scheme, repeatedly solved, to find a backwardsreachable set leading to safe
landing in [93, 94]; and 3) a parameter optimization scheme generating segmented routes,
selecting a sequence of straight lines and curves in [95–97].

For the definition of the cost functional, most of the here-above listed contributions
have focused upon the minimization of vehicle kinetic energy6 at the instant of touch-down.
Some have also considered using a running cost over time, which includes criteria involving
either: 1) the minimization of control rates [68, 84, 86, 90]; or 2) the minimization of
main rotor RPM deviations from its nominal value, while limiting the excessive build-up
of vehicle kinetic energy during the descent [80, 98]. None of the previous results have
considered the definition of a cost that includes all of thesecriteria, while also adding the
minimization of vehicle sidewards flight, and maximizationof flight into the wind.

3.2.2.Boundary conditions and trajectory constraints
The minimization of the cost functional has to be done while enforcing the system dynam-
ics, and various additional equality and inequality constraints on the controls and states.
Specifically, a final-time boundary condition, i.e. at touch-down, is being added in order to:
1) set the vehicle on the ground; and 2) provide tight bounds on the vehicle kinetic energy
and attitude angles, in accordance with technical specifications for safe landing. On the
other hand, with regard to trajectory constraints, these are set in order to: 1) account for the
vehicle’s inherent physical and flight envelope limitations (e.g. bounds on speeds, attitude,
and main rotor RPM); 2) account for environmental constraints (e.g. the helicopter cannot
descend below ground); 3) check for actuators dynamic and range limitations; and finally
4) avoid ground strike by the tail rotor blade tip, just before touch-down. In the sequel, we
formalize our TP problem statement.

3.3.The optimal control problem
In the general optimal control problem formulation, the cost functionalJ(·) has contribu-
tions from a fixed costΦ(·), and a running cost over time7

∫

Ω
Ψ(·)dt such that

J(x(t), u(t),To,T f ) ≔ Φ(x(To), x(T f ),T f ) +
∫

Ω

Ψ(x(t), u(t), t)dt (3.3)

The solution to the optimal trajectory planning gives the optimal control inputs and
associated optimal states{û(t), x̂(t)}, which minimize this cost functionalJ(·)

{û(t), x̂(t)} ≔ arg min
u(t)∈U,x(t)∈X

J(x(t), u(t),To,T f ) (3.4)

6The vehicle kinetic energy is defined as follows:1
2mV(u2 + v2 +w2) + 1

2 (Ap2 + Bq2 +Cr2), with A, B, andC the
diagonal elements of the inertia matrixIV.

7With the independent time variablet defined over the time domainΩ = (To,T f ), where the final timeT f may be
free or fixed.
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while enforcing the following constraints:

• The control inputs and states have to satisfy the vehicle dynamics, i.e. a set of first-
order Ordinary Differential Equations (ODEs), of the form

ẋ(t) = f (x(t), u(t)) (3.5)

As stated earlier, the vehicle modelf (·), in Eq. (3.5), does not refer to the helicopter
HOM, defined in Eq. (2.3) of Chapter 2. Rather, for the specific purposes of Chapter
3, and in order to reduce the computational cost, we developed a LOM, which was
briefly reviewed in Section1.7.2of Chapter 1. The modeling process and associated
LOM equations are not reprinted here, but can be found in [1].

• An initial-time boundary condition which corresponds, in our case, to the initial val-
ues of the control inputsu(To) and statesx(To).

• A final-time boundary inequality condition, of the form

Bf (x(T f ), u(T f ),T f ) ≤ 0 (3.6)

• An algebraic trajectory inequality constraint, of the form

T(x(t), u(t)) ≤ 0 t ∈ Ω (3.7)

where, for generality, the boundary and trajectory constraints Eq. (3.6) and Eq. (3.7)
have been expressed as inequality constraints (equality constraints can simply be enforced
by equating upper and lower bounds). Further, in Eq. (3.3), and Eq. (3.5)–Eq. (3.7), the five
functionsΦ(·),Ψ(·), f (·), Bf (·), andT(·) are all assumed to be sufficiently smooth.

We consider now optimal autorotative trajectories, corresponding to initial conditions
for which feasible solutions do exist (this issue will further be addressed in Section3.5.1).
We also choose to set the fixed cost to zero, i.e.Φ(·) = 0. Indeed, since the power-off
landing trajectory is feasible, the costΦ(·) may equivalently be replaced by tight bounds,
adjusted for safe landing, on the final values of vehicle kinetic energy and attitude angles.
This in turn simplifies the optimization process, and lowersthe computational time. Next,
we present what we believe to be the best autorotative trajectory, namely our cost functional
J(·) defined, from engineering judgment, as a running cost over time, as follows

J(x(t), u(t),To,T f ) ≔

∫

Ω
Ψ(x(t), u(t), t)dt

=
∫

Ω

[

Wu̇(θ̇2
0 + θ̇

2
1c + θ̇

2
1s + θ̇

2
TR) +WΩ(ΩMR −ΩMR100%)2

+Wuu2 +Wvv2 +Www2 +Wψ(ψ − ψ f )2
]

dt

(3.8)

The termθ̇2
0 + θ̇

2
1c + θ̇

2
1s + θ̇

2
TR is added to: 1) minimize the battery power consump-

tion8; and 2) encourage smoother control policies, hence avoiding bang-bangtype so-
lutions, that might excite undesirable high frequency dynamics or resonances. The term

8Actuators on small-scale helicopter UAVs are electricallypowered by batteries.
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(ΩMR − ΩMR100%)2 is added to penalize any large deviations in MR speed from itsnominal
(power on) valueΩMR100%. Indeed, a rotor over-speed would increase, beyond acceptable
values, the structural stresses on the MR hub and hinges. On the other hand, a rotor under-
speed would be unsafe for the following two reasons: 1) it increases the region of blade
stall9, increasing rotor drag and decreasing rotor lift, hence resulting in a higher helicopter
sink rate; and 2) it lowers the stored rotor kinetic energy10, which is a crucial element for a
good landing flare11 capability [99, 100]. The termu2 + w2 is added to limit the excessive
build-up of vehicle kinetic energy during the descent. In particular, a high kinetic energy
complicates the flare maneuver, since more energy needs to bedissipated, i.e. the timing of
the control inputs becomes increasingly critical [101]. The termv2 is added to limit vehi-
cle sideslip12 flight. Large sideslip decreases the flight performance, by increasing vehicle
drag, increasing roll/yaw coupling, and hence increasing the workload of any feedback TT
controller. The termψ f refers to the wind heading angle (known through either on-board
measurements, or data-uplink from a ground-based wind sensor), and the term (ψ − ψ f )2

is added to encourage flight and landing into the wind. This results in better flight perfor-
mance, and lowers the vehicle kinetic energy at touchdown. Finally, the additional weights,
i.e. Wu̇, WΩ, Wu, Wv, Ww, andWψ, have been added to allow for the evaluation of various
trade-offs within this cost objective.

Tail rotor ground clearance
Here we specifically address the constraint on the tail rotorblade tip, just before touch-
down, during the flare landing maneuver. For the Tail Rotor Blade Tip (TRBT) ground
clearance, we define the smallest distance between the TRBT and the ground by the distance
xZTRBT in the vehicle carried normal earth frameFo, see Fig.3.1, with the TR radius given
by RrotTR. Note that both the z-axis of frameFo, and body frameFb, are oriented positive
downwards. TheFb position of the TR hub is given by (xTR, yTR, zTR), hence the lowest
position of the blade tip, for a positive vehicle pitchθ, is given inFo by

xZTRBT = xZ +
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(3.9)

andxZTRBT ≤ Zsa fety< 0, with Zsa fetya safety margin, andTob the transformation from body
Fb to the vehicle carried normal earth frameFo given in Eq. (2.8).

3.4.Direct optimal control and discretization methods
We choose to solve our optimal control problem through a so-called direct method. In this
context, the continuous-time optimal control problem of Section 3.2 is first discretized and
the problem is transcribed to a NLP [55, 102], without formulating an alternate set of opti-
mality conditions as done through indirect methods [66]. The resulting NLP can be solved

9Stall corresponds to a sudden reduction in lift.
10The main rotor kinetic energy is defined as follows:1

2 NbIbΩ
2
MR, with Nb the number of blades, andIb the blade

inertia about the rotor shaft.
11The flare refers to the landing maneuver just prior to touch-down. In the flare the nose of the vehicle is raised in

order to slow-down the descent rate, and further the proper attitude is set for touchdown.
12Sideslip flight refers to a vehicle moving somewhat sidewaysas well as forward, relative to the oncoming airflow.
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Figure 3.1: Tail rotor ground clearance.

numerically, by well known and efficient optimization techniques, such as SQP methods
[61] or Interior Point (IP) methods13 [103]. These methods in turn attempt to satisfy a set
of conditions called the Karush-Kuhn-Tucker (KKT) conditions [55].

Regarding the discretization of the continuous-time optimal control problem, the three
most common discretization approaches to solve an indirector direct method are: 1) Single-
Shooting (SS) [104]; 2) Multiple-Shooting (MS) [105]; or 3) State and Control Parameter-
ization (SCP) methods [106, 107]. This latter is sometimes known as transcription in the
aerospace community, or as simultaneous strategy in the chemical and process community.
Here SS and MS approaches are so-called control parameterization techniques where the
control signals alone are discretized, whereas in SCP, as indicated by its name, both state
and control are parameterized.

Briefly summarized, in shooting techniques the dynamics aresatisfied by integrating
the differential equations using a time-marching algorithm. The advantage of direct SS is
that it generates a small number of variables, while its maindisadvantage is that a small
change in the initial condition can produce a very large change in the final conditions [23].
Further, the issue of stability is a major concern. Indeed, time integration over a relatively
large shooting segment may lead to erroneous results for unstable systems, and this is why
SS generally fails to get a converged solution for such systems [108]. The SS has been most
successful in launch vehicle trajectories and orbit transfer problems, primarily because this
class of problems lends itself to parameterization with a relatively small number of vari-
ables [109]. On the other hand, direct MS breaks the problem into shorter steps, greatly
enhancing the robustness of the shooting method, at the costof having a larger number
of variables. It is then primordial to exploit matrix sparsity to efficiently solve the NLP

13Note that the solution to Eq. (3.4) is often a local minimum, and is also highly sensitive to theinitial guess value
given to the solver.
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equations [109]. Despite the increased size of the problem, the direct MS method is an
improvement over the standard direct SS method, because thesensitivity to errors in the
unknown initial conditions is reduced, since the differential equations are integrated over
smaller time intervals. Further, MS have shown to be suited for applications of high com-
plexity, having a large number of states [110]. However, an additional difficulty exists with
the shooting techniques, namely the necessity of defining constrained and unconstrained
sub-arcs for problems with path inequality constraints [109]. This latter issue does not exist
with SCP methods, which is one of the reasons why SCP methods have actively being in-
vestigated. In addition, SCP methods are known to be very effective and robust [110], and
SCP techniques have been applied to solve various nonlinearoptimal control problems.

In the realm of SCP methods, several discretization procedures have been studied,
namely local Runge-Kutta methods in [111], local orthogonal methods in [112], Global Or-
thogonal Approaches (GOA) or spectral methods in [20, 21, 113–116], and recently hybrid
local/global methods in [117]. Of these four procedures, the GOA have received much at-
tention in the last decade, since they have the advantage of providing spectral convergence,
i.e. at an exponential rate, for the approximation of analytic, i.e. sufficiently smooth, func-
tions [118]. Thus, for a given error bound, GOA methods generate a significantly smaller
scale optimization problem when compared to other methods.This is an important aspect
since the efficiency and even convergence of NLPs improves for a problem ofsmaller size
[119]. In a GOA, the state-vector is expressed as a truncated series expansion

x(t) ≈ xM(t) =
M
∑

k=1

ak.Ok(t) t ∈ Ω = (To,T f ) (3.10)

characterized by thetrial functionsOk(t), or BAsis (BA), andak the Expansion Coefficients
(EC) determined fromtestfunctions, which attempt to ensure that the ODEs are optimally
satisfied. The choice of BA is what distinguishes GOA methodsfrom finite-difference or
finite-element methods. In both finite-type methods, the BA is local in character, while for
GOA methods the BA consists of infinitely differentiable global functions, such as orthog-
onal polynomials or trigonometric functions. Further, theEC distinguish the three most
common types of GOA methods, namely Galerkin, Tau, and collocation. In the sequel, we
briefly introduce the GOA collocation method, or PseudoSpectral (PS), used for the dis-
cretization of our continuous-time problem. In the collocation approach, the EC are Dirac
delta functions centered atM support pointsPk, defined by the setC = {Pk|k ∈ {1, ...,M}}.
The EC are determined such that: 1) the initial and final-timeboundary conditions are met;
and 2) the ODEs given by Eq. (3.5) are exactly satisfied onC by

ẋM(tk) − f (x(tk), u(tk), tk) = 0 ∀k ∈ {1, ...,M} (3.11)

In addition, the BA is described onC by Lagrange interpolating polynomialsLk(τ) [120]

xM(τ) =
∑M

k=1 ak.Lk(τ)
Lk(τ) ≔

∏M
j=1, j,k

τ−τ j

τk−τ j
=

h(τ)
(τ−τk) d

dτh(τ)
(3.12)

where the time variablet has been mapped to the pseudospectral intervalτ ∈ [−1, 1], via
the affine transformationτ = 2t

T f−To
− T f+To

T f−To
. We also defineh(τ) = (1 + τ).PM(τ) [21],
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wherePM(τ) is often related to Legendre or Chebyshev polynomials. In our case, we use a
Mth-degree Legendre polynomial given by

PM(τ) ≔
1

2MM!
dM

dτM
[(τ2 − 1)M] (3.13)

Note that Lagrange polynomials are helpful for collocation; it is straightforward to show
that∀k ∈ {1, ...,M}

Lk(τ j) = δk j =

{

1 k = j
0 k , j

(3.14)

HencexM(τk) = ak onC, satisfying Eq. (3.11). In a similar way, the input control vector
is approximated with a basis of Lagrange polynomials, although not necessarily identical
to the previous ones. Besides the choice ofC, another set ofK points Qk, defined by
Q = {Qk|k ∈ {1, ...,K}}, is required for the discretization of the cost functional Eq. (3.3)
and the ODEs in Eq. (3.5). HereQ is chosen such that the quadrature approximation of an
integral is minimized. We have

∫ 1

−1
g(τ)dτ ≈

K
∑

k=1

wk. f (τk) τ ∈ [−1, 1] (3.15)

with wk the quadrature weights. Now, it is well known that the highest accuracy quadrature
approximation, for a givenQ, is the Gauss quadrature. In this case,Q is defined by the
roots of aKth-degree Legendre polynomialPK(τ), where the corresponding Gauss weights
wk are given from [120] as

wk ≔
2

(1− τ2
k)( dPK(τk)

dτ )2
∀k ∈ {1, ...,K} (3.16)

PseudoSpectral methods have been extensively used for solving fluid dynamics prob-
lems [19], but only recently have these methods been used for solvinga variety of optimal
control problems.

3.5.Simulation results
Our MATLAB-based simulation software uses the helicopter LOM presented in Section1.7.2
of Chapter 1, for the case of a small-scale helicopter UAV. The modeled UAV is an instru-
mented Remote-Controlled (RC) Bergen Industrial Twin helicopter, belonging to the fly-
barless two-bladed main rotor class, with a total mass of 8.35 kg, a main rotor radius of
0.93 m, a main rotor nominal angular velocity of 1450 RPM, anda NACA 0015 main rotor
airfoil, see Table3.1.

To solve the nonlinear control problem, the PS numerical method, as described in Sec-
tion 3.4, is used. This numerical discretization framework is available in a MATLAB
environment, through the open-source General Pseudospectral OPtimal control Software
GPOPSR© [114, 121]. In order to use GPOPS, the optimal control problem must first be
reformulated into a GPOPS format, as a set of MATLAB m-files [121]. Second, the he-
licopter model must also be expressed in a vectorized structure, implying that each model
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variable is a time-dependent vector. Third, (cubic) B-Splines interpolating functions ought
to be used, when querying lookup tables, since the spectral convergence of PS methods
only holds when the functions under consideration are smooth [122]. Finally, it is best
practice to non-dimensionalize and scale model variables and quantities, in order to im-
prove conditioning of the numerical problem. Once the control problem is discretized, it
is then transcribed into a static, finite-dimensional NLP optimization problem. An NLP is
generally sparse, and many well-known efficient optimization techniques exist to numeri-
cally solve large-scale and sparse NLPs. In our case, we use the SNOPTR© software [62],
which solves finite-dimensional optimization problems through SQP. Finally, finite differ-
encing has been used to estimate the objective gradient and constraint Jacobian. We present
next simulation results for several case studies, but first we will review the Height-Velocity
(H-V) diagram.

3.5.1.The Height-Velocity (H-V) diagram
For certain combinations of altitude Above Ground Level (AGL) and airspeed, the capa-
bility of a helicopter to perform a safe autorotative landing is limited by the structural and
aerodynamic design of the helicopter [123]. In fact, power failure within the dangerous or
unsafe regions, defined by these combinations of AGL and airspeed, may result in high risk
of severe damage or loss of vehicle. These limiting combinations of AGL and airspeed are
often expressed as the Height-Velocity (H-V) diagram14. Knowledge of these dangerous
regions is important for safety procedures and operationalreasons15.

In Fig.3.2, a typical H-V diagram for a small-scale helicopter (of similar size to the one
considered in this Chapter) is shown. The H-V diagram shows two ’Avoid’ zones (in gray),
namely: 1) a low-speed zone on the left, containing flight conditions where, if an engine
failure were to occur, execution of a safe landing would be unlikely, because of insufficient
initial energy; and 2) a high-speed zone on the right where, if an engine failure were to oc-
cur, safe landing would also be unlikely, because the helicopter would possess insufficient
altitude to perform the flare (necessary to reduce the kinetic energy).

Now H-V diagrams can either be compiled from flight tests [132], or by solving opti-
mal control problems. The latter is the approach adopted in this Chapter, where the H-V
diagram becomes the solution of an optimization problem, similar to the general one pre-

14Also called thedeadman’szone.
15Ideally, one would like to eliminate these unsafe regions altogether, or at least reduce their size. H-V studies can

be traced back to the late 1950s and early 1960s [124–126]. For example, eliminating the H-V restrictions was
demonstrated with theKolibrie helicopter, built by theNederlandse Helikopter Industrie (NHI)in the late 1950s.
It was designed by Dutch helicopter engineers and pioneers Jan M. Drees and Gerard F. Verhage. The helicopter
was ram-jet powered, these latter being positioned at the blade tips, resulting in very high main rotor inertia. The
H-V subject was also investigated in [123], where flight-test data was used to derive semi-empirical functions
of a generalized non dimensional H-V diagram, independent of density altitude and gross weight variations. In
[127] it was pointed out that high rotor inertia, low disk loading, and a high maximum thrust coefficient could
reduce the size of the unsafe zone. In [128, 129], the concept of the so-called High Energy Rotor (HER) was
studied, using blades with high rotational inertia. The goal of the HER was to eliminate the unsafe regions, but
also to allow for less demanding autorotation maneuvers, and finally use the rotor kinetic energy as a source of
transient power for better maneuverability. Additional results can also be found in [130, 131] where recent flight
tests, related to the H-V subject with the Bell 430 and 407 helicopters, have been presented.
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Figure 3.2: Typical Height-Velocity (H-V) diagram for a small-scale helicopter UAV. Figure from [132, 133] (the
numbers on the axes are indicative only).

sented in Section3.2. To find the H-V curve, two approaches may be pursued, either:1) a
minimization/maximization of altitude problem subject to safe landing; or 2) simply testing
a feasibility problem in terms of safe landing. The minimization/maximization (former) ap-
proach often led the solver to run into numerical difficulties. These difficulties were caused
by: 1) the inclusion of highly nonlinear lookup tables which, despite B-Splines interpola-
tion, have shown to have a detrimental effect on problem smoothness; and 2) the possible
existence of a large number of solutions that all yield approximately the same value of the
cost objective. In other words, the objective index is rather insensitive to the solution tra-
jectory in the neighborhood of the optimal solution. On the other hand, for the feasibility
approach, the cost objectiveJ(·) in Eq. (3.3) is set to zero, and one only requires to check
whether a safe landing is possible, for a range of initial conditions. This method was suc-
cessfully applied, based upon specific flight envelope boundaries given in Table3.2, with
results shown in Fig.3.3, for a relatively coarse grid having steps of 1 m in AGL and 1 m/s
in airspeed. We found that our helicopter UAV exhibited onlythe so-called low-speed un-
safe zone. We further subdivided this unsafe zone into two sub-zones: 1) one zone, shown
in red, which always resulted in unsafe landings, independently of the initial guess condi-
tions given to the solver; and 2) one zone, shown in magenta, which resulted in either safe
or unsafe landings, depending on the initial guess conditions values given to the solver.

3.5.2.Evaluation of cost functionals
In this section we evaluate and compare our cost functional,defined in Eq. (3.8) and ref-
erenced asJ1 in Table3.3, to three other cost functionals referenced asJ2–J4 in Table3.3,
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Figure 3.3: Height-Velocity (H-V) diagram for the Bergen Industrial Twin.

which can be found in the literature. In Table3.3, J2 is a final-time only cost, which pur-
pose is to minimize the vehicle kinetic energy (as well as having a horizontal attitude) at
the instant of touch-down.J3 is a running cost over time, minimizing actuators activity.
J4 is also a running cost over time, which objective is to keep the main rotor RPM in the
neighborhood of its nominal value, while minimizing the vehicle kinetic energies in the
longitudinal and vertical channels16.

For the comparison of these cost functionals, we consider aninitial condition, outside
of the H-V diagram, defined as follows: steady-state hover, at 40 m altitude, in a zero-wind
environment. Here for the analysis of each cost functional{J j}4j=1, we consider the following

power metrics{Pi j }i=3, j=4
i=1, j=1, of the vector-valued discrete-time signal{zi(n)}3i=1, defined as

z1(n) =
[

θ̇(n)0 θ̇(n)TR θ̇(n)1c θ̇(n)1s

]⊤

z2(n) = [u(n) v(n) w(n)]⊤

z3(n) =
[

v(n) φ(n)
]⊤

Pi j =
1
N j
‖zi(n)‖2l2 =

1
N j

∑n=N j

n=1 ‖zi(n)‖22

(3.17)

with N j the number of data points of the optimization problems, corresponding to the cost
functional {J j}4j=1, and ‖ · ‖l2 the norm on the square-summable sequence spacel2. In
Eq. (3.17), the power metricP1 j , based upon signalz1, shows the control rates, i.e. the
level of input control activity. This information is relevant, since a higher level of actuator
dynamics means a higher power consumption from the batteries, and a higher likelihood
of exciting undesirable high frequency dynamics or resonances. Next, the power metric
P2 j, based upon signalz2, reflects the amount of stored kinetic energy, during the flight, on
the combined three linear channels17. Finally, the power metricP3 j , based upon signalz3,

16The channels with most energies.
17In general the kinetic energy, stored in the rotational channels, is much smaller than the one stored in the linear

channels.
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mirrors the amount of vehicle lateral motion. For each cost functional test case{J j}4j=1, the
signal power metricsPi j are reported in Table3.4. They are obtained by solving nonlinear
optimal control problems, based upon 29 nodes18 discretization, and yielding a NLP having
607 variables and 506 constraints. Now, an analysis of Table3.4shows that:

• Our cost functional, defined in Eq. (3.8), considerably reduces lateral control activ-
ity, e.g. compareP31 to P32, P33 andP34. The benefits of reduced lateral motion are
increased flight performance, and decreased roll-yaw coupling. This aspect is par-
ticularly relevant when repositioning the current discussion within the, two-degree
of freedom, guidance and control logic, formulated in Section 1.7of Chapter 1. In-
deed, the chosen flight control architectural solution decouples the guidance module
from the control module. The guidance module shall generateopen-loop feasible
and optimal autorotative trajectory references, whereas the control module shall en-
sure that the helicopter flies along these optimal trajectories. Hence, a decrease in the
amount of cross-coupling of the planned trajectories, results also in a decrease of the
workload of the feedback controller.

• J1 andJ3 display the lowest level of input control activity, confirmed by the power
valuesP11 = 0.06 andP13 = 0.008, since both costs include the input rates. Note
that excluding the control rates from the cost functional may lead to the excitation of
unmodeled or undesirable high frequency modes, potentially resulting in closed-loop
instability. This is particularly relevant when the subsequent synthesis of a feedback
controller is based upon low-order model representations.

• If a running cost over time is to be used, versus a final-time only cost (such asJ2),
then: 1) minimization of control rates ought to be included,since we haveP14 = 1.87
much higher thanP12 = 0.27; and 2) lateral motion should also be included, compare
the high values ofP33 andP34, to the lower value ofP32.

• Better performance can be achieved from the use of a final-time only cost, such as
J2, than from a poorly defined running cost over time, such asJ4.

• Finally, the last column in Table3.4 gives the total signal power
∑3

i=1 Pi j , for each
cost functional{J j}4j=1, where we can see that our cost functional provides the best
autorotative trajectory. This said, this experiment, consisting in comparing various
cost functionals, was only conducted for a single initial condition, namely steady-
state hover, at 40 m altitude, in a zero-wind environment. Although this condition
is representative enough of a typical initial condition fora small-scale helicopter, it
would indeed be interesting to obtain additional signal power values, corresponding
to a wide spectrum of initial conditions.

18Based upon simulation results, the choice of 29 points provided a good compromise between accuracy and
computational tractability. We do acknowledge that this isa rather empirical justification. In fact a more rigorous
analysis of the following trade-off: accuracyvs. computational tractabilityis here desirable.
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3.5.3.Optimal autorotations: effect of initial conditions
In this section, we use our cost functionalJ1, defined in Eq. (3.8), to briefly evaluate the
effect of variations in initial conditions, i.e. initial altitude and initial speed only. Further,
we consider only a limited number of initial trimmed flight conditions, in a zero-wind en-
vironment. In these simulations, the final landing spot in terms of North and East position
is left completely free, hence not prescribed or constrained to a specific location. Finally,
the problem discretization is based upon 33 nodes19, yielding a NLP problem having 691
variables and 578 constraints.

Effect of initial altitude
We analyze here the effect of three different initial altitudes Above Ground Level (AGL),
see Table3.5, all starting from hover, in a Southbound path (i.e. with theheading oriented
towards the South pole). From Fig.3.4we see the MR collectiveθ0 going full-down, as soon
as the maneuver initiates (in all figures the magenta horizontal lines display hard bounds
on variables). As expected20, this is necessary in order to minimize the decay in MR RPM
ΩMR. Indeed, from Fig.3.6, we see that at a time of approximately 1.5 seconds into the
flight, the MR RPMΩMR does not drop more than 10% of its nominal value. We also
clearly see the MR collectiveθ0 sharply increasing as the helicopter nears to the ground,
to prevent rotor over-speed, while reducing the sink rate. In addition, the MR longitudinal
cyclic θ1s, given in the lower plot of Fig.3.5, is used to: 1) manage vehicle and MR kinetic
energies; 2) reduce forward airspeed; and 3) level the attitude for a proper landing. For
instance, this can be checked on the pitch angleθ plot, in Fig.3.7, where for a low altitude
AGL initial condition, we see the vehicle pitch-up and pitch-down during the flare (i.e. the
maneuver just prior to touch-down). Fig.3.8presents the trajectory body velocities, where
we note that, for hover initial conditions, the higher the initial altitude AGL, the more the
optimal trajectories resemble a pure vertical motion (i.e.with minimal horizontal motion),
confirming thus the earlier results in [76].

Effect of initial airspeed
We analyze here the effect of three different initial airspeeds, see Table3.6, all starting at
40 m AGL, again in a Southbound path. Here, we only discuss thesalient features of these
three cases. For the control inputs, in Fig.3.10and Fig.3.11, the behavior is comparable to
the one observed in the preceding paragraph. We also do note the limited displacement of
the MR lateral cyclicθ1c, and TR collectiveθTR, consistent with the anticipated behavior
of reduced lateral motion. Next, from Fig.3.13–Fig.3.15, we notice that, despite clear dif-
ferences in initial kinetic energy, the flight time (and rateof descent) show little variations.
This could potentially indicate that the flight time, in autorotation, is only lightly correlated
with the initial vehicle velocity.

On the other hand, the traveled distance does slightly increase as a function of initial
kinetic energy, see upper plot in Fig.3.15. Also an increase in initial kinetic energy does
seem to impact the flare maneuver, e.g. for caseC6 the MR longitudinal cyclicθ1s, in

19Based upon simulation results, the choice of 33 points provided a good compromise between accuracy and
computational tractability. We do acknowledge that this isa rather empirical justification. In fact a more rigorous
analysis of the following trade-off: accuracyvs. computational tractabilityis here desirable.

20This is also what helicopter pilots do at the beginning of an autorotation maneuver.
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Fig.3.11, and the helicopter pitchθ, in Fig.3.13, exhibit almost a ’double’ flare approach
in the last two seconds of the flight. In addition, we see that if differences are to be noted,
between on the one hand the hover and low-speed cases—C4 andC5—and on the other
the high-speed caseC6, then they would tend to primarily appear on the longitudinal θ and
RPMΩMR channels, during the initial flight phase21, see Fig.3.11–Fig.3.13.

3.6.Conclusion
In this Chapter, we have addressed the autorotative Trajectory Planning (TP) problem,
for the case of a small-scale helicopter UAV, and we have formulated the technologi-
cal/engineering TP problem into a mathematical, model-based, nonlinear optimal control
problem. The latter was numerically solved, through a direct optimal control framework.
The main benefits of this Chapter are threefold. First, we found that for fixed initial altitude,
increasing the initial velocity had only a relatively limited effect on the optimal trajectory
flight time. On the other hand, the flight time showed a strong correlation with the initial
altitude. This aspect, together with the knowledge of an optimally defined autorotative tra-
jectory, will prove useful in the following Chapter. Second, for a range of initial conditions,
optimal autorotative trajectories could potentially be computed, off-line, by this TP, and
stored as lookup tables, on-board a flight control computer.These trajectories would then
provide, both, the optimal states to be tracked by a feedbackcontroller, and optionally the
feedforward nominal control inputs. Third, the optimization framework, developed here,
could allow to study the effects of some particular factors, affecting the optimal trajectories.
These factors include wind, but also some helicopter specific aspects, such as helicopter
mass, number of main rotor blades, main rotor blade mass, andmain rotor inertia.

21Approximately the first second into the flight.
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Table 3.1: Bergen Industrial Twin physical parameters.

Name Parameter Value Unit

Environment

Air density ρ 1.2367 kg/m3

Static temperature T 273.15+ 15 K
Specific heat ratio (air) γ 1.4

Gas constant (air) R 287.05 J/kg.K
Gravity constant g 9.812 m/s2

Total mass m 8.35 kg
Inertia moment wrtxb A 0.338 kg.m2

Inertia moment wrtyb B 1.052 kg.m2

Vehicle Inertia moment wrtzb C 1.268 kg.m2

Inertia product wrtxb D 0.001 kg.m2

Inertia product wrtyb E 0.002 kg.m2

Inertia product wrtzb F 0 kg.m2

Direction of rotation Γ -1
ClockWise (CW) CW

Main Counter-ClockWise (CCW)
Rotor Number of blades Nb 2
(MR) Nominal angular velocity ΩMR100% 151.84 rad/s

Rotor radius from hub Rrot 0.933 m
Blade mass Mbl 0.218 kg

Spring restraint coef. due to flap KSβ
271.16 N.m/rad

Distance between hub and flap hinge ∆e 0.094 m
Tail Number of blades NbTR 2

Rotor Nominal angular velocity ΩTR100% 709.11 rad/s
(TR) Rotor radius from rotor hub RrotTR 0.17 m

MR collective θ0 [-2.8,13.7].π/180 rad
MR lateral cyclic θ1c [-6.8,6].π/180 rad

Actuators MR longitudinal cyclic θ1s [-7.8,5].π/180 rad
TR collective θTR [-27,32.8].π/180 rad

MR collective rate θ̇0 [-52,52].π/180 rad/s
MR lateral cyclic rate θ̇1c [-52,52].π/180 rad/s

MR longitudinal cyclic rate θ̇1s [-52,52].π/180 rad/s
TR collective rate θ̇TR [-120,120].π/180 rad/s
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Table 3.2: Flight envelope boundaries for the Bergen Industrial Twin.

Definition Parameter Range Unit

Roll angle φ [-48,48].π/180 rad
Pitch angle θ [-48,48].π/180 rad
Yaw angle ψ [0,360].π/180 rad

Body longitudinal velocity u [-5,20] m/s
Flight Body lateral velocity v [-5,5] m/s

Envelope Body vertical velocity w [-5,20] m/s
Body roll angular velocity p [-200,200].π/180 rad/s

Body pitch angular velocity q [-200,200].π/180 rad/s
Body yaw angular velocity r [-400,400].π/180 rad/s

Main rotor RPM ΩMR [70%,110%]ΩMR100% rad/s

Table 3.3: Comparison of cost functionals.

Test Cost
Case Functional

J1 Our definition
as given in Eq. (3.8)

J2 J := Φ(x(T f ),T f )
similar to [76–78, 91] = u(T f )2 + v(T f )2 + w(T f )2

+p(T f )2 + q(T f )2 + r(T f )2

+φ(T f )2 + θ(T f )2

J3 J :=
∫

Ω
Ψ(u(t))dt

similar to [68, 89] =
∫

Ω
(θ̇2

0 + θ̇
2
TR+ θ̇

2
1c + θ̇

2
1s)dt

J4 J :=
∫

Ω
Ψ(x(t))dt

similar to [88] =
∫

Ω

[

(ΩMR −ΩMR100%)2

+(u2 + w2)
]

dt
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Table 3.4: Comparison of signal power for various cost functionals.

Test Control rates 3D linear motion Lateral motion Total power
Case P1 j P2 j P3 j

∑3
i=1 Pi j

J1 0.06 50 0.06 50.12
J2 0.27 62.3 1.7 64.27
J3 0.008 46.2 14.9 61.108
J4 1.87 46.2 16.5 63.57

Table 3.5: Initial trimmed flight conditions: autorotations with variation of initial altitude Above Ground Level
(AGL).

Test Airspeed Altitude (AGL) Line Color
Case (m/s) (m) in Figures

C1 hover 25 Red (solid line)
C2 hover 40 Blue (dotted line)
C3 hover 110 Black (dashed line)

Table 3.6: Initial trimmed flight conditions: autorotations with variation of initial airspeed.

Test Airspeed Altitude (AGL) Line Color
Case (m/s) (m) in Figures

C4 hover 40 Red (solid line)
C5 5 40 Blue (dotted line)
C6 15 40 Black (dashed line)
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Figure 3.4: MR collective control inputθ0 and TR collective control inputθTR (variation of initial altitude accord-
ing to Table3.5).
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Figure 3.5: MR lateral cyclic control inputθ1c and MR longitudinal cyclic control inputθ1s (variation of initial
altitude according to Table3.5).
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Figure 3.6: MR RPMΩMR (variation of initial altitude according to Table3.5).
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Figure 3.7: Euler angles: roll angleφ, pitch angleθ, yaw angleψ (variation of initial altitude according to Ta-
ble3.5).



3

128 3. Off-line Trajectory Planning

0 2 4 6 8 10 12 14 16
−10

0

10

20

Time (s) 

u 
(m

/s
)

0 2 4 6 8 10 12 14 16
−5

0

5

Time (s) 

v 
(m

/s
)

0 2 4 6 8 10 12 14 16
−10

0

10

20

Time (s) 

w
: >

0 
do

w
n 

(m
/s

)

Figure 3.8: Body linear velocities: longitudinal velocityu, lateral velocityv, vertical velocityw (variation of initial
altitude according to Table3.5).
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Figure 3.9: Inertial position: North positionxN, East positionxE, Vertical positionxZ (variation of initial altitude
according to Table3.5).
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Figure 3.10: MR collective control inputθ0 and TR collective control inputθTR (variation of initial airspeed
according to Table3.6).
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Figure 3.11: MR lateral cyclic control inputθ1c and MR longitudinal cyclic control inputθ1s (variation of initial
airspeed according to Table3.6).
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Figure 3.12: MR RPMΩMR (variation of initial airspeed according to Table3.6).
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Figure 3.13: Euler angles: roll angleφ, pitch angleθ, yaw angleψ (variation of initial airspeed according to
Table3.6).
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Figure 3.14: Body linear velocities: longitudinal velocity u, lateral velocityv, vertical velocityw (variation of
initial airspeed according to Table3.6).
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4
On-line Trajectory Planning and

Tracking: System Design

Linear systems are important because we can solve them and because the fundamental
laws of physics are often linear, e.g., Maxwell’s equationsfor electricity, the laws of

quantum mechanics, and the approximations when displacements are small.

Richard P. Feynman
The Feynman Lectures on Physics, Addison-Wesley, 1963

The design of high-performance guidance and control systems for small-scale helicopter
Unmanned Aerial Vehicles (UAVs) is known to be a challengingtask. In Chapter 3, we
presented a Trajectory Planning (TP) approach, for the engine OFF condition (i.e. au-
torotation), for off-line use. The purpose of Chapter 4 is to present a combined TPand
Trajectory Tracking (TT) system, for the engine OFF condition, having on-line computa-
tional tractability. The presented system is anchored within the aggregated paradigms of
differential flatness based optimal planning, and robust control based trajectory tracking.
A similar flight control system, for the engine ON condition,is also provided in the Appen-
dices.

Parts of this Chapter have been published in [1–3].
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142 4.On-line Trajectory Planning and Tracking: System Design

4.1. Introduction

Chapter 3 used an off-line approach to compute open-loop, optimal, autorotative tra-
jectories. In Chapter 4, we compute these autorotative trajectories through an on-line

approach. In addition, the purpose of Chapter 4 is to presentand describe the design of
a guidance and control logic, that enables a small-scale unmanned helicopter to execute a
completely automatic landing maneuver, for an engine OFF (i.e. autorotation [4, 5]) flight
condition1. The guidance module, or Trajectory Planning (TP), shall becapable of gen-
erating optimal trajectories, on-line, while effectively exploiting the rigid-body nonlinear
dynamics. On the other hand, the control module, or Trajectory Tracking (TT), shall have
the duty to ensure that the helicopter flies along these optimal trajectories. In Chapter 5,
this complete Flight Control System (FCS) will be evaluatedon the high-fidelity helicopter
simulation model, developed in Chapter 2, for the engine OFFand ON conditions.

A full review of previous contributions, for the engine OFF TP and TT (respectively
engine ON TP and TT), has already been presented in Sections1.5.2and 1.5.3of Chapter
1, and in Section3.2.1, of Chapter 3. Most notable is that very few papers, i.e. [6–9], have
addressed the aggregated planning and tracking functionalities, for the engine OFF case,
with validation through either experiments or 3D high-fidelity nonlinear simulations. The
authors in [8, 9] apply their FCS to the case of a full-size helicopter, whereas the application
in [7] involves a so-called short-range/tactical size helicopter UAV (approximately 200 kg).
Only the results in [6] are for a small-scale helicopter UAV. As outlined in Chapter 1, when
compared to larger and heavier helicopter vehicles, the control of small-scale helicopters
(i.e. under 10–20 kg) represents a much more challenging problem.

In this Chapter we choose to base our TP on the concept of differential flatness. This
approach allows to exploit the rigid-body nonlinear dynamics, while retaining a high com-
putational efficiency, e.g. for on-line use in a hard real-time environmentwhere stringent
timing constraints may need to be met (especially for high-bandwidth systems). Compared
to the off-line TP of Chapter 3, the advantage of the TP module presented in this Chapter,
is its on-line computational tractability. The seminal ideas of differential flatness were in-
troduced in the early 1990s in [10–12] as part of a paradigm in which certain differential
algebraic representations of dynamical systems are equivalent. In other words, a com-
plete parametrization of all system variables—inputs, states, and outputs—may be given in
terms of a finite set of independent variables, called flat outputs, and a finite number of their
derivatives [13, 14]. This results in optimization problems with fewer variables [15], i.e. by
the complete elimination of the dynamical constraints. In this case the trajectory generation
problem is transformed from a dynamic to an algebraic one, inwhich the flat outputs are
parametrized over a space of basis functions, and where the generation of feasible trajecto-
ries is reduced to a classical algebraic interpolation or collocation problem [16, 17].

Since the helicopter dynamics is nonlinear, the design of the TT controller shall necessi-
tate an approach that effectively respects or tries to exploit the system’s nonlinear structure.
To this end, several control methods are available: from 1) robust control; 2) classical gain-

1In the Appendices of this Chapter we present a guidance and control logic that allows to execute a variety of
engine ON automatic maneuvers, e.g. take-off, landing, and cruise.



4.1.Introduction

4

143

scheduling, and Linear Parameter-Varying (LPV) approaches; to 3) truly nonlinear control
methods (e.g. nonlinear MPC, Lyapunov based methods such assliding mode and back-
stepping, adaptive control, or even passivity-based approaches). In this thesis we select an
approach that combines both simplicity and computational tractability, namely a robust con-
trol µ strategy. The selected strategy consists in using a single,nominal, low-order, Linear
Time-Invariant (LTI) plant, coupled with an input multiplicative uncertainty, and applying
a small gain approach [18, 19] to design a single robust LTI controller. The uncertainty is
added here to compensate for the unmodeled plant nonlinearities and unmodeled higher-
order rotor dynamics2.

Finally, the nomenclature is fairly standard. For appropriately dimensioned matricesK

andM, where the latter is partitioned asM =

[

M11 M12

M21 M22

]

, the lower Linear Fractional

Transformation (LFT) is defined asFl(M,K) = M11+M12K(I −M22K)−1M21, and the upper
LFT is defined asFu(M,K) = M22+ M21K(I − M11K)−1M12 under the assumption that the
inverses exist. ForM ∈ Cq×p, the structured singular valueµ∆(M) of M, with respect to an
uncertainty set∆ ⊂ Cp×q, is defined asµ−1

∆
(M) ≔ min∆∈∆{σ̄(∆) | det(I − M∆) = 0}.

4.1.1.Main contributions
The novelty of this Chapter can be stated as follows.

• First, we design the first, real-time feasible, model-basedTP and TT system, for
the case of a small-scale helicopter UAV with an engine OFF condition. Indeed,
the results in [6–9] are based upon a model-free TP. Our flatness planning approach
effectively exploits the rigid-body nonlinear dynamics, thuscomputing trajectory so-
lutions which are feasible and optimal.

• Second, with regard to the TT, the method in [9] is based upon a model-free fuzzy
logic approach. The method in [6] uses a model-based Differential Dynamic Pro-
gramming (DDP)3 approach. The method in [8] uses a model-based combined Non-
linear Dynamic Inversion (NDI) with Proportional IntegralDerivative (PID) loops,
whereas the method in [7] uses a model-basedH∞ approach. For the three model-
based approaches, the TT controllers are synthesized on a single nominal model, that
does not include uncertainties, whereas our TT controller is synthesized on the basis
of a nominal model, coupled with additional uncertainties,in order to enhance the
robustness properties of the closed-loop system.

The remainder of this Chapter is organized as follows. In Section 4.2, the two-degree
of freedom control architecture, as implemented in this Chapter, is first reviewed. In Sec-
tion 4.3, the flatness-based trajectory planning is described. In Section4.4, the main aspects
of the robust control approach are reviewed and discussed. In Section4.5and Section4.6,
the synthesis of the inner- and outer-loop controllers, forthe engine OFF case, are presented.

2Unmodeled in the low-order nominal LTI plant used for control design, these are however modeled in the high-
order nonlinear plant of Chapter 2.

3DDP is an extension of the Linear Quadratic Regulator (LQR) formalism for non-linear systems [20].
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Conclusions and future directions are presented in Section4.7. Finally, the first three Ap-
pendices present the trajectory planning and tracking system for the engine ON case (using
an architecture which is identical to the one developed for the engine OFF case).

4.2.General control architecture
We present here the conceptual FCS design solution, chosen to solve the helicopter UAV
guidance and control problem. We make use of the classical two-degree of freedom con-
troller design paradigm, in which the philosophy decouplesthe guidance module from the
control module, see Chapter 1. The guidance module, or TP, shall be capable of generating
open-loop, feasible and optimal (autorotative) trajectory referencesxTP, for the small-scale
helicopter, subject to system and environmental constraints, see Fig.4.1. This TP com-
putes open-loop optimal trajectories, given a cost objective, system dynamics, and controls
and states equality and inequality constraints. These optimal trajectories may be computed
off-line4, through the use of nonlinear optimal control methods such as in Chapter 3, or
alternatively, such as in this Chapter, may be computed on-line using the concept of dif-
ferential flatness. Compared to the architecture outlined in Fig. 1.15of Chapter 1, the TP
of Chapter 4 does not generate any feedforward nominal control inputs, nor is there any
additional feedback path into the TP.

On the other hand the control module, or Trajectory Tracking(TT), compares current
measured valuesy, i.e. a subset of the vehicle statesx, with the reference valuesxTP pro-
duced by the TP, and formulates the feedback controlsu aimed at decreasing this tracking
error5. This latter may be due to a combination of model uncertainty(unmodeled higher-
order dynamics, unmodeled static nonlinearities, parametric uncertainties, delays), and sig-
nal uncertainty (wind disturbances and noise). In Fig.4.1, the ’Helicopter Dynamics Non-
Linear Simulation’ block refers to the high-fidelity, nonlinear, High-Order Model (HOM),
simulation of Chapter 2, serving as a proxy for the real helicopter system.

Figure 4.1: Two-Degree of freedom control architecture.

4.3.Flatness-based Trajectory Planning (TP)
The seminal ideas of differential flatness were introduced in the early 1990s in [10–12] as
part of a paradigm in which certain differential algebraic representations of dynamical sys-

4The trajectories are stored as lookup tables, on-board a flight control computer.
5The nomenclature, given in Appendix A of Chapter 2, states that all vectors are printed in boldface, hence the
control input vectoru should not be confused with the body longitudinal velocityu.
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tems are equivalent. Flatness can be seen as a a subclass of the set of controllable nonlinear
systems [21], or as a system’s geometric property [16] independent of coordinate choice,
or as a Lie-Bäcklund equivalence property [14, 22], in which a complete parametrization
of all system variables—inputs, states, and outputs—may begiven in terms of a finite set
of independent variables, called flat outputs, and a finite number of their derivatives [13, 14].

Flatness comes with two important benefits. First, it offers a particularly well adapted
framework for solving inverse dynamics problems [16, 23]. Indeed, flatness implies the
absence of so-called zero dynamics, allowing for a one-to-one correspondence between
trajectories of the input-state system and trajectories ofthe flat output (in which case the
nonlinear system can be feedback linearized using endogenous dynamic feedback [22]).
This allows the trajectory generation and tracking for non-minimum phase systems by ex-
act linearization [24, 25]. Second, and perhaps more importantly, flat parameterizations
result in optimization problems with fewer variables [15], i.e. by the complete elimination
of the dynamical constraints. In this case, a trajectory generation problem is transformed
from a dynamic to an algebraic one, in which the flat outputs are parametrized over a space
of basis functions, for which the generation of feasible trajectories is reduced to a classical
algebraic interpolation or collocation problem [16, 17]. This allows, in principle, for signif-
icant computational benefits6. Seminal application of flatness towards trajectory planning
can be found in [12, 28] for the case where the motion is not subject to inequality con-
straints, and in [29–31] for the case where inequality constraints have been added.

It is in general difficult to determine whether a given nonlinear system is flat, although
several methods for constructing flat outputs have been documented in the literature [13,
32–34]. As an example, it is known that a system’s Huygens center ofoscillations may
qualify as a flat output [11, 24, 25]. Additional rules, to find such flat outputs, include
the following: 1) all linear systems are flat; 2) all nonlinear systems which are static and
dynamic feedback linearizable are flat; 3) fully actuated systems are flat; and 4) finally
under-actuated systems may or may not be flat. With regard to applications, it was shown
that simplified dynamics of aircraft and Vertical Take-Off and Landing (VTOL) aircraft are
flat [23, 35–39], simplified helicopter dynamics is flat [13, 40, 41], simplified quadrotor
dynamics is flat [42–46], simplified planetary lander dynamics is flat [47], and simplified
reentry vehicle dynamics is also flat [48], whereas more realistic vehicle models are in gen-
eral non-differentially flat, e.g. [13, 21] for the helicopter case.

Since high-fidelity helicopter models are known to be non-differentially flat, a standard
approach in the literature, to circumvent this difficulty, has consisted in progressively sim-
plifying these models until they become flat. The drawback isthat the domain of validity,
of these simplified representations of the high-order helicopter dynamics, becomes ques-
tionable. Hence, rather than generating optimal trajectories based upon such questionable
models, we choose here an alternative approach, consistingin using only the rigid-body

6Note that, in the presence of constraints, flatness parameterization implies a path constraint on the flat outputs,
resulting from complex transformations of the control and/or state regions. These transformations may lead to a
loss of convexity, which may be detrimental to real-time optimal control computations [15, 26, 27]. However, it
is our experience that for complex, high-order, highly nonlinear plants, the benefits from the elimination of the
dynamical constraints outweigh the disadvantages due to path constraints on the flat outputs.
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dynamics7 as the model for the TP, with total aerodynamic forces and total moments as
the plant inputs (rather than the vehicle control inputs). Obviously, this corresponds also
to a simplification of the helicopter HOM of Chapter 2, since we are replacing the HOM
with the low-order rigid-body dynamics. However, if the bandwidth of the control inputs is
kept low, then replacing the helicopter HOM with only the rigid-body dynamics becomes
acceptable for planning purposes. The main drawback of using the rigid-body dynamics, as
a substitute for the helicopter HOM, comes from losing the relationship between the total
aerodynamic forces/moments and the vehicle control inputs. In our case, this should not
represent a major drawback since, as stated in Section4.2, the TP module does not feedfor-
ward the control inputs. On the other hand, the advantage of using the rigid-body dynamics
(as the TP model) is that it can be shown to be exactly flat.

We recall next the ideas of differential flatness in conceptual form [10–12]. We suppose
here that a plant’s nonlinear model, derived from first-principles, is available and given by

∀t ≥ 0 ẋ(t) = f̃
(

x(t), u(t)
)

(4.1)

with f̃ (·) a continuous-time, partially differentiable (sufficiently) smooth function, with
x(t) ∈ Px ⊂ Rnx the plant state,u(t) ∈ Pu ⊂ Rnu the control input,t the time variable,
and (Px,Pu) some compact sets. We give next the following definition from [14].

Definition 1 The system given by Eq. (4.1) is differentially flat if there exists a flat output
z(t) ∈ Pz ⊂ Rnz, nz = nu, two integers r and s, a mappingψ(·) : Rnx × (Rnu)s+1 → Rnu of
rank nu, a mappingφ0(·) : (Rnu)r+1→ Rnx of rank nx, and a mappingφ1(·) : (Rnu)r+2→ Rnu

of rank nu, with all mappings in a suitably chosen open subset, such that

z(t) ≔ ψ(x(t), u(t), u̇(t), · · · , u(s)(t))
x(t) ≔ φ0(z(t), ż(t), · · · , z(r)(t))
u(t) ≔ φ1(z(t), ż(t), · · · , z(r+1)(t))

(4.2)

Remark 1 If such mappings can be found then the differential equationd
dtφ0(·) = f (φ0(·), φ1(·))

is identically satisfied [14].

Remark 2 In some cases,z is in fact a subset of the state-vectorx. The functionψ(·) is
then obvious.

Now, simplified aircraft dynamics was shown to be flat in [35], whereas simplified
helicopter dynamics was also shown to be flat in [41]. In the sequel, we show that the
rigid-body dynamics, expressed in the body-axis frame (seeAppendix C of Chapter 2), is
flat when choosing the following six specific states as flat outputs.

4.3.1.Flat outputs
Recall that the twelve rigid-body states have been defined inChapter 3 as8

x =
(

xN xE xZ u v w p q r φ θ ψ
)T

(4.3)

Now we give the following result.
7The rigid-body dynamics has been presented in Appendix C of Chapter 2.
8Refer also to the nomenclature given in Appendix A of Chapter2.
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Lemma 1 Let real scalars nx and nu, of Definition 1, be chosen such that nx = 12 and
nu = 6, then by selecting the following six body states as flat outputs

z =
(

xN xE xZ φ θ ψ
)⊤

(4.4)

we can express the remaining six body states

(

u v w p q r
)⊤

(4.5)

together with the forces inputsFb
CG = (Fb

CGX
Fb

CGY
Fb

CGZ
)⊤, and moments inputsMb

CG =

(Mb
CGX

Mb
CGY

Mb
CGZ

)⊤, as given in Eq. (2.4)–Eq. (2.8), in terms of the flat outputsz and their
derivatives.

Proof 1 See Appendix E.

4.3.2.Flat output parametrization
To transform the trajectory planning problem from an infinite-dimensional one to a finite

one, a parametrization of the flat outputsz =
(

xN xE xZ φ θ ψ
)⊤

over a space
of basis functions is required. Here numerous alternativesare available, e.g. generic poly-
nomial parameterizations have been addressed in [13, 14, 49, 50], spline parameterizations
have been applied in [30, 43, 51–55], whereas pseudospectral parameterizations have been
used in [26, 47]. In this Chapter, and with a view on using a computationallytractable
approach, we apply elementary polynomial parametrizations, as was also done in [13, 14].
Using Eq. (4.4), we can express the flat outputs as

z(t) =
(

xN(t) xE(t) xZ(t) φ(t) θ(t) ψ(t)
)⊤
=

( n
∑

i=0

ai,1t
i ...

n
∑

i=0

ai,nu
ti
)⊤

(4.6)

with t the time variable, and{ai, j }
(i=n, j=nu)
(i=0, j=1) the to-be-determined polynomial coefficients.

From this flat output definition, and from the rigid-body dynamics, we infer that integer
r = 1 in Definition 19. Now, from [14] we need to choosen such thatn ≥ 2(r + 1)+ 1⇒
n ≥ 5. In order to increase the likelihood of finding feasible trajectories, especially for the
autorotation case, the integern should be chosen much higher than its lower bound, i.e.
n ≫ 5. However, choosing a highn will inevitably increase the computational cost of the
optimization problem, hence a trade-off needs to be considered. Based upon simulation re-
sults, we choosen = 7 as this provided a good compromise between trajectory smoothness
and computational cost10.

4.3.3.Optimal trajectory planning for the engine OFFcase
The TP optimization problem, as in Chapter 3, consists of a cost functionalJ(·), with contri-
butions from a fixed costΦ(·), and a running cost over time

∫

Ω
Ψ(·)dt, with the independent

9Here the integers in Definition 1 is not defined since the flat outputsz depend only on a subset of the statesx,
and not on the model inputsu.

10We do acknowledge that this is a rather empirical justification. In fact a more rigorous analysis of the following
trade-off: trajectory smoothnessvs. computational tractabilityis here desirable.
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time variablet defined over the time domainΩ = (To,T f ), where the final timeT f may be
free or fixed. This cost is given by

J(x(t), u(t),To,T f ) ≔ Φ(x(To), x(T f ),T f ) +
∫

Ω

Ψ(x(t), u(t), t)dt (4.7)

and from Definition 1 here-above, this cost is equivalently expressed as a function of
the flat outputz as follows

J(φ0(z(t), ż(t)), φ1(z(t), ż(t), z̈(t)),To,T f ) ≔ Φ(φ0(z(To), ż(To)), φ0(z(T f ), ż(T f )),T f )
+

∫

Ω
Ψ(φ0(z(t), ż(t)), φ1(z(t), ż(t), z̈(t)), t)dt

(4.8)
with the mappingsφ0(·) andφ1(·) given by Eq. (4.39)–Eq. (4.44). The solution to the

optimal trajectory planning gives the optimal polynomial coefficients{âi, j }
(i=n, j=nu)
(i=0, j=1) which

minimize the cost functionalJ(·)

{âi, j }
(i=n, j=nu)
(i=0, j=1) ≔ arg min

ai, j ∈R
J(φ0(z(t), ż(t)), φ1(z(t), ż(t), z̈(t)),To,T f ) (4.9)

while enforcing the following constraints (which are similar to the ones of Chapter 3)

• An initial-time boundary condition which corresponds, in our case, to the initial val-
ues of the control inputsφ1(z(To), ż(To), z̈(To)) and statesφ0(z(To), ż(To)).

• A final-time boundary inequality condition, of the form

Bf (φ0(z(T f ), ż(T f )), φ1(z(T f ), ż(T f ), z̈(T f )),T f ) ≤ 0 (4.10)

• An algebraic trajectory inequality constraint, of the form

T(φ0(z(t), ż(t)), φ1(z(t), ż(t), z̈(t))) ≤ 0 t ∈ Ω (4.11)

Remark 3 Notice that, contrary to the optimization problem of Chapter 3, there are here no
Ordinary Differential Equations (ODEs) constraints that need to be enforced. This allows
for significant computational benefits.

Now, computing a numerical solution to the continuous-timeproblem formulation,
Eq. (4.8)–Eq. (4.11), requires first some form of problem discretization. Againwith an eye
on computational tractability, in this Chapter we choose a simple discretization scheme,
involving K collocation points, evenly spaced on domainΩ (i.e. resulting in the discretized
domainΩK = {To t1... tK−2 T f }). We use here a simple rectangular discretization approach,
using 16 evenly spaced points11. Obviously better discretization methods exist, however,
our objective, in this Chapter, is also to keep the computational cost to a minimum. Once
discretized, our problem is transcribed into a NonLinear Programming problem (NLP)

11Based upon simulation results with initial altitudes below100 m, the choice of 16 collocation points provided
a good compromise between accuracy and computational tractability. We do acknowledge that this is a rather
empirical justification. In fact a more rigorous analysis ofthe following trade-off: accuracyvs. computational
tractability is here desirable.
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[56, 57], this latter being solved numerically by well known and efficient optimization tech-
niques. In our case we use the MATLAB functionfminconof the Optimization Toolbox,
based upon an Interior Point (IP) method12 [59–62]. This nonlinear optimization takes a
few seconds to complete in a MATLAB environment (and may likely be one or two orders
of magnitude faster, once programmed in the C language). We address next, in more details,
the various elements of our optimization problem Eq. (4.8)–Eq. (4.11).

Cost functional
First, we choose to set the fixed costΦ(·) to zero. Indeed, this fixed cost may equivalently
be replaced by tight bounds on the final state values (as discussed in Chapter 3). In turn
this simplifies the optimization process, and lowers the computational cost. Next, the cost
objective for the un-powered flight case, i.e. autorotationlanding, is defined as a running
cost over time, and is given by

JOFF(x(t), u(t)) =
∫

Ω

[

(Ḟb
CGX

)2 + (Ḟb
CGY

)2 + (Ḟb
CGZ

)2 + (Ṁb
CGX

)2 + (Ṁb
CGY

)2 + (Ṁb
CGZ

)2

+Wuu2 +Wvv2 +Www2 +Wψ(ψ − ψ f )2
]

dt
(4.12)

This cost is identical to the one of Eq. (3.8) in Chapter 3, except for the following

• The cost in Eq. (3.8) of Chapter 3 encourages smoother control policies, by min-
imizing the rate of control inputṡθ2

0 + θ̇
2
1c + θ̇

2
1s + θ̇

2
TR. These control inputs rep-

resent the true inputs to the helicopter system. Similarly,the cost in Eq. (4.12)
also encourages smoother control policies, however, sincethe true control inputs
do not appear in the model of Section4.3.1(in this model the forces and moments
are the inputs), the cost in Eq. (4.12) minimizes the rate of all forces and moments
(Ḟb

CGX
)2 + (Ḟb

CGY
)2 + (Ḟb

CGZ
)2 + (Ṁb

CGX
)2 + (Ṁb

CGY
)2 + (Ṁb

CGZ
)2.

• The main rotor Revolutions Per Minute (RPM)ΩMR is not included here, since this
state does not belong to the rigid-body states, and hence does not appear in the model
of Section4.3.1. The issue will further be addressed in Section4.3.3.

Final-time boundary condition
Now, with respect to the final-time boundary condition, as expressed in Eq. (4.10), the
aim is here twofold: 1) set the vehicle on the ground, possibly at a specified location; and
2) provide tight bounds on the vehicle kinetic energy and attitude angles, in accordance
with technical specifications for safe (i.e. successful) landing. We specifically address the
definition of a ’successful’ autorotation landing.

Definition 2 A successful autorotation landing is defined as follows

• Final values for the body horizontal velocities|u| ≤ 0.5 m/s, and|v| ≤ 0.5 m/s13.

12Note that numerical methods for solving NLPs fall into two categories, namely heuristic methods and gradient-
based methods. The main idea behind a heuristic optimization method is that the search is performed in a
stochastic manner rather than in deterministic one [58]. Heuristic optimizations, e.g. genetic algorithms, are
known as global techniques, i.e. converging towards the global optimum. On the other hand gradient-based
methods, such as Sequential Quadratic Programming (SQP) orInterior Point (IP) methods, are known as local
methods in that, upon convergence, a locally optimal solution will generally be obtained [58].

13Non-zero horizontal velocities allow for a so-called slide-on-skids landing.
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• Final value for the body vertical velocity|w| ≤ 0.25m/s.

• Final values for the roll and pitch angles|φ| ≤ 10 ◦, and|θ| ≤ 10 ◦.

Since roll and pitch angles will not be controlled by the TT (this issue will further be dis-
cussed in Section4.4), we also derive, in Appendix D of Chapter 4, the maximum acceptable
roll (or pitch) angle, for a successful landing, and hence justify the chosen attitude bounds
|φ| ≤ 10 ◦and |θ| ≤ 10 ◦.

Bound on total flight time In Chapter 3, we found that for a fixed initial14 height above
ground, increasing the initial helicopter velocity had only a relatively limited effect on flight
time and hence stabilized rate of descent. This potentiallyindicates that the flight time,
in autorotation, is only lightly correlated with the initial vehicle velocity, whereas it is
primarily influenced by the initial height above ground. This led us to consider an empirical
boundTOFF on flight timeT f , T f ≤ TOFF, with TOFF deduced from simulation experiments
as follows: LetxZI be the initial height above ground at the instant of engine failure, and
recall vih to be the helicopter induced velocity in hover, then the bound TOFF is set, after
several simulation experiments15, within the range:

xZI

1.75vih
≤ TOFF ≤

xZI

1.50vih
(4.13)

Remark 4 The reason for bounding the flight time Tf ≤ TOFF is discussed next. Although
the main rotor RPM dynamics is used in the helicopter nonlinear HOM, the RPM dynamics
is not included in the flat model description, i.e. in Section4.3.1, since not part of the rigid-
body dynamics. By so doing, the same flat model can be used for both the engine OFF and
ON cases, hence simplifying the trajectory planning software. However, excluding the main
rotor RPM dynamics from the planning problem is only possible, i.e. will result in feasible
autorotative trajectories, if the trajectory flight time iskept small enough. Since the RPM
dynamics is eliminated from the planning problem, the main rotor RPMΩMR signal may
not be required for the trajectory tracking system either. Thus, the standard requirement
consisting of adding a dedicated magnetic or optical RPM sensor, on the main rotor shaft
or on the gear-box of a small-scale helicopter, may here be dropped.

Trajectory constraints
Regarding the trajectory constraints, as expressed in Eq. (4.11), these are conceptually iden-
tical16 to the ones set in Section3.2.2of Chapter 3, except for the trajectory constraints on
the inputs, and on the main rotor RPMΩMR (see Section4.3.3). For the constraints on the
inputs, these are set on total forces and moments (based uponsimulation results). Regarding
the main rotor RPMΩMR, there are no constraints, sinceΩMR is not part of the state-vector.

14By initial we mean at the start of the engine OFF flight maneuver.
15The coefficients 1.50 and 1.75 in

xZI
1.75vih

≤ TOFF ≤
xZI

1.50vih
are empirically deduced, after several simulation ex-

periments, for the case of the small-scale Align T-REX helicopter, with physical parameters as given in Table2.1
of Chapter 2. A different helicopter, or even an Align T-REX helicopter with a different main rotor inertia, may
likely result in different coefficient values.

16Some numerical values of bounds and constraints may differ from the ones used in Chapter 3, in particular since
Chapter 3 and Chapter 4 do not use the same helicopter UAV (as explained in Section3.5of Chapter 3).
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4.4.Robust control based Trajectory Tracking (TT)
The goal is to design a TT module for our small-scale helicopter UAV. This tracker should
allow the vehicle to fly along previously planned optimal trajectories. However, with four
control inputs and at least twelve measured outputs (i.e. the rigid-body states), the heli-
copter is heavily under-actuated, which inevitably will limit the performance of the track-
ing system. Now, since control over position and velocity isa primary objective of our
application, we choose to have the helicopter track the following seven references, namely
3D inertial17 positions (xN xE xZ)⊤, 3D body velocities (u v w)⊤, and heading angleψ. In
addition, based upon simulation results using the helicopter HOM, it is found that position
dynamics is much slower than velocity dynamics. This justifies a design philosophy based
upon the successive loop closure of feedback loops, where a sequential design process of
inner- and outer-loops is sought, also known as aMaster-Slavecontrol configuration see
Fig. 4.2. This design approach is thus related to the well-known time-scale separation prin-
ciple [63], between slow and fast dynamics of a dynamical system, and supposes that the
bandwidth of the inner-loop is much higher than the bandwidth of the outer-loop18.

Figure 4.2: Master-Slave control configuration.

The outer-loop aims at tracking the planned inertial 3D position (xN xE xZ)⊤TP. On the
other hand, the role of the inner-loop consists in tracking the planned headingψTP, and the

17Which is equivalent to North-East-Down (NED) position in our flight dynamics model.
18Note that the control design by time-scales leads not only toa simpler and more modular control architecture,

but also to a potentially more robust one [36]. Indeed the existence of time-scales means that the systemis
numerically ill-conditioned, hence a control law ignoringthese aspects may also be ill-conditioned, thus more
difficult to implement, and potentially more sensitive to modeling errors [36].
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Figure 4.3: Outer-Loop, control interconnection diagram.

Figure 4.4: Inner-Loop, control interconnection diagram.

planned 3D body linear velocities (u v w)⊤TP, these latter being adjusted by the outputs of
the outer-loop controller (u v w)⊤d to allow for position control, see Fig.4.3and Fig.4.4. In
these figures,x represents the state-vector (with dimension twenty-four), defining the states
of the nonlinear helicopter HOM. The (u v w)⊤d can be seen as a "delta" correction to the
nominal velocities (u v w)⊤TP. Hence, the to-be-tracked velocities by the inner-loop con-
troller are given by (u v w)⊤TP+ (u v w)⊤d . Next, since the outputs of the outer-loop are given
in the inertial frame, i.e. North-East-Down (NED) frame, weneed a nonlinear inversion to
convert the reference velocities from NED to body frame, i.e. (u v w)⊤d = T

⊤
ob(VN VE VZ)⊤d ,

with the rotation matrixTob given in Eq. (2.8) of Chapter 2. Note also that in Fig.4.4 all
signals, except position, are fed-back into the controllerto improve the closed-loop perfor-
mance.

As the helicopter dynamics is nonlinear, the design of the TTcontroller necessitates an
approach that effectively respects or exploits the system’s nonlinear structure. To this end,
several control methods are available, from 1) robust control; 2) classical gain-scheduling,
and Linear Parameter-Varying (LPV) approaches; to 3) trulynonlinear control methods
(e.g. nonlinear receding horizon control, Lyapunov based methods such as sliding mode
and backstepping, adaptive control, or even passivity-based approaches). In this Chapter we
select an approach that combines simplicity and computational efficiency, i.e. we choose to
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apply a robust controlµ strategy. This method consists in using a nominal LTI plant coupled
with an uncertainty, and applying a small gain approach [18, 19] to design a single robust
LTI controller, valid over a wide portion of the flight envelope. Now, rather than modeling
the uncertainty in a detailed or structured manner, an inputmultiplicative uncertainty is
added here to compensate for the unmodeled plant nonlinearities and unmodeled higher-
order rotor dynamics19, by lumping all types of model uncertainty together into a complex,
full-block, input multiplicative uncertainty. The robustcontroller synthesis consists then in
obtaining a controller insensitive to this multiplicativeuncertainty at the plant input.

4.4.1.Linear multivariable µ control design
Both, the inner- and outer-loop controllers are designed according to the robust control de-
sign paradigm, in a two-degrees-of-freedom control structure (i.e. using both feedback and
feedforward). Here the feedback part is used to reduce the effect of uncertainty, whereas the
feedforward part is added to improve tracking performance [64], and for optimality, both
feedback and feedforward are designed in one step. First, a nominal plantP(s) (andPd(s)
for the disturbance) is obtained by linearizing the nonlinear helicopter model at some spec-
ified condition (to be discussed in the sequel). Next, we define the generalized plantGP(s)
which maps the exogenous inputsw = [n⊤ r⊤ d⊤]⊤ and control inputsu, to controlled
outputsz = [zu

⊤ zp
⊤]⊤ and measured outputsv = [r⊤ y⊤]⊤, see Fig.4.5.

Figure 4.5: Closed-Loop interconnection structure for robust controller synthesis.

The signals include also the sensors noisen (andno), the reference signalsr , the distur-
bance signalsd, the actuators performance signal (to limit actuator deflection magnitudes

19Unmodeled in the low-order nominal LTI plant used for control design, these are however modeled in the high-
order nonlinear plant of Chapter 2.
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and rates)zu, the desired performance in terms of closed-loop signal responseszp, and the
system outputsy (andyo), such that
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For the weights, which help shape the performance and robustness characteristics of
the closed-loop system, we use the input weight Win(s), the performance weight Wp(s), the
actuator weight Wu(s), the sensor noise weight Wn(s), and the disturbance weight Wd(s).
Now Win(s) and∆(s), in Fig. 4.5, parametrize the uncertainty or errors in the model. The
Transfer Function (TF) Win(s) is assumed known and reflects the amount of uncertainty
in the model, whereas the TF∆(s) is assumed to be stable and unknown, except for the
norm condition||∆(s)||∞ ≤ 1. Next, the generalized plantGP(s) has a linear fractional
dependence on the input uncertainty∆(s), and is represented by the upper Linear Fractional
Transformation (LFT) interconnection

(

z
v

)

= GP

(

w
u

)

= Fu(M,∆)

(

w
u

)

(4.15)

whereM(s) is a known LTI plant, see Fig.4.6, and∆(s) some complex, full-block, four-by-
four20, operator specifying how the uncertainty enters the plant dynamics.

Figure 4.6: StandardM − ∆ − K robust control framework.

The feedback structure associated with the LFT interconnection Eq. (4.15) is given by
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w∆ = ∆ z∆ (4.16)

with z∆, andw∆, the inputs and outputs of the operator∆(s), see Fig.4.6, and the closed-
loop operator from exogenous inputsw to controlled outputsz is given by

20The helicopter plant has four control inputs.
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T(M,K,∆) = Fl
(

Fu(M,∆),K
)

(4.17)

with K(s) the to-be-synthesized controller. The goal of the controller is to minimize
theL2-gain boundγ from the exogenous inputsw to the controlled outputsz, despite the
uncertainty∆(s). Based upon small gain considerations [18, 19], this goal is approximated
by the minimization of theH∞ norm ofFl

(

M,K
)

. Now, better performance may potentially
be obtained by synthesizingK(s) through D-K iteration [65, 66]

K = arg min
K

inf
D,D−1∈H∞

‖DFl
(

M,K
)

D−1‖∞ (4.18)

with D(s) a stable and minimum-phase scaling matrix, chosen such that D(s)∆(s) =
∆(s)D(s).

We have presented here-above a general TT architecture, that will be applied twice,
once for the inner-loop controller design and once for the outer-loop controller design.
When synthesizing the inner-loop TT, we use the following signals: the control inputs
u = (θ0 θ1c θ1s θTR)⊤, the reference signalsr = (uTP + ud vTP + vd wTP + wd ψTP)⊤,
the wind disturbance signals (given in inertial frame)d = (VNw VEw VZw)⊤, the system
outputsy = (u v w p q rφ θ ψ)⊤, and the sensors noisen (added to the system outputs).
When synthesizing the outer-loop TT, we use the following signals: the control inputsu =
(VN VE VZ)⊤d , the reference signalsr = (xN xE xZ)⊤TP, the system outputsy = (xN xE xZ)⊤,
and the sensors noisen (again added to the system outputs). Here the outer-loop does
not include disturbance signals, since the wind has alreadybeen accounted for, within the
inner-loop control structure. For controller assessment and validation, a two-step approach
is here adopted consisting in: 1) evaluating first the closed-loop characteristics, with the
help of several ’metrics’, using the nominal LTI plantsP (andPd); and 2) evaluating the
closed-loop characteristics on the nonlinear helicopter model of Chapter 2. In the following
section, we briefly present these control assessment ’metrics’.

Remark 5 The same control architecture will be used for both the engine OFF and ON
cases, what will however change, between the OFF and ON cases, is the numerical values
of the weights and controller matrices.

4.4.2.Controller assessment metrics
For controller assessment, we analyze the results from several ’metrics’ [64].

• The output loop TFL(s) = P(s)K(s), representing the open-loop gain.

• The so-called ’Gang of four’ TFs [67]. Here the following signals, as found in
Fig. 4.5, are used: the control inputsu, the reference signalsr , the system outputs
y, yo, and the sensors noisen, no. To these signals, we also add two disturbance sig-
nals, as defined in [67]: the input disturbance signalsdi and the output disturbance
signalsdo, in order to define the following TFs (see Fig.4.7)

1. The input sensitivitySi(s) = (I + L(s))−1P(s), representing the TFdi → yo.

2. The output sensitivitySo(s) = (I + L(s))−1, representing the TFdo→ yo.
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Figure 4.7: Basic feedback loop.

3. The input complementary sensitivityTi(s) = L(s)(I + L(s))−1, representing the
TFsr → yo (alsono→ yo anddi → u).

4. The output complementary sensitivityTo(s) = K(s)(I + L(s))−1, representing
the TFsr → u (alsono→ u anddo→ u).

• To evaluate the frequency range over which the control is effective, we consider the
following bandwidths [64]

1. wC being the gain crossover frequency where|L(s)| first crosses 0 dB, from
above.

2. wB being the lowest frequency where|Si(s)| crosses -3 dB, from below.

3. wBT being the highest frequency where|Ti(s)| crosses -3 dB, from above.

• The Robust Stability (RS) metric, defined asRS ⇔ µ∆(N11(s)) ≤ 1, with N(s) =
Fl(M(s),K(s)), with N11(s) the upper left block corresponding to the full, complex,
four-by-four uncertainty∆ (i.e. our plant input multiplicative uncertainty), andM(s)
as given in Fig.4.6.

• The Robust Performance (RP) metric, defined asRP ⇔ µ∆(N(s)) ≤ 1, for the
structured uncertaintỹ∆ as

∆̃ ≔ {diag(∆,∆P) ‖∆P‖∞ ≤ 1} (4.19)

with ∆P an unstructured (complex, full-block), fictitious uncertainty of size dim(w)
by dim(z), with w the exogenous inputs, andz the controlled outputs.

Remark 6 We compute both an upper and lower bound for the RS and RP, following the
method in [68]. As in [68], we have added 1% of complex perturbations to∆ in order
to improve the convergence of the lower bound, albeit at the expense of slight additional
conservatism.

In the following sections, we address the weights selectionand controller validation, for
the engine OFF case.
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4.5.Design of the engine OFF inner-loop controller
As stated in Section4.4, with four control inputs and twelve measured outputs, the heli-
copter is heavily under-actuated, which inevitably limitsthe performance of the tracking
system. As mentioned earlier, see also Fig.4.4, we choose to have the inner-loop track
the following four reference signals: 3D body velocities (u v w)⊤, and heading angleψ.
Recall also that the goal of the controller is to minimize theL2-gain boundγ from the
exogenous inputsw to the controlled outputsz, despite the uncertainty∆(s). The various
signals are further given as follows: the exogenous inputsw = [n⊤ r⊤ d⊤]⊤, the controlled
outputsz = [zu

⊤ zp
⊤]⊤, the control inputsu = (θ0 θ1c θ1s θTR)⊤, the measured outputs

v = [r⊤ y⊤]⊤, the reference signalsr = (uTP + ud vTP + vd wTP + wd ψTP)⊤, the system
outputsy = (u v w p q rφ θ ψ)⊤, the wind disturbance signals (given in inertial frame)
d = (VNw VEw VZw)⊤, and the sensors noisen (added to the system outputs), see Fig.4.5.
Here the signaly contains all the available measured output signals, exceptfor the 3D po-
sition, since the latter is only of interest for the outer-loop controller.

4.5.1.Choice of nominal plant model for the inner-loop control design
As mentioned in Section4.1, we do not use any gain-scheduling philosophy in this Chap-
ter, rather a single LTI plant is used for controller design.Now, for an engine ON flight
condition, it is relatively easy to find equilibrium points,i.e. steady-state flight conditions,
at which the nonlinear helicopter model of Chapter 2 can be linearized. The resulting LTI
models can subsequently be used for LTI control design. However, for the engine OFF
flight condition, this set of equilibrium points, i.e. steady autorotative flight conditions, is
rather small and in certain situations even non-existent. For example, when an engine fail-
ure happens at a low altitude, the helicopter does not even reach a steady-state autorotation
(corresponding to a constant main rotor RPM), rather the helicopter system is continuously
in transition from one non-equilibrium point to the next. Tomitigate this problem, the
approach used here consists in excluding the main rotor RPMΩMR from the state and mea-
surement vectors, and use this "quasi-steady" modeling approach to find the equilibrium
points. By so doing, the control architecture and control design philosophy for the engine
OFF case can be made exactly identical to the engine ON case, hence simplifying the over-
all control system design.

The state-space data used to design the inner-loop trajectory tracker is as follows: the
state-vector is of dimension nine given byx = (u v w p q rφ θ ψ)⊤, the control inputu (given
here-above) is of dimension four, the wind disturbanced (given here-above) is of dimension
three, and the measurements vectory = x. This LTI model is obtained by linearizing21

the helicopter nonlinear model of Chapter 2, at a specific trimmed flight condition. This
condition corresponds to hover, with the engine OFF (note that now the main rotor RPM
is not in equilibrium anymore). Choosing such a flight condition, with an associated initial
velocity of zero, can potentially provide the best description of helicopter behavior during
landing (where the helicopter velocity is also very low). The resulting state-space data given
in Appendix H22 of Chapter 2. By using the eigenvalues of theA matrix in the Popov-

21According to the linearization procedure given in Section2.4.1.
22The state-space data of the LTI plants given in Appendix H of Chapter 2 are in S.I. engineering units. However,

before using the plant for control design, scalings have been used on the input and output matrices in order to
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Belevitch-Hautus (PBH) rank test, we found that this LTI plant was both controllable and
observable. Simulation results, presented later in Chapter 5, have shown that this nominal
LTI plant is indeed suitable for the design of controllers inan engine OFF situation.

4.5.2.Selection of weights
The robust control framework makes use of several user-defined weights, see Fig.4.5. In
this Chapter, these weights have been chosen as follows. Themultiplicative uncertainty
weight Win(s) is of the form Win(s) = diag[win1(s),win2(s),win2(s),win2(s)], set on the four
control input channelsu = (θ0 θ1c θ1s θTR)⊤, with θ0 the main rotor blade root collective
pitch,θ1c the main rotor lateral cyclic pitch,θ1s the main rotor longitudinal cyclic pitch, and
θTR the tail rotor blade collective pitch. Further,win1(s) andwin2(s) are filters whose magni-
tude represent the relative uncertainty at each frequency (i.e. the level of uncertainty in the
behavior of the helicopter is assumed frequency dependent). Based upon engineering judg-
ment23, we choose here forwin1(s) to consider 20% uncertainty at low frequency (DC gain),
100% uncertainty at the filter crossover frequency of 10 Hz (with 10 Hz being roughly the
anticipated closed-loop bandwidth for the vertical velocity channel24), and 200% uncer-
tainty at infinite frequency. Again, based upon engineeringjudgment, we choose forwin2(s)
to consider 40% uncertainty at low frequency (DC gain), 100%uncertainty at the filter
crossover frequency of 5 Hz, and 200% uncertainty at infinitefrequency25, giving

win1(s) = (2s+ 22.21)/(s+ 111.1)
win2(s) = (2s+ 23.75)/(s+ 59.37)

(4.20)

Next, the performance weight filter Wp(s) is placed on the (u, v,w, ψ) error signals, to re-
flect the tracking objective for the three body linear velocities and the heading angle. Here
Wp(s) is a four-by-four, diagonal, frequency-varying weight Wp(s) = diag[wu(s),wv(s),
ww(s),wψ(s)], with each diagonal term defined as a first-order TFs/MP+ωB

s+ωBAss
. At low frequen-

cies this weighting function should be high in order to keep the error small. Beyond the
anticipated bandwidth of the closed-loop system, the tracking error may be released and
Wp(s) rolls off [64]. After several controller design cycles, we have settled for

For wu(s) (MP, ωB,Ass) = (2, 0.5π rad/s, 0.001)
For wv(s) (MP, ωB,Ass) = (2, 0.5π rad/s, 0.001)
For ww(s) (MP, ωB,Ass) = (2, 90π rad/s, 0.001)
For wψ(s) (MP, ωB,Ass) = (2, 4π rad/s, 0.001)

(4.21)

This means that a steady-state tracking error of 0.1% with respect to the normalized
filter input is allowed. Further, the difference with the engine ON case is in terms of track-
ing bandwidth: 1) for the engine OFF case, it is lower on the horizontal channels (u and
v velocities) since the LTI model used for control design is somewhat less ’accurate’ (due
to the non-fixed main rotor RPM, and high descent rates); and 2) for the engine OFF case,
the tracking bandwidth is considerably much higher on the vertical channel (w velocity)

obtain a normalized LTI plant.
23The chosen uncertainty may be overly conservative, or may even be unrealistic. Alternative ways to shape the

uncertainties exist, e.g. [69]. The goal here is simply to add some robustness to the closed-loop system.
24For each control input, Table1.1in Chapter 1 summarizes their primary effects on the vehicle response.
25The uncertainty is large at high-frequency since we use a low-order model.
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to allow the tracking of a rapidly changing vertical velocity reference. The latter is only
feasible if high-bandwidth actuators are mounted on the helicopter (at least for the verti-
cal channel). Now, tracking should not be achieved at the cost of too high control effort.
Therefore, both actuator deflection (i.e. amplitude) and rate are penalized through weight
Wu(s) = diag[wact(s),wact(s),wact(s),wact(s)], with

wact(s) = 10n
( s+ ω1

s+ ω2

)n

with (n, ω1, ω2) = (3, 40π rad/s, 400π rad/s) (4.22)

corresponding to actuators with a bandwidth of approximately 10 Hz, i.e. twice the
bandwidth for the engine ON case26 (see Appendix B for the engine ON case). Next, a
noise weight Wn(s) is set to represent the actual noise levels associated witheach sensor,
and is defined as a nine-by-nine, constant, diagonal scalingmatrix described as follows
(given here in its unscaled form)

Wn(s) = diag[0.01m/s, 0.01m/s, 0.01m/s, 3π/180rad/s, 3π/180rad/s, 3π/180rad/s,
π/180rad, π/180rad, 3π/180rad]

(4.23)
Finally, a wind disturbance weight Wd(s) = diag[wdN (s),wdE (s),wdD(s)] is added to

simulate the frequency content of the NASA Dryden atmospheric wind model27 [71], re-
sulting in a disturbance bandwidth of 0.06 Hz, 0.12 Hz, and 0.96 Hz along the North, East,
and Down (NED) axes respectively. The wind disturbance weights are modeled here, in
normalized form, as low-pass filters, as follows

wdN (s) = Ad
s+ω1
s+ω2

with (Ad, ω1, ω2) = (103, 0.22π rad/s, 2.2π rad/s)
wdE (s) = Ad

s+ω1
s+ω2

with (Ad, ω1, ω2) = (103, 0.3π rad/s, 3π rad/s)
wdD (s) = Ad

s+ω1
s+ω2

with (Ad, ω1, ω2) = (103, π rad/s, 10π rad/s)
(4.24)

4.5.3.Controller synthesis and analysis
For the D-K iteration [72], we obtain after four iterations a stable28 controllerK(s) of order
38, using 0th order (constant)Ds-scalings. The controller is further reduced to 30th order,
after balancing and Hankel-norm model reduction [73], without any significant effect on
closed-loop robustness and performance. In Fig.4.8, we visualize the relevant TFs, with
the bandwidths for the three main TFs given in Table4.1. In particular, we see that the
bandwidth of|Ti(s)| is about equal to the bandwidth of the actuators, i.e. around10 Hz
(obviously high enough to stabilize the plant, see our discussion in Section2.4.3of Chapter
2). Also the closed-loop disturbance rejection, given in Fig. 4.9, shows relatively good
attenuation of wind disturbances, i.e. approximately -43 dB at a frequency of 2π rad/s
along the Down axis.
26The engine OFF condition may hence dictate the required actuator specifications.
27The wind turbulence, or disturbance, frequency content depends upon the mean wind value, and also upon the

vehicle height and speed. For the mean wind value, we chose 8 m/s which is equivalent to a Beaufort wind force
value of 4, corresponding to the yearly average wind force along the coast in The Netherlands [70]. For the
vehicle height and speed, we chose 1 m and 1 m/s respectively, since a low-speed flight condition, close tothe
ground, results in the highest wind disturbance bandwidth in the NASA Dryden model.

28The controller itself is a stable dynamical system.
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Figure 4.8: Singular values ofL(s), Si (s), So(s), Ti (s), andTo(s), of the
inner-loop trajectory tracker (Engine OFF case).
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Table 4.1: Open- and closed-loop bandwidths.

Bandwidths (rad/s)
|L(s)| |Si(s)| |Ti(s)|

Case wC wB wBT

Engine OFF (Inner-Loop) 35 2.4 65
Engine OFF (Outer-Loop) 3 0.29 6.7
Engine ON (Inner-Loop) 15 2.15 15
Engine ON (Outer-Loop) 0.8 0.37 1.5

We also see thatSo is not well-behaved, since it remains high at both low- and high-
frequencies. This can be explained as follows. The output loop L(s) is a 9x9 matrix, with 4
singular-values having very high values (for low-frequencies). These high singular-values
correspond to the 4 controlled channels. Since our helicopter is under-actuated, the remain-
ing 5 singular-values are all very low (for all frequencies). Thus, inverting (I + L(s)) to get
So results in maximum singular-values which are most often close to 0 dB.

Next, RS and RP are visualized in Fig.4.10and Fig.4.11. We can see that lower and
upper bounds are indistinguishable. We observe that the primordial RS is guaranteed (i.e.
a maximum value below 1). On the other hand, as for the engine ON case, we see that
RP is not met (i.e. a maximum value well above one). Note that this may potentially
be due to the fact that the chosen uncertainty∆(s), shown in Fig.4.5, is not realistic. If
robust performance specifications need to be met, then this could potentially be done by
lowering the amount of model input uncertainty, and/or by relaxing some of the assumptions
made during the various weights selection. However, from our experience, this will likely
compromise the closed-loop performance of the controller,once tested upon the nonlinear
system.
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4.6.Design of the engine OFFouter-loop controller
We first recall that the design approach is based upon the well-known time-scale separa-
tion principle [63] between slow and fast dynamics of a dynamical system, resulting in a
so-calledMaster-Slaveconfiguration (see Fig.4.2), and supposes that the bandwidth of the
inner-loop is much higher than the bandwidth of the outer-loop29.

As mentioned earlier, refer also to Fig.4.3, we choose to track the following three
reference signals: 3D inertial30 positions (xN xE xZ)⊤. Recall also that the goal of the
controller is to minimize theL2-gain boundγ from the exogenous inputsw to the con-
trolled outputsz, despite the uncertainty∆(s). The various signals are further given as
follows: the exogenous inputsw = [n⊤ r⊤]⊤, the controlled outputsz = [zu

⊤ zp
⊤]⊤, the

control inputsu = (VN VE VZ)⊤d , the measured outputsv = [r⊤ y⊤]⊤, the reference signals
r = (xN xE xZ)⊤TP, the system outputsy = (xN xE xZ)⊤, and the sensors noisen (added to
the system outputs), see Fig.4.5. Here the outer-loop does not include disturbance signals,
since the wind has already been accounted for, within the inner-loop control structure.

As discussed in Section4.1, a single LTI plant is again used for controller design. The
state-space data used to design the outer-loop trajectory tracker is obtained as follows. An
LTI dynamical system can be formed by connecting the nominalLTI model, used for the
inner-loop TT, with its inner-loop controller, and subsequently adding a set of integrators
on the 3D velocities to generate the 3D inertial positions (xN xE xZ)⊤. This manipulation
is readily done in MATLAB, and results in the nominal LTI model needed to design the
outer-loop position controller. In our case, we obtain a three-by-three input-output system,
with a state-vector of dimension 55. Next a minimum realization is obtained, resulting in
a state-vector of dimension 42 (the LTI model is too big to be added to the Appendix).
Note that here too scalings need to be applied. Further, and except for three poles at the
origin (corresponding to the integration of the 3D velocities), all other eigenvalues of the
A matrix are stable and well damped, implying easier controller design. Again, by using
the eigenvalues of theA matrix in the PBH rank test, we found that the LTI system is both
controllable and observable.

The design philosophy for theµ outer-loop TT parallels that of the inner-loop.

4.6.1.Selection of weights
The input multiplicative uncertainty weight Win(s) is of the form Win(s) = diag[win2(s),
win2(s), win1(s)], with win1(s), win2(s) identical to the ones used in the engine OFF inner-
loop, in Eq. (4.20). Herewin1(s) is applied to the vertical velocity channel (recall that we
haveu = (VN VE VZ)⊤d ). In the design of the inner-loop TT, in Section4.5.2, we had chosen
an uncertainty weight equal towin1(s) on the collective inputθ0. Now, since the vertical
velocity channel is mostly influenced by the collective input (see Table1.1 in Chapter 1),
we also assign an uncertaintywin1(s) to the vertical velocity. The same argument holds for
uncertaintywin2(s) on the horizontal velocities. Obviously, this choice of the uncertainty

29Based upon simulation results, using the helicopter model of Chapter 2, it is indeed found that position dynamics
is much slower than velocity dynamics.

30Which is equivalent to North-East-Down (NED) position in our flight dynamics model.
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weight Win(s) is somewhat arbitrary. This said, the purpose here is just to add some robust-
ness to the closed-loop system.

The performance weight filter Wp(s) is placed on the (xN, xE, xZ) error signals to reflect
the tracking objective for the inertial position. Here, Wp(s) is a three-by-three diagonal,
frequency-varying weight. We have Wp(s) = diag[wxN(s),wxE (s),wxZ(s)], with each diag-
onal term defined as a first-order transfer functions/MP+ωB

s+ωBAss
. After several controller design

cycles, we have settled for

For wxN (s) (MP, ωB,Ass) = (2, 0.1π rad/s, 0.001)
For wxE (s) (MP, ωB,Ass) = (2, 0.1π rad/s, 0.001)
For wxZ (s) (MP, ωB,Ass) = (2, 4.5π rad/s, 0.001)

(4.25)

Again, a steady-state tracking error of 0.1% with respect tothe normalized input is
allowed. The filter bandwidths, on the horizontal channels,are adjusted to be five times
smaller than the Wp(s) filter bandwidths of the inner-loop horizontal channels. For the ver-
tical channel bandwidth, instead of a 1:5 ratio, we settled for a 1:20 ratio. These values
have been obtained after several simulation experiments.

Next, tracking should not be achieved at the cost of too high control effort (i.e. resulting
in much too large velocity setpointsu = (VN VE VZ)⊤d for the inner-loop). This means
that both inertial velocities and inertial accelerations should be penalized, through weight
Wu(s) = diag[wact(s),wact(s),wact(s)], with wact(s) identical to the one chosen for the inner-
loop, with engine OFF. Again, this choice may be interpretedas rather arbitrary, since here
Wu(s) is assigned to the inner-loop setpointsu = (VN VE VZ)⊤d , whereas for the design of
the inner-loop controller, Wu(s) was assigned to the actuators. Hence, potentially better
choices for Wu(s) may exist, although the one selected here provided satisfactory results.
Finally, a noise weight Wn(s) is also defined to scale the normalized position measurement
noise. The sensor noise model is defined as a three-by-three,constant, diagonal scaling
matrix described by (given here in its unscaled form)

Wn(s) = diag[0.1 m, 0.1 m, 0.1 m] (4.26)

4.6.2.Controller synthesis and analysis
For the D-K iteration, we obtain after four iterations a stable controllerK(s) of order 57,
using 0th orderDs-scalings. The controller is further reduced to 30th order (using the same
technique as for the inner-loop), without any effect on closed-loop robustness/performance.
In Fig. 4.12, we visualize the relevant TFs (we see thatSi(s) = So(s), andTi(s) = To(s)),
with the bandwidths for the three TFs given in Table4.1. In particular, we see that the
bandwidth of|Ti(s)| is ten times lower its inner-loop counterpart, which is goodsince we
do not want both controllers to start interacting with each other. Further, RS is shown in
Fig. 4.13, whereas RP is pictured in Fig.4.14. Again, we observe that RP is not achieved,
whereas RS is well guaranteed.
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Figure 4.12: Singular values ofL(s), Si (s), So(s), Ti (s), andTo(s), of the outer-loop trajectory tracker (Engine
OFF case).
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Figure 4.13: Robust Stability of the outer-loop tra-
jectory tracker (Engine OFF case).
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Figure 4.14: Robust Performance of the outer-loop
trajectory tracker (Engine OFF case).
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4.6.3.Adapting the engine OFFouter-loop controller
When close to the ground, it is crucial to keep the reference velocities as small as possible.
To this end, we adapt the outer-loop controller as follows: the position tracking is switched-
off, i.e. the values for (u v w)⊤d are set to zero, once the helicopter height descends below
a predefined threshold (keeping only velocity and heading tracking). This helps lowering
the final (touch-down) values of the 3D velocities, by givingmore time to the velocity
deceleration process. The value of this user-defined altitude threshold depends upon the
initial conditions, and depends upon whether it is an engineOFF or ON automatic landing.

4.7.Conclusion
In this Chapter we have presented a trajectory planning and tracking framework, anchored
in the combined paradigms of differential flatness based planning and robust control based
tracking. Both the engine OFF and engine ON cases are based upon the same planning
and tracking system architecture. In particular, main rotor RPM is not used, neither neces-
sary for the engine OFF trajectory planning, nor for the corresponding trajectory tracking,
hence simplifying the overall system design. We have also presented what we believe to be
a simple trajectory tracking architecture, capable of controlling a small-scale helicopter in
autorotation (i.e. engine OFF flight condition). To this end, we have settled for an archi-
tecture with only two nested loops, controlling position, velocity, and heading, but without
control of vehicle roll and pitch angles. Our methodology isreal-time feasible since it
allows for, computationally tractable, planning and tracking solutions. In Chapter 5, we
evaluate, through several simulations, the flight control control system developed in Chap-
ter 4, using the nonlinear high-order helicopter model of Chapter 2.



4

166 4.On-line Trajectory Planning and Tracking: System Design

4.8.Appendix A: Optimal trajectory planning for the engine
ON case

The TP optimization problem, as in Chapter 3, consists of a cost functionalJ(·), with contri-
butions from a fixed costΦ(·), and a running cost over time

∫

Ω
Ψ(·)dt, with the independent

time variablet defined over the time domainΩ = (To,T f ), where the final timeT f may be
free or fixed.

Cost functional
First, we set the fixed cost toT f , i.e. Φ(·) = T f , to avoid obtaining trajectories with un-
reasonably long flight times. Next, we define a general cost functional here, applicable for
several types of maneuvers, including takeoff and landing, cruise flight, and hover-to-hover
flight. From engineering judgment, we use

JON(x(t), u(t),T f ) =WT f T f +
∫

Ω

[

(Ḟb
CGX

)2 + (Ḟb
CGY

)2 + (Ḟb
CGZ

)2

+(Ṁb
CGX

)2 + (Ṁb
CGY

)2 + (Ṁb
CGZ

)2

+Wvv2 +Wr r2
]

dt

(4.27)

For the first six terms in the running cost over time, i.e. the control derivatives, these
have been added to: 1) minimize the battery power consumption; and 2) encourage smoother
control policies, hence avoidingbang-bangtype solutions, that might excite undesirable
high frequency dynamics or resonances. Next, the termv2 is added to limit vehicle sideslip31

flight. Indeed, large sideslip decreases the flight performance, by increasing vehicle drag,
increasing roll/yaw coupling, and hence increasing the workload of any feedback controller.
The termr2 has been added to minimize inter-axis coupling. Finally, additional weights, i.e.
WT f , Wv, andWr , have been added to evaluate various trade-offs within this cost objective.

Boundary and trajectory constraints
The boundary conditions are used to set the initial and final (trimmed) flight conditions, and
also to set the (initial) and final vehicle accelerations to zero. Having final accelerations
equal to zero helps obtaining smooth approaches towards thefinal waypoint, or alterna-
tively a gentle touch-down during an auto-land. Further themaximum flight timeT f may
also be limited.

On the other hand, the trajectory constraints serve severalpurposes. First, they account
for the vehicle’s inherent physical and flight envelope limitations, such as bounds on three-
dimensional (3D) position, speeds, and attitude. Second, the control inputs to the rigid-
body dynamics, i.e. the helicopter forces and momentsFb

CG andMb
CG, are also limited,

based upon bounds obtained from simulations using the nonlinear helicopter model. Third,
a tail rotor blade tip clearance has been added to avoid ground strike by the tail rotor during
a flare maneuver (see our discussion in Chapter 3). Finally, the airflow through the main
rotor, given byVrotor = w+ pyH−qxH, has been limited to half the induced velocity in hover
vih, i.e. Vrotor ≤ 1

2vih, as to avoid flight into the chaotic, highly nonlinear, Vortex-Ring-State
(VRS) region, refer also to Fig.2.19in Chapter 2.

31Sideslip flight refers to a vehicle moving somewhat sidewaysas well as forward, relative to the oncoming airflow.
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4.9.Appendix B: Design of the inner-loop controller for the
engine ON case

As stated in Section4.4, with four control inputs and twelve measured outputs, the he-
licopter is heavily under-actuated, which inevitably limits the performance of the track-
ing system. As mentioned earlier for the engine OFF inner-loop, see also Fig.4.4, we
choose to have the inner-loop track the following four reference signals: 3D body ve-
locities (u v w)⊤, and heading angleψ. Recall also that the goal of the controller is to
minimize theL2-gain boundγ from the exogenous inputsw to the controlled outputsz,
despite the uncertainty∆(s). The various signals are further given as follows: the ex-
ogenous inputsw = [n⊤ r⊤ d⊤]⊤, the controlled outputsz = [zu

⊤ zp
⊤]⊤, the control

inputsu = (θ0 θ1c θ1s θTR)⊤, the measured outputsv = [r⊤ y⊤]⊤, the reference signals
r = (uTP + ud vTP + vd wTP + wd ψTP)⊤, the system outputsy = (u v w p q rφ θ ψ)⊤, the
wind disturbance signals (given in inertial frame)d = (VNw VEw VZw)⊤, and the sensors noise
n (added to the system outputs), see Fig.4.5. Here the signaly contains all the available
measured output signals, except for the 3D position, since the latter is only of interest for
the outer-loop controller.

As mentioned in Section4.1, we do not use any gain-scheduling philosophy in this
Chapter, rather a single LTI plant is used for controller design. The state-space data used
to design the inner-loop trajectory tracker is as follows: the state-vector is of dimension
nine given byx = (u v w p q r φ θ ψ)⊤, the control inputu (given here-above) is of
dimension four, the wind disturbanced (given here-above) is of dimension three, and the
measurements vectory = x. This LTI model is obtained by linearizing the helicopter
nonlinear model of Chapter 2, at a specific trimmed flight condition32, according to the
linearization procedure given in Section2.4.1, with the resulting state-space data given in
Appendix H of Chapter 2. By using the eigenvalues of theAmatrix in the Popov-Belevitch-
Hautus (PBH) rank test, we found that the LTI system is both controllable and observable.
Simulation results have shown that this nominal LTI was verysuitable for the design of
controllers, capable of steering the helicopter, in an engine ON situation, from low-speed
to medium-speed flight conditions.

Selection of weights
The robust control framework makes use of several user-defined weights, see Fig.4.5. In
this Chapter, these weights have been chosen as follows. Themultiplicative uncertainty
weight Win(s) is of the form Win(s) = diag[win1(s),win1(s),win1(s),win1(s)], with win1(s) a
filter whose magnitude represents the relative uncertaintyat each frequency (i.e. the level of
uncertainty in the behavior of the helicopter is frequency dependent). Based upon engineer-
ing judgment, we choose here forwin1(s) to consider 40% uncertainty at low frequency (DC
gain), 100% uncertainty at the filter crossover frequency of5 Hz (roughly in the range 2.5 to
5 times the anticipated closed-loop bandwidth), and 200% uncertainty at infinite frequency,
giving

win1(s) = (2s+ 23.75)/(s+ 59.37) (4.28)

32The condition corresponds to hover, with engine ON (the mainrotor RPM is constant).
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Next, the performance weight filter Wp(s) is placed on the (u, v,w, ψ) error signals to re-
flect the tracking objective for the three body linear velocities and the heading angle. Here
Wp(s) is a four-by-four, diagonal, frequency-varying weight Wp(s) = diag[wu(s),wv(s),
ww(s),wψ(s)], with each diagonal term defined as a first-order TFs/MP+ωB

s+ωBAss
. At low frequen-

cies this weighting function should be high in order to keep the error small. Beyond the
anticipated bandwidth of the closed-loop system, the tracking error may be released and
Wp(s) rolls off [64]. After several controller design cycles, we have settled for

For wu(s) (MP, ωB,Ass) = (2, 2π rad/s, 0.001)
For wv(s) (MP, ωB,Ass) = (2, 2π rad/s, 0.001)
For ww(s) (MP, ωB,Ass) = (2, 4π rad/s, 0.001)
For wψ(s) (MP, ωB,Ass) = (2, 4π rad/s, 0.001)

(4.29)

This means that a steady-state tracking error of 0.1% with respect to the normalized
filter input is allowed, whereas the tracking bandwidth of these filters is set below the 5
Hz actuators bandwidth (actuator data is reported in Table2.1of Chapter 2). Now, tracking
should not be achieved at the cost of too high control effort. Therefore, both actuator deflec-
tion (i.e. amplitude) and rate are penalized through weightWu(s) = diag[wact(s),wact(s),
wact(s),wact(s)], with

wact(s) = 10n
( s+ ω1

s+ ω2

)n

with (n, ω1, ω2) = (3, 6π rad/s, 60π rad/s) (4.30)

Next, a noise weight Wn(s) is defined to represent the actual noise levels associated with
each sensor, and is defined as a nine-by-nine, constant, diagonal scaling matrix described
as follows (given here in its unscaled form)

Wn(s) = diag[0.01m/s, 0.01m/s, 0.01m/s, 3π/180rad/s, 3π/180rad/s, 3π/180rad/s,
π/180rad, π/180rad, 3π/180rad]

(4.31)
Finally, a wind disturbance weight Wd(s) = diag[wdN (s),wdE(s),wdD(s)] is added to

simulate the frequency content of the NASA Dryden atmospheric wind model [71], and is
identical to the one used in the engine OFF case, see Eq. (4.24).

Controller synthesis and analysis
For the D-K iteration [72], we obtain after four iterations a stable controllerK(s) of order
38, using 0th order (constant)Ds-scalings. The controller is further reduced to 30th order,
after balancing and Hankel-norm model reduction [73], without any significant effect on
closed-loop robustness/performance. In Fig.4.15, we visualize the relevant TFs, defined in
the previous section, with the bandwidths for the three mainTFs given in Table4.1.

In particular, we see that the bandwidth of|Ti(s)| is high enough, to stabilize the plant,
i.e. above 2.1 rad/s, see our discussion in Section2.4.2. Also the closed-loop disturbance
rejection, given in Fig.4.9, shows good attenuation of horizontal wind disturbances, even
though the vertical disturbance attenuation could potentially be improved (approximately
-20 dB at a frequency of 2π rad/s). We also see that theSo is not well-behaved, since it
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Figure 4.15: Singular values ofL(s), Si (s), So(s), Ti (s), andTo(s), of the
inner-loop trajectory tracker (Engine ON case).

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−140

−120

−100

−80

−60

−40

−20

0

Frequency (rad/s)

S
in

gu
la

r 
V

al
ue

 (
dB

)

 

 

North wind disturbance: V
N

w

 −> u

East wind disturbance: V
E

w

 −> v

Down wind disturbance: V
D

w

 −> w

Figure 4.16: Closed-Loop wind disturbance rejection, for North-East-Down
(NED) winds, of the inner-loop trajectory tracker (Engine ON case).
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remains high at both low- and high-frequencies. This can be explained as follows. The
output loopL(s) is a 9x9 matrix, with 4 singular-values having very high values (for low-
frequencies). These high singular-values correspond to the 4 controlled channels. Since
our helicopter is under-actuated, the remaining 5 singular-values are all very low (for all
frequencies). Thus, inverting (I + L(s)) to getSo results in maximum singular-values which
are most often close to 0 dB.

Next, RS and RP are visualized in Fig.4.10and Fig.4.11. We can see that lower and
upper bounds are indistinguishable. We observe that the primordial RS is guaranteed (i.e.
a maximum value below 1). On the other hand, we see that RP is not met (i.e. a maxi-
mum value well above one). Again, this may potentially be dueto the fact that the chosen
uncertainty∆(s), shown in Fig.4.5, is not realistic. If robust performance specifications
need to be met, then this could potentially be done by lowering the amount of model input
uncertainty, and/or by relaxing some of the assumptions made during the various weights
selection. However, from our experience, this will likely compromise the closed-loop per-
formance of the controller, once tested upon the nonlinear system.
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Figure 4.17: Robust Stability of the inner-loop tra-
jectory tracker (Engine ON case).
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Figure 4.18: Robust Performance of the inner-loop
trajectory tracker (Engine ON case).

4.10.Appendix C: Design of the outer-loop controller for
the engine ON case

Again, the design approach is related to the well-known time-scale separation principle
[63] between slow and fast dynamics of a dynamical system. As mentioned earlier, see
Fig. 4.3, we choose to have the helicopter track the following three reference signals: 3D
inertial33 positions (xN xE xZ)⊤. Recall also that the goal of the controller is to minimize
theL2-gain boundγ from the exogenous inputsw to the controlled outputsz, despite the
uncertainty∆(s). The various signals are further given as follows: the exogenous inputs
w = [n⊤ r⊤]⊤, the controlled outputsz = [zu

⊤ zp
⊤]⊤, the control inputsu = (VN VE VZ)⊤d ,

the measured outputsv = [r⊤ y⊤]⊤, the reference signalsr = (xN xE xZ)⊤TP, the system out-
putsy = (xN xE xZ)⊤, and the sensors noisen (added to the system outputs), see Fig.4.5.

33Which is equivalent to North-East-Down (NED) position in our flight dynamics model.
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Here the outer-loop does not include disturbance signals, since the wind has already been
accounted for, within the inner-loop control structure.

As discussed in Section4.1, a single LTI plant is used for controller design. The state-
space data used to design the outer-loop trajectory trackeris obtained as follows. An LTI
dynamical system can be formed by connecting the nominal LTImodel, used for the inner-
loop TT, with its inner-loop controller, and subsequently adding a set of integrators to gen-
erate the 3D inertial positions (xN xE xZ)⊤. This manipulation is readily done in MATLAB,
and results in the nominal LTI model needed to design the outer-loop position controller. In
our case, we obtain a three-by-three input-output system, with a state-vector of dimension
55. Next a minimum realization is obtained, resulting in a state-vector of dimension 42 (the
LTI model is too big to be added to the Appendix). Note that here too scalings need to be
applied. Further, and except for three poles at the origin (corresponding to the integration
of the 3D velocities), all other eigenvalues of theA matrix are stable and well damped,
implying easier controller design. Again, by using the eigenvalues of theA matrix in the
PBH rank test, we found that the LTI system is both controllable and observable.

The design philosophy for theµ outer-loop TT parallels that of the inner-loop.

Selection of weights
The multiplicative uncertainty weight Win(s) is of the form Win(s) = diag[win1(s), win1(s),
win1(s)], with win1(s) identical to Eq. (4.28). Obviously, this choice of the uncertainty
weight Win(s) is somewhat arbitrary. This said, the purpose is here to addsome robust-
ness to the closed-loop system. The performance weight Wp(s) is placed on the (xN, xE, xZ)
error signals to reflect the tracking objective for the inertial position (which as a reminder
is equivalent to NED position in our model). Here, Wp(s) is a three-by-three diagonal,
frequency-varying weight. At low frequencies this weighting function should be high in or-
der to keep the error small. Beyond the anticipated bandwidth of the position tracking sys-
tem, this error may be released and Wp(s) rolls off. We have Wp(s) = diag[wxN(s),wxE(s),
wxZ(s)], with each diagonal term defined as a first-order transfer function s/MP+ωB

s+ωBAss
. After

several controller design cycles, we have settled for

For wxN (s) (MP, ωB,Ass) = (2, 0.2π rad/s, 0.001)
For wxE (s) (MP, ωB,Ass) = (2, 0.2π rad/s, 0.001)
For wxZ (s) (MP, ωB,Ass) = (2, 0.4π rad/s, 0.001)

(4.32)

This means that a steady-state tracking error of 0.1% with respect to the normalized
input is allowed. Further, the filter bandwidths are adjusted to be ten times smaller than the
Wp(s) filter bandwidths for the inner-loop case.

Next, tracking should not be achieved at the cost of too high control effort (i.e. resulting
in much too large velocity setpointsu = (VN VE VZ)⊤d for the inner-loop). This means
that both inertial velocities and inertial accelerations should be penalized, through weight
Wu(s) = diag[wact(s),wact(s),wact(s)], with wact(s) identical to the one chosen for the inner-
loop, with engine ON. Again, this choice may be interpreted as rather arbitrary, since here
Wu(s) is assigned to the inner-loop setpointsu = (VN VE VZ)⊤d , whereas for the design of
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the inner-loop controller, Wu(s) was assigned to the actuators. Hence, potentially better
choices for Wu(s) may exist, although the one selected here provided satisfactory results.
Finally, a noise weight Wn(s) is also defined to scale the normalized position measurement
noise. The sensor noise model is defined here as a three-by-three, constant, diagonal scaling
matrix described by (given here in its unscaled form)

Wn(s) = diag[0.1 m, 0.1 m, 0.1 m] (4.33)

Controller synthesis and analysis
For the D-K iteration [72], we obtain after four iterations a stable controllerK(s) of or-
der 63, using 6th orderDs(s)-scalings. The controller is further reduced to 30th order (us-
ing the same technique as for the inner-loop), without any effect on closed-loop robust-
ness/performance. In Fig.4.19, we visualize the relevant TFs (we see thatSi(s) = So(s),
andTi(s) = To(s)), with the bandwidths for the three TFs given in Table4.1. In particular,
we see that the bandwidth of|Ti(s)| is ten times lower its inner-loop counterpart, which is
good since we do not want both controllers to start interacting with each other. Further, RS
is shown in Fig.4.20, whereas RP is pictured in Fig.4.21. Again, we observe that RP is not
achieved, but RS is guaranteed.
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Figure 4.19: Singular values ofL(s), Si (s), So(s), Ti (s), andTo(s), of the outer-loop trajectory tracker (Engine
ON case).
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Figure 4.20: Robust Stability of the outer-loop tra-
jectory tracker (Engine ON case).
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Figure 4.21: Robust Performance of the outer-loop
trajectory tracker (Engine ON case).

Adapting the engine ON outer-loop controller
For the case of an engine ON automatic landing, and when closeto the ground, it is crucial
to keep the reference velocities as small as possible. To this end, we adapt the outer-loop
controller as follows: the position tracking is switched-off, i.e. the values for (u v w)⊤d are
set to zero, once the helicopter height descends below a predefined threshold (keeping only
velocity and heading tracking). This helps lowering the final (touch-down) values of the 3D
velocities, by giving more time to the velocity deceleration process.



4

174 4.On-line Trajectory Planning and Tracking: System Design

4.11.Appendix D: Maximum roll (or pitch) angle for safe (i.e.
successful) landing

The landing gear of our Align T-REX small-scale helicopter,see Fig.4.22, has been re-
designed in order to haveOS = OG = h1. In this figure the half-ellipse, depicted in blue,
represents the landing gear frame, whereas the yellow bar represents a main rotor blade.

From Fig.4.22, since we havêS OG= π
2 then we also obtain̂OSG= µ1 =

π
4 since

OS = OG. Further, due to the moments created by the weight forceW and the ground
reaction forceR, the helicopter will tilt-over to the right and hit the ground at landing,
whenever the Center of GravityG moves "to the right" of pointS. WhenG is exactly above
S, and sinceµ1 =

π
4 , we can compute the vehicle maximum roll angle (for safe landing) as:

φ = π
4 = 45◦.

This said, a more stringent limiting factor may exist, due toa possible ground strike
by a main rotor blade as depicted in Fig.4.22. Obviously, the vehicle roll angle for safe
landing will also depend upon the blade flapping angleβbl. From the geometry depicted
in Fig. 4.22, and using triangle identities, we can derive the roll angleat which a blade
ground-strike will occur, as follows

φ = π − (µ2 + µ4) (4.34)

with

µ2 = cos−1(
h1

S H
) (4.35)

and sinceHT = Rrot, we have

µ4 = cos−1(
R2

rot − (S T2 + S H2)
−2.S T.S H

) (4.36)

with the distancesS HandS Tdefined by

S H =

√

(h1 +GH)2 + h2
1

S T =

√

R2
rot + S H2 − 2.Rrot.S H. cosµ3

(4.37)

and angleµ3 obtained as follows

µ3 = π
2 − (µ5 + |βbl|)

µ5 = π − ( π2 + µ2)
(4.38)

with µ2 computed using Eq. (4.35) and the distanceS H from Eq. (4.37).

From engine OFF (autorotation) flight and landing simulations, we found variations
between -1◦down-flap and+4◦up-flap for the blade flap angleβbl. Now, using for our heli-
copterRrot = 0.9, h1 = 0.25,GH = 0.23, Table4.2 gives the maximum vehicle roll angle
φ for safe landing, as a function of blade down-flap angleβbl. We see that a -1◦down-flap
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Table 4.2: Maximum vehicle roll angleφ for safe landing, as a function of blade down-flap angleβbl.

Flap angleβbl (◦) 0 -1 -5 -10 -15
Roll angleφ (◦) 36.4 35.5 31.8 27.0 21.7

Figure 4.22: Maximum vehicle roll angleφ for safe landing, for the case of a negative blade flap angleβbl.

would result in a 35.5◦maximum vehicle roll angle, hence way above the 10◦roll angle de-
fined in the requirement for safe landing in Definition 4.2 of Chapter 4. Even for much
larger down-flap angles, e.g. -15◦possibly due to the ground impact, we see that the maxi-
mum allowable roll angle is still higher than the 10◦specification. A similar reasoning can
also be applied to the pitch axis which, based upon the shape of the landing gear, gives
comparable results to the ones outlined for the roll axis.
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4.12.Appendix E: Proof of Lemma 1
From Eq. (2.4) and Eq. (2.8) we obtain


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








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u
v
w
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ẋN cosθ cosψ + ẋE cosθ sinψ
−ẋN sinψ cosφ + ẋN sinθ sinφ cosψ
ẋN sinφ sinψ + ẋN sinθ cosψ cosφ

−ẋZ sinθ
+ẋE cosψ cosφ + ẋE sinθ sinφ sinψ + ẋZ sinφ cosθ
−ẋE sinφ cosψ + ẋE sinθ sinψ cosφ + ẋZ cosφ cosθ
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
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Now, inverting Eq. (2.7) we get
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From Eq. (2.5) and Eq. (4.39), and taking the derivative of Eq. (4.39), we obtain for the
three force inputsFb

CG = (Fb
CGX

Fb
CGY

Fb
CGZ

)⊤

Fb
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Finally, from Eq. (2.6) and Eq. (4.40), and taking the derivative of Eq. (4.40), we can
express the three moments inputsMb

CG = (Mb
CGX

Mb
CGY

Mb
CGZ

)⊤ as

Mb
CGX
= E(ψ̇(φ̇ cosθ sinφ + θ̇ cosφ sinθ) + θ̈ sinφ

+φ̇θ̇ cosφ − ψ̈ cosφ cosθ) − A(ψ̈ sinθ − φ̈ + ψ̇θ̇ cosθ)
−F(ψ̇(φ̇ cosφ cosθ − θ̇ sinφ sinθ)
+θ̈ cosφ − φ̇θ̇ sinφ + ψ̈ cosθ sinφ)

+(θ̇ sinφ − ψ̇ cosφ cosθ)(B(θ̇ cosφ + ψ̇ cosθ sinφ)
−F(φ̇ − ψ̇ sinθ) + D(θ̇ sinφ − ψ̇ cosφ cosθ))
−(θ̇ cosφ + ψ̇ cosθ sinφ)(E(φ̇ − ψ̇ sinθ)

+C(θ̇ sinφ − ψ̇ cosφ cosθ) + D(θ̇ cosφ + ψ̇ cosθ sinφ))

(4.42)

Mb
CGY
= D(ψ̇(φ̇ cosθ sinφ + θ̇ cosφ sinθ) + θ̈ sinφ

+φ̇θ̇ cosφ − ψ̈ cosφ cosθ) + B(ψ̇(φ̇ cosφ cosθ − θ̇ sinφ sinθ)
+θ̈ cosφ − φ̇θ̇ sinφ + ψ̈ cosθ sinφ) + F(ψ̈ sinθ − φ̈ + ψ̇θ̇ cosθ)
+(φ̇ − ψ̇ sinθ)(E(φ̇ − ψ̇ sinθ) +C(θ̇ sinφ − ψ̇ cosφ cosθ)

+D(θ̇ cosφ + ψ̇ cosθ sinφ)) − (θ̇ sinφ
−ψ̇ cosφ cosθ)(A(φ̇ − ψ̇ sinθ) + E(θ̇ sinφ − ψ̇ cosφ cosθ)

−F(θ̇ cosφ + ψ̇ cosθ sinφ))

(4.43)
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Mb
CGZ
= E(ψ̈ sinθ − φ̈ + ψ̇θ̇ cosθ) −C(ψ̇(φ̇ cosθ sinφ

+θ̇ cosφ sinθ) + θ̈ sinφ + φ̇θ̇ cosφ − ψ̈ cosφ cosθ)
−D(ψ̇(φ̇ cosφ cosθ − θ̇ sinφ sinθ) + θ̈ cosφ − φ̇θ̇ sinφ
+ψ̈ cosθ sinφ) + (φ̇ − ψ̇ sinθ)(B(θ̇ cosφ + ψ̇ cosθ sinφ)

−F(φ̇ − ψ̇ sinθ) + D(θ̇ sinφ − ψ̇ cosφ cosθ))
−(θ̇ cosφ + ψ̇ cosθ sinφ)(A(φ̇ − ψ̇ sinθ)

+E(θ̇ sinφ − ψ̇ cosφ cosθ) − F(θ̇ cosφ + ψ̇ cosθ sinφ))

(4.44)
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5
On-line Trajectory Planning and

Tracking: Simulation Results

The helicopter approaches closer than any other vehicle to fulfillment of mankind’s
ancient dreams of the flying horse and the magic carpet.

Igor I. Sikorsky
Designed the world’s first mass-produced helicopter in 1942

In Chapter 4, we presented a combined Trajectory Planning (TP) and Trajectory Tracking
(TT) system, having on-line computational tractability. In Chapter 5, we demonstrate—using
the high-fidelity, high-order, nonlinear helicopter simulation of Chapter 2—the first, real-
time feasible, model-based TP and TT system, for the case of asmall-scale helicopter UAV
with an engine OFF condition (i.e. autorotation). To betterillustrate the various challenges
encountered when designing a planning and tracking system for the engine OFF condition,
a comparison with two engine ON automated flight maneuvers isalso provided.
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5.1. Introduction

I n this Chapter, we evaluate the combined Trajectory Planning(TP) and Trajectory Track-
ing (TT) functionalities, developed in Chapter 4. These aretested on the helicopter, high-

fidelity, High-Order Model (HOM) developed in Chapter 2. Five test cases are presented,
two with engine ON, and three with engine OFF (autorotation), starting from various initial
conditions. The modeled small-scale UAV is the instrumented Remote-Controlled (RC)
Align T-REX helicopter, used also in Chapter 2, and belonging to the flybarless two-bladed
main rotor class. This vehicle has a total mass of 7.75 kg, a main rotor radius of 0.9 m, a
main rotor nominal angular velocity of 1350 RPM, a NACA 0015 main rotor airfoil, and
an induced velocity in hover given byvih = 3.5 m/s (see also Table2.1, of Chapter 2, for
additional helicopter parameters).

The two engine ON test cases are included to illustrate that the Flight Control System
(FCS) framework, presented in the Appendices of Chapter 4, allows for a variety of auto-
mated flight maneuvers. With the engine ON, we demonstrate anautomatic landing, and a
cruise-to-hover maneuver. The first engine ON test case starts from an initial flight condi-
tion which is identical to the one used when deriving the nominal LTI model, used for TT
design (i.e. helicopter in hover). The second test case starts from an initial condition which
is far away from the operating condition used to derive this LTI model. Both test cases are
set in an ideal environment, i.e. a noise-free and disturbance-free environment.

The three engine OFF test cases are set to demonstrate the automatic autorotation land-
ing capability. Here too, the first engine OFF test case is setto evaluate the FCS perfor-
mance for an initial flight condition which is identical to the flight condition used to derive
the nominal LTI model, used for TT design (i.e. helicopter inhover, however with the main
rotor RPM free to vary). The second test case starts from an initial condition which is far
away from the operating condition used to derive this LTI model. These first two test cases
are also set in an ideal environment, i.e. a noise-free and disturbance-free environment.
The third engine OFF test case is added to illustrate the FCS performance when including
sensors measurement noise together with a wind disturbance.

5.2.Setting up the trajectory planning for the engine ON
cases

Case 1.This test case involves a landing maneuver from a hover initial condition, starting
at an altitude1 of -8 m, with further 2 m and -1 m displacements, in the North and East axes
respectively, together with a 90◦ right turn in heading. Numerically, the initial and final

1Recall that the vertical z-axis is oriented positive down.
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conditions for this maneuver are given by2:

xi =
(

0 m 0 m −8 m 0 m/s 0 m/s 0 m/s

0 rad/s 0 rad/s 0 rad/s π(3.4/180)rad 0 rad 0 rad
)⊤

x f =
(

2 m −1 m −1 m 0 m/s 0 m/s 0.2 m/s

0 rad/s 0 rad/s 0 rad/s π(3.4/180)rad 0 rad π(90/180)rad
)⊤

Before proceeding, we make the following comments

• The final altitudexZ (see the third component ofx f ) is set to -1 m. This allows to add
a safety margin into the planned trajectory.

• The final vertical velocityw (see the sixth component ofx f ) is set to 0.2 m/s. When
close to the ground, the goal is to move at a constant and slow rate of descent (until
the skids hit the ground).

Next, the flight envelope (i.e. state constraints in the formof minimum and maximum
limits, partially based upon engineering judgment) is defined as follows:

xmin = −
(

50m 50m 50m 5 m/s 1 m/s 3 m/s
π(100/180)rad/s π(100/180)rad/s π(100/180)rad/s

π(15/180)rad π(15/180)rad 2π rad
)⊤

xmax=
(

50m 50m −0.25m 15m/s 1 m/s 1.16m/s
π(100/180)rad/s π(100/180)rad/s π(100/180)rad/s

π(15/180)rad π(15/180)rad 2π rad
)⊤

Before proceeding, we make the following comments

• When the helicopter is on the ground, the Center of Gravity (CG) height is equal to
-0.25 m (see the third component ofxmax).

• The maximum helicopter velocity is limited as follows. A full-size helicopter such as
the Bell UH-1H has a main rotor radius of 7.24 m, whereas our model helicopter has a
main rotor radius of 0.9 m, resulting in a scale ratioN equal toN = 7.24/0.9= 8.04.
Now, a model and its full-size counterpart are said to be dynamically similar if the
relative magnitudes of their governing forces are unchanged by scale [1]. Often, the
so-called Froude scaling is used to study systems at a reduced size [1]. The Bell
UH-1H has a top speed of 60.28m/s, thus based on Froude scaling the top speed of
our RC helicopter would be 60.28/

√
N = 21.26 m/s. In our case, and in order to

reduce the stresses on the airframe and main rotor hub, we do not intend to operate
the vehicle beyond 15 m/s (see the fourth component ofxmax).

2Recall also that the rigid-body dynamics, used in the flatness TP, is characterized by a state-vector of dimension
twelvex = (xN xE xZ u v w p q rφ θ ψ)⊤, with total forces and total moments as inputs, each of dimension three,
given byFb

CG = (Fb
CGX

Fb
CGY

Fb
CGZ

)⊤, andMb
CG = (Mb

CGX
Mb

CGY
Mb

CGZ
)⊤.
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• The body lateral velocityv is constrained to± 1 m/s, as to limit vehicle sideslip
motion.

• To prevent flight into the Vortex-Ring-State (VRS)3, the body vertical velocityw is
limited to a third of the induced velocity in hoverw ≤ 1

3vih, giving w ≤ 3.5/3 = 1.16
m/s (see the sixth component ofxmax).

• The rollφ and pitchθ angles are limited to± 15◦, in order to: 1) keep the load factor
n within acceptable values4, i.e. preferably below one; and 2) minimize the system’s
nonlinear behavior, facilitating thus the trajectory tracking5.

Next, the input constraints, i.e. on the total forces and total moments, are based upon
simulation experiments with the nonlinear helicopter HOM of Chapter 2, and have been
chosen as follows:

Fb
CGmin

= −
(

20 N 15 N 120N
)⊤

Mb
CGmin

= −
(

5 Nm 5 Nm 5 Nm
)⊤

Fb
CGmax

=
(

20 N 15 N −30 N
)⊤

Mb
CGmax

=
(

5 Nm 5 Nm 5 Nm
)⊤

Besides, additional constraints have also been included (refer also to the flatness TP
in Appendix A of Chapter 4), such as: 1) a tail rotor blade tip clearance to avoid ground
strike by the tail rotor during flare; and 2) a supplementary limit on the airflow through the
main rotor as to avoid flight into the VRS. The airflow through the main rotor is given by
Vrotor = w+ pyH − qxH , which is limited to half the induced velocity in hoverVrotor ≤ 1

2vih,
see Fig.2.19in Chapter 2. In the cost functional, defined in Appendix A of Chapter 4, we
have used the following weightsWT f = Wv = 1 andWr = 100. HereWr is chosen high to
reward straight flight trajectories.

Finally, we use the ’adaptation’ functionality of the engine ON outer-loop controller,
as outlined in Appendix C of Chapter 4. When close to the ground, it is crucial to keep
the reference velocities as small as possible. Once the helicopter height descends below a
predefined threshold (here -1 m), the position control is stopped.

Case 2.This test case involves a cruise-to-hover maneuver, starting at a North velocity
VN = 10 m/s, an altitude of -20 m, and then transitioning to hover mode,at an altitude of
-5 m, with further 30 m and -5 m displacements, in the North andEast axes respectively,

3Briefly summarized, the VRS corresponds to a condition wherethe helicopter is descending in its own wake,
resulting in a chaotic and dangerous flight condition [2].

4For a level turning flight the load factor is given byn = 1
cosφ .

5It is well known that strong coupling in longitudinal and lateral motions exists for helicopters flying in low-speed,
high-g turns (i.e. high load factor), and that for helicopters with a single main rotor, the direction of turn has also
a significant influence on the flight dynamics [3]. This coupling becomes stronger with higher roll or pitch angles,
i.e. with higher-g turns [4, 5]. It was further shown in [3] that the performance of a FCS, designed using a straight
flight condition, can be severely degraded when the helicopter enters a turn. Since in our case the nominal LTI
plant, used for control synthesis, corresponds to a hover condition, it becomes relevant to maintain small angles
in roll and pitch.
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together with a 120◦ left turn in heading. Numerically, the initial and final conditions for
this maneuver are given by:

xi =
(

0 m 0 m −20m 10m/s 0 m/s 0 m/s

0 rad/s 0 rad/s 0 rad/s π(2.6/180)rad −π(1.1/180)rad 0 rad
)⊤

x f =
(

30m −5 m −5 m 0 m/s 0 m/s 0 m/s

0 rad/s 0 rad/s 0 rad/s π(3.4/180)rad 0 rad −π(120/180)rad
)⊤

Regarding the state and input constraints, and cost functional weights, these are identi-
cal to the engine ON case 1.

5.3.Setting up the trajectory planning for the engine OFF
cases

Three engine OFF test cases are included to demonstrate the automatic autorotation landing
capability. The first engine OFF test case is set to evaluate the FCS performance for an ini-
tial flight condition which is identical to the flight condition used to derive the nominal LTI
model, used for TT design (i.e. helicopter in hover with freemain rotor RPM). The second
test case starts from an initial condition which is far away from the operating condition used
to derive this LTI model. These first two test cases are also set in an ideal environment, i.e.
a noise-free and disturbance-free environment. The third engine OFF test case is set to il-
lustrate the FCS performance when including sensors measurement noise, together with a
wind disturbance.

Case 1.This test case involves an autorotation, starting from an engine failure in hover,
at an altitude of -35 m, and then landing at 2 m North and 1 m Eastposition, without any
heading turn. Numerically, the initial and final conditionsare given by:

xi =
(

0 m 0 m −35m 0 m/s 0 m/s 0 m/s

0 rad/s 0 rad/s 0 rad/s π(3.4/180)rad 0 rad 0 rad
)⊤

x f =
(

2 m 1 m −0.75m 0 m/s 0 m/s 0.2 m/s

0 rad/s 0 rad/s 0 rad/s 0 rad 0 rad 0 rad
)⊤

Here, we make also the following comments

• Note that we also give a final value to the North and East horizontal positions (this
was not the case in the planning of Chapter 3). This represents additional constraints
on the TP. We do this with an eye on future experimental flight tests where, for safety
reasons, we want to know in advance where the helicopter willbe landing.

• The final altitudexZ (see the third component ofx f ) is set to -0.75 m. This allows to
add a safety margin into the planned trajectory6.

6This value was set to -1 m for the engine ON automatic landing.For the engine OFF case, better autoration
landings were obtained when adjusting this value to -0.75 m.
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• Again, the final vertical velocityw (see the sixth component ofx f ) is set to 0.2 m/s.

• The final timeT f is bounded such thatT f ≤ TOFF, with
xZI

1.75vih
≤ TOFF ≤

xZI
1.50vih

, see
our discussion in Section4.3.3, giving for this test case 5.7s ≤ TOFF ≤ 6.6s. Here
we choseTOFF = 6 s.

The constraints on states and inputs are identical to the ones used in the engine ON
cases, except for the following item: we allow for a higher downwards velocity on thew
channel, up to 15 m/s. Besides, the limit on airflow through the main rotor is alsoremoved,
i.e. flight through the VRS is here allowed7. In the cost functional of Section4.3.3, we have
used the following weightsWu =Wv =Ww =Wψ = 1.

Finally, we use here the ’adaptation’ functionality of the engine OFF outer-loop con-
troller, as outlined in Section4.6.3of Chapter 4. When close to the ground, it is crucial
to keep the reference velocities as small as possible. Once the helicopter height descends
below a predefined threshold (here -1 m), the position control is stopped.

Case 2.This test case involves an autorotation, starting from an engine failure atVN =

8 m/s, at an altitude of -45 m, and then landing at 30 m North and 0 m East position,
together with a 30◦ left turn in heading. Numerically, the initial and final conditions for this
maneuver are given by:

xi =
(

0 m 0 m −45m 8 m/s 0 m/s 0 m/s

0 rad/s 0 rad/s 0 rad/s π(2.6/180)rad 0 rad −π(0.8/180)rad
)⊤

x f =
(

30m 0 m −0.75m 0 m/s 0 m/s 0.2 m/s

0 rad/s 0 rad/s 0 rad/s 0 rad 0 rad −π(30/180)rad
)⊤

We make also the following comments

• Again we give a final value to the North and East horizontal positions.

• The final timeT f is bounded such thatT f ≤ TOFF, with
xZI

1.75vih
≤ TOFF ≤

xZI
1.50vih

,
giving for this test case 7.3s≤ TOFF ≤ 8.5s. Here we choseTOFF = 7.3 s.

Regarding the state and input constraints, and cost functional weights, these are identi-
cal to the engine OFF case 1.

For engine OFF flight conditions having relatively high initial velocities, we imple-
mented the following ’adaptation’ functionality for the engine OFF outer-loop controller.
When|xZ| ≤ 5 m is true, we stop the horizontal position tracking (xN, xE). This helps low-
ering the final (touch-down) values of the 2D horizontal velocities. Further, when|xZ| ≤ 1
m is true, we stop the vertical position tracking (xZ) as well.

7Indeed, and depending on the initial condition at the instant of engine failure, a brief transition through the VRS
may be unavoidable.
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Case 3.This test case involves an autorotation, starting from an engine failure in hover,
at an altitude of -30 m, and then landing at 0 m North and 0 m Eastposition (i.e. the
horizontal position of the landing spot is identical to the horizontal position of the initial
state), without any heading turn. We also include Gaussian,white noise, on the 12 measured
statesy = (xN xE xZ u v w p q rφ θ ψ)⊤, with the following 1-σ values:

(

0.1 m 0.1 m 0.1 m 0.05m/s 0.05m/s 0.05m/s
π(3/180)rad π(3/180)rad π(3/180)rad

π(1/180)rad π(1/180)rad π(3/180)rad
)⊤

These 1-σ values correspond to the noise weight values used during controller design in
Chapter 4, expect for the noise on the three body velocities (the three most critical signals),
where we have used a noise value which is five times higher thanthe value used during
controller design, in order to better visualize the response characteristics of the FCS.

We also include a headwind of 8 m/s, which is equivalent to a Beaufort wind force value
of 4, corresponding to the yearly average wind force along the coast in The Netherlands
[6]. Note that this is a rather heavy wind condition for such a small-scale helicopter. Now,
numerically, the initial and final conditions for this maneuver are given by:

xi =
(

0 m 0 m −30m 0 m/s 0 m/s 0 m/s

0 rad/s 0 rad/s 0 rad/s π(3.4/180)rad 0 rad 0 rad
)⊤

x f =
(

0 m 0 m −0.75m 0 m/s 0 m/s 0.2 m/s

0 rad/s 0 rad/s 0 rad/s 0 rad 0 rad 0 rad
)⊤

The final timeT f is bounded such thatT f ≤ TOFF, with
xZI

1.75vih
≤ TOFF ≤

xZI
1.50vih

, giving
for this test case 4.9s ≤ TOFF ≤ 5.7s. Here we choseTOFF = 5 s. Regarding the state and
input constraints, and cost functional weights, together with the ’adaptation’ functionality
of the outer-loop controller, these are identical to the engine OFF case 1.

Remark 7 Before proceeding with analyzing the time-traces of the closed-loop simulation
data, we quickly compared the frequency content8 of the various inner- and outer-loop ref-
erence signals (generated by the planner, for all engine ON and engine OFF test cases) with
the bandwidths of the complementary sensitivity function Ti(s), which have been reported
in Table4.1of Chapter 4. Fortunately, the frequency content of all reference signals were
lower than the corresponding bandwidth of Ti(s), hence the engine ON and OFF controllers
ought to be able to track the reference signals.

5.4.Discussion of closed-loop simulation results for the en-
gine ON cases

Fig. 5.1 and Fig.5.4 visualize the required control inputs for the engine ON testcases 1
and 2, respectively. Fig.5.2 and Fig.5.5 visualize the evolution of the 3D inertial veloci-
ties (VN,VE,VZ) and positions (xN, xE, xZ). Although the vertical z-axis is oriented positive
8This is done by computing the single-sided amplitude spectra, obtained through Fast Fourier Transforms (FFT).
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down, on the figuresVZ andxZ are shown positive up for better readability. Further, Fig.5.3
and Fig.5.6visualize the time-histories for the body states, namely attitude angles (φ, θ, ψ),
linear velocities (u, v,w), and rotational velocities (p, q, r).

In Fig.5.2, Fig.5.5, Fig.5.3, and Fig.5.6, the black lines represent the outputs from the
flatness TP, these include the planned 3D inertial positions(xN xE xZ)⊤TP, defined in Fig.4.3,
the planned 3D body velocities (u v w)⊤TP, defined in Fig.4.4, and the planned headingψTP,
also defined in Fig.4.4. The flatness-based TP, in Section4.3of Chapter 4, computes also
a planned trajectory for the remaining states, e.g. roll angle φ, pitch angleθ, roll ratep, etc.
However, and for the sake of clarity, in Fig.5.2, Fig. 5.5, Fig. 5.3, and Fig.5.6, we have
only visualized the TP outputs that will be tracked.

Now, in Fig.5.2and Fig.5.5, the blue lines, namedreference for outer-loop, represent
the signals that need to be tracked by the outer-loop controller. Here, these signals are
simply the planned 3D inertial positions (xN xE xZ)⊤TP, i.e. black and blue lines are identical
(except possibly at the end of the flight, see Section4.6.3of Chapter 4). In Fig.5.3 and
Fig. 5.6, the blue lines, namedreference for inner-loop, represent the signals that need to
be tracked by the inner-loop controller. Here, these signals include the planned heading
ψTP, where again black and blue lines are identical. However, the velocities that need to be
tracked by the inner-loop are given by (u v w)⊤TP + (u v w)⊤d , and here black and blue lines
are not identical. Finally, the red lines represent the outputs from the nonlinear helicopter
model of Chapter 2. From these figures, we see that:

• The combined trajectory planning and tracking system is capable of safely guiding
and controlling the helicopter.

• From Fig.5.3, and Fig.5.6, we see that a single LTI controller is capable of control-
ling the nonlinear helicopter system, for a relatively large variation in forward vehicle
velocity (i.e. body linear velocityu is varying between approximately -1 m/s and 10
m/s).

• The specifications for a successful automatic landing, see Definition 4.2 in Sec-
tion 4.3.3and Appendix D of Chapter 4, have been defined as|u| ≤ 0.5 m/s, |v| ≤ 0.5
m/s, |w| ≤ 0.25 m/s, |φ| ≤ 10 ◦, and|θ| ≤ 10 ◦. Regarding case 1, at the instant of
ground impact, we have for the body horizontal velocitiesu = 0.03 m/s, v = −0.04
m/s, the body vertical velocityw = 0.22 m/s, and the roll and pitch anglesφ = 5.02◦,
andθ = 2.04 ◦. Hence all specifications for a successful automatic landing are met.

• From Fig.5.1, Fig. 5.4, and from the actuator data reported in Table2.1 of Chapter
2, we see that the control input amplitudes never saturate, i.e. |θ0| ≤ 13◦, |θ1c| ≤ 6◦,
|θ1s| ≤ 6◦, and|θTR| ≤ 20◦.

• From Fig.5.2, Fig.5.5, Fig.5.3, and Fig.5.6, better tracking performance is achieved
for the vertical motionw andxZ in (and headingψ), when compared to tracking per-
formance on the horizontal channels (u, v) and (xN, xE), see our discussion in Sec-
tion 2.4.2of Chapter 2.
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• Close to zero steady-state errors can be seen for the inner-loop reference tracking, for
both test cases.

• Position control clearly exhibit some over- and undershoot. In addition, nonzero
steady-state errors are observed for test case 1. This is partially due to the fact that
position control is stopped when the helicopter descends below 1 m.

• Regarding test case 2, even though rollφ and pitchθ angles are not controlled, they
nicely adjust, at the end of the flight, to their respective hover values.

• Although the nominal model, used for control design, was linearized at a condition
outside the ground effect, we did not notice any significant performance deterioration
of the closed-loop system, when the helicopter was in groundeffect (i.e. below 1 m
above ground level).

In addition, Fig.5.7, Fig. 5.8, Fig. 5.9, and Fig.5.10visualize the frequency content
of the main rotor lateral Tip-Path-Plane (TPP) tilt angleβ1s, vehicle roll ratep, and con-
trol inputs respectively, for the Engine ON case 1 (the engine ON case 2 is very similar).
Although, in our test cases, the frequency contents of the applied control inputs are not
broadband, we are still able to identify some salient natural modes of this small-scale heli-
copter system. For instance, the first two figures clearly show the main rotor TPP modes,
with the lowest (the so-called regressing TPP mode) at a frequency of 5.5 Hz. The regress-
ing flapping mode is the most relevant one, when focusing on helicopter flight dynamics,
as it may have a tendency to couple into the fuselage modes [7–9]. Fig. 5.8 also shows
the main rotor vibrations. In the engine ON case, i.e. at a fixed main rotor RPM of 1350
(equivalent to 22.5 Hz), we can clearly identify the 2/Rev9 rotor vibration at 45 Hz.

For the engine ON case, simulation tests have shown that a high-bandwidth closed-loop
system was not required for the case of gentle and smooth flight maneuvers. This led to
the selection of low bandwidth performance weights Wp(s), during controller synthesis.
Accordingly we see that the frequency content of the controlinputs is rather low, staying
below 0.5 Hz, see Fig.5.9–Fig.5.10, except for an interestingly large peak at 2.7 Hz. This
peak at 2.7 Hz, clearly seen on these four figures (predominantly related to a roll-pitch-yaw
motion), is an interesting aspect of these figures, and represents the interaction between
the Flight Control Computer (FCS) and the main rotor. Hence,we have a situation where
the actuators are also reacting to a periodic rotor-fuselage coupling (in addition to vehicle
rigid-body dynamics), as opposed to a context where the actuators are only responding to
the rigid-body dynamics. This clearly results in limit cycle oscillations.

In the experimental results obtained in [10, 11], a 3.1 Hz pendulum-like mode in roll
and pitch was also observed, for the case of a two-bladed small-scale helicopter, albeit
having a teetered main rotor, but with somewhat comparable vehicle size and mass, hence
corroborating our results. This phenomenon (i.e. interaction between the FCS and the main
rotor) has only sparsely been covered in the small-scale UAVliterature. This phenomenon
is well-known within the realm of wind turbines [12], and is somewhat reminiscent to the

9Since we have a two-bladed main rotor.
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realm of Higher-Harmonic-Control (HHC) for helicopters [13]. This interaction between
the FCS and the main rotor is comparable to the well-known interaction between aircraft
FCS and aircraft structural dynamics—i.e. aeroservoelastic effects [14]—which are known
to lead to flutter or limit cycle oscillations, and hence dynamic and fatigue loads. Aside
from these dynamic and fatigue loads, this dynamical interaction would also result in our
case in an increase of the electrical power consumption, andhence a lower flight time. A
general approach to mitigate such problems would consist in: 1) using higher-order LTI
models during the control design, possibly in combination with a reduced-order observer,
in order to estimate the unmeasured main rotor states; and/or 2) use carefully selected notch
filters, see [11].

5.5.Discussion of closed-loop simulation results for the en-
gine OFFcases

We discuss here the first two engine OFF cases, the third engine OFF case will be addressed
in Section5.5.2. Fig.5.13and Fig.5.16visualize the required control inputs for the engine
OFF test cases 1 and 2 respectively. Fig.5.14 and Fig.5.17 visualize the evolution of
the 3D inertial velocities (VN,VE,VZ) and positions (xN, xE, xZ), whereas Fig.5.15 and
Fig. 5.18visualize the time-histories for the body states, namely attitude angles (φ, θ, ψ),
linear velocities (u, v,w), and rotational velocities (p, q, r). Fig.5.19and Fig.5.20visualize
the time-histories for the main rotor RPMΩMR. Note also that the definition of the black,
blue, and red lines, is identical to the one presented here-above, for the engine ON cases,
and hence is not repeated here. From these figures, we see that:

• The combined trajectory planning and tracking system is capable of safely guiding
and controlling the helicopter in autorotation.

• The specifications for a successful automatic landing, see Definition 4.2 in Sec-
tion 4.3.3and Appendix D of Chapter 4, have been defined as|u| ≤ 0.5 m/s, |v| ≤ 0.5
m/s, |w| ≤ 0.25 m/s, |φ| ≤ 10 ◦, and|θ| ≤ 10 ◦. Regarding case 1, at the instant of
ground impact, we have for the body horizontal velocitiesu = 0.04 m/s, v = 0.15
m/s, the body vertical velocityw = 0.25 m/s, and the roll and pitch anglesφ = 1.41
◦, andθ = 3.39 ◦. Regarding case 2, at the instant of ground impact, we have for the
body horizontal velocitiesu = −0.37 m/s, v = 0.13 m/s, the body vertical velocity
w = 0.21 m/s, and the roll and pitch anglesφ = 6.67 ◦, andθ = −0.54 ◦. Regard-
ing case 3, at the instant of ground impact, we have for the body horizontal velocities
u = −0.09 m/s,v = 0.12 m/s, the body vertical velocityw = 0.24 m/s, and the roll and
pitch anglesφ = −0.75 ◦, andθ = −0.15 ◦. Hence all specifications for a successful
automatic landing are met.

• A single LTI controller is capable of controlling and landing the helicopter system, in
autorotation, for a relatively large variation in forward and vertical vehicle velocity
(at least up to approximately 8 to 10 m/s), and for relatively large variations in main
rotor RPM (approximately in the range 50% to 110% of the nominal engine ON
value), see Fig.5.15, Fig.5.18, Fig.5.19, and Fig.5.20.



5.5.Discussion of closed-loop simulation results for the engine OFFcases

5

193

• From the actuator data, reported in Table2.1 of Chapter 2, we see that the control
input amplitudes would never saturate, except for a brief saturation of the main rotor
collectiveθ0, that would happen just prior to touch-down.

• As expected, tracking performance is better for the vertical motionw andxZ, than the
tracking of horizontal motion (u, v) and (xN, xE), see our discussion in Section2.4.3
of Chapter 2.

• Some steady-state errors can be seen on the horizontal channel (see Fig.5.14 and
Fig. 5.17) and heading (see Fig.5.15and Fig.5.18), whereas this is not the case for
the vertical channel (refer to these same figures). This is also partially due to the fact
that position control is stopped some time before the helicopter touches the ground.

• Main rotor RPMΩMR behaves as expected, see Fig.5.19 and Fig.5.20, i.e. we
recognize the typical autorotative time-histories, as shown in Chapter 3. Notice that,
when starting from low altitudes such as in these test cases,the helicopter does not
even reach a steady-state autorotation (main rotor RPM is not constant), rather it is
continuously in transition from one non-equilibrium stateto the next.

• Again, although the nominal model, used for control design,was linearized at a con-
dition outside the ground effect, we did not notice any significant performance dete-
rioration of the closed-loop system, when the helicopter was in ground effect.

In addition, Fig.5.21, Fig.5.22, Fig.5.23, and Fig.5.24visualize the frequency content
of the main rotor lateral TPP tilt angleβ1s, vehicle roll ratep, and control inputs, respec-
tively. For the engine OFF case, simulation experiments have shown that a higher closed-
loop bandwidth was necessary for good tracking behavior. This resulted in a bandwidth
increase of the controller performance weights. This increase in control bandwidth has also
some drawbacks. Indeed, we also clearly see an interaction between the FCS and the main
rotor around 5.5 Hz. This mode was identified to be the regressing flap mode of 5.5 Hz, for
a constant main rotor RPM of 1350, in the figures for the engineON case. In the engine
OFF case, the RPM is not constant anymore, and hence the interaction between the FCS and
the main rotor shows a frequency spread, which cannot easilybe eliminated by notch filters.

Summarizing the observed results for the engine OFF cases, we see that the crucial
control of vertical position and velocity exhibits outstanding behavior in terms of tracking
performance, and does not require an additional increase incontrol bandwidth. However,
the tracking of horizontal positions and horizontal velocities is clearly lacking some band-
width (i.e. the flown trajectories are clearly lagging the planned ones). Although a further
increase of the horizontal closed-loop bandwidths provided good results when evaluated on
the LTI model used for control design, this increase in closed-loop bandwidths resulted, un-
fortunately, in closed-loop instabilities, when evaluated on the nonlinear helicopter model
of Chapter 2.

5.5.1.System energy: the engine ON versus engine OFFcases
We compute here the stored energy in our helicopter system. For the following analysis, we
assume that the flight time is not limited by the amount of energy stored inside the on-board
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batteries. In other words, the electrical power supply system is omitted from this energy
balance analysis. Hence, we consider only the following energy components (refer also to
the nomenclature in Appendix A of Chapter 2): the vehicle potential energymVg|xZ|; the
vehicle kinetic energy12mV(u2+v2+w2)+ 1

2(Ap2+Bq2+Cr2), with A, B, andC the diagonal
elements of the inertia matrixIV; the stored energy in the main rotor1

2NbIbΩ
2
MR; and the to-

tal energy (sum of previous three). These energies have beenplotted in Fig.5.11–Fig.5.12,
and Fig.5.25–Fig.5.26, for the engine ON test cases, and for the first two engine OFF test
cases, respectively. A quick scan on total energies revealsthe main difference between the
engine ON and OFF cases, i.e. while the total energy for an engine ON case may even
increase, the total energy for an engine OFF case is always decreasing. This particularity
renders the trajectory planning and tracking rather challenging for the engine OFF case.

For the engine ON case, we conjecture that the current vehicle state has only a limited
impact (if any) on reachable states at very distant times. This is because we can always in-
ject some energy back into the system, and hence compensate for any suboptimal decisions
made at the current time. However, for the engine OFF case, since the energy of the system
is always decreasing, there is less room for error. We also conjecture that the size of this
reachable set, in the engine OFF case, is much smaller than the one for the engine ON case,
and hence feasible engine OFF trajectories are much harder to find.

5.5.2.Closed-loop response with respect to sensors noise and wind distur-
bance

Here we illustrate the response of the FCS, for the case of noisy measurement signals and
a wind disturbance. The wind disturbance includes a constant (deterministic) headwind of
8 m/s, together with a small gust (Dryden stochastic variation)on the three linear axes.
Fig. 5.27visualizes the required control inputs for the engine OFF test case 3. Fig.5.28
visualizes: 1) the nonlinear model time-histories for the 3D inertial velocities and positions
(in red); 2) the corresponding noisy measurement positionssent to the outer-loop controller
(in magenta); and 3) the wind disturbance (in green). Fig.5.29visualizes: 1) the nonlinear
model time-histories for the nine body states (in red); and 2) the corresponding noisy mea-
surements sent to the inner-loop controller (in magenta). Finally, Fig. 5.30visualizes the
time-histories for the main rotor RPM.

Again, we see that all specifications for a successful automatic landing are met, see
Definition 4.2 in Section4.3.3and Appendix D of Chapter 4, despite the additional mea-
surements noise and wind disturbance. Also Fig.5.30illustrates the benefits of a headwind
landing, namely we see that the RPM is still high (about 1100 RPM) at the end of the
landing maneuver (compare with Fig.5.19and Fig.5.20). Obviously, a higher energy in
the rotor allows for a smoother landing, and for additional control authority, which may be
particularly useful for disturbance rejection.

5.6.Conclusion
In this Chapter we have evaluated the capabilities of the Trajectory Planning (TP) and Tra-
jectory Tracking (TT) framework, previously developed in Chapter 4. In particular, we have
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demonstrated in this Chapter—using the high-fidelity, high-order, nonlinear helicopter sim-
ulation of Chapter 2—the first, real-time feasible, model-based TP and TT system, for the
case of a small-scale helicopter UAV with an engine OFF condition. The main distinctive
features of the engine ON versus engine OFF TP and TT may be summarized as follows:

• For the engine ON case, the vehicle state at a current timeti has only a limited impact
(if any) on the reachable states at a (very distant) timet f , with t f ≫ ti . If we omit
the on-board electrical power supply system from the vehicle energy balance, i.e.
considering only vehicle potential, kinetic, and main rotor energies, then the total
vehicle energy may decrease or increase, depending on vehicle height above ground
level and vehicle velocity. By contrast, the total vehicle energy in the engine OFF
case is always decreasing. Hence, we conjecture that the size of this reachable set, at
time t f , is much smaller than its engine ON counterpart, and consequently feasible
trajectories are harder to find in the engine OFF case.

• For the engine ON case, helicopter operations can remain at avelocity which stays in
the neighborhood of the design-point velocity, i.e. in the neighborhood of the equilib-
rium point velocity which was used to derive the LTI model forcontrol design. This
allows to maximize the linear behavior of the system. On the other hand, helicopter
operations with the engine OFF will inevitably result in a wide range of flown veloc-
ities, including high descent rates, and even flight into thechaotic Vortex-Ring-State
(VRS). Indeed, a brief transition through the VRS may in somecases be required.
This obviously tends to ’amplify’ the nonlinear behavior ofthe system.

• For the engine ON case, the designer can choose to keep the bandwidth of the closed-
loop system rather small, by only considering gentle and smooth maneuvers in the
design specification phase. For the engine OFF case, a higherclosed-loop bandwidth
is definitely required, if proper trajectory tracking is to be performed. This may
complicate the controller design, since higher-order LTI models (for controller de-
sign) may have to be considered. This complicates also the practical implementation,
since higher-bandwidth actuators may become compulsory.

• A general approach to mitigate the observed interaction problem, between the FCS
and the main rotor dynamics, could be to use higher-order LTImodels, for control
design, possibly in combination with a reduced-order observer in order to estimate
the unmeasured main rotor states.

• For the engine OFF case, our results show that the crucial control of vertical posi-
tion and velocity exhibit outstanding behavior in terms of tracking performance, and
does not require an additional increase in control bandwidth. However, the tracking
of horizontal positions and horizontal velocities is clearly lacking some bandwidth.
Unfortunately, a further increase of the horizontal closed-loop bandwidths resulted
in closed-loop instabilities (i.e. when evaluated on the nonlinear helicopter model of
Chapter 2).

• Finally, tracking performance of horizontal positions andhorizontal velocities could
potentially be improved, by considering one of the two following options: 1) remain-
ing in the framework of a single robust LTI controller, however combined with a



5

196 5.On-line Trajectory Planning and Tracking: Simulation Results

higher-order LTI plant (i.e. containing the main rotor flap-lag and inflow dynamics),
instead of the low-order plant used in Section4.5.1of Chapter 4. This LTI plant
could also be derived using a more accurate linearization method, as discussed in
Section2.4.1of Chapter 2; or 2) using another control method, i.e. in the realm of
nonlinear, adaptive, or Linear Parameter-Varying (LPV) methods.
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Appendix A: Simulation results
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Figure 5.1: Helicopter control inputs, for the Engine ON case 1.
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Figure 5.2: Inertial velocities and positions, for the Engine ON case 1. Black line: flatness planning.Blue line:
references for outer-loop (identical to black line).Red line: controlled nonlinear model.
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Figure 5.3: Euler angles, body linear velocities, and body rotational velocities, for the Engine ON case 1. Black
line: flatness planning.Blue line: references for inner-loop.Red line: controlled nonlinear model.
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Figure 5.4: Helicopter control inputs, for the Engine ON case 2.
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Figure 5.5: Inertial velocities and positions, for the Engine ON case 2. Black line: flatness planning.Blue line:
references for outer-loop (identical to black line).Red line: controlled nonlinear model.
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Figure 5.6: Euler angles, body linear velocities, and body rotational velocities, for the Engine ON case 2. Black
line: flatness planning.Blue line: references for inner-loop.Red line: controlled nonlinear model.
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Figure 5.7: Amplitude spectrum of main rotor lateral TPP tilt angleβ1s, for the Engine ON
case 1 (the engine ON case 2 is very similar).
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Figure 5.9: Amplitude spectrum of control inputs, for the Engine ON case 1.
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Figure 5.10: Amplitude spectrum of control inputs, for the Engine ON case 2.
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Figure 5.11: Vehicle energies, for the Engine ON case 1.
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Figure 5.12: Vehicle energies, for the Engine ON case 2.
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Figure 5.13: Helicopter control inputs, for the Engine OFF case 1.
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Figure 5.14: Inertial velocities and positions, for the Engine OFF case 1. Black line: flatness planning.Blue line:
references for outer-loop (identical to black line).Red line: controlled nonlinear model.
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Figure 5.15: Euler angles, body linear velocities, and bodyrotational velocities, for the Engine OFF case 1. Black
line: flatness planning.Blue line: references for inner-loop.Red line: controlled nonlinear model.
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Figure 5.16: Helicopter control inputs, for the Engine OFF case 2.
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Figure 5.17: Inertial velocities and positions, for the Engine OFF case 2. Black line: flatness planning.Blue line:
references for outer-loop (identical to black line).Red line: controlled nonlinear model.
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Figure 5.18: Euler angles, body linear velocities, and bodyrotational velocities, for the Engine OFF case 2. Black
line: flatness planning.Blue line: references for inner-loop.Red line: controlled nonlinear model.
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Figure 5.19: Main rotor RPMΩMR, for the Engine OFF case 1.
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Figure 5.20: Main rotor RPMΩMR, for the Engine OFF case 2.
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Figure 5.21: Amplitude spectrum of main rotor lateral TPP tilt angleβ1s, for the Engine
OFF case 1 (the engine OFF case 2 is somewhat similar).
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Figure 5.22: Amplitude spectrum of roll ratep, for the Engine OFF case 1 (the engine OFF
case 2 is somewhat similar).
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Figure 5.23: Amplitude spectrum of control inputs, for the Engine OFF case 1.
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Figure 5.24: Amplitude spectrum of control inputs, for the Engine OFF case 2.
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Figure 5.25: Vehicle energies, for the Engine OFF case 1.
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Figure 5.26: Vehicle energies, for the Engine OFF case 2.
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Figure 5.27: Helicopter control inputs, for the Engine OFF case 3.
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Figure 5.28: Inertial velocities and positions, for the Engine OFF case 3. Black line: flatness planning.Blue line:
references for outer-loop (identical to black line).Red line: controlled nonlinear model.Magenta line: noisy
measurements.Green line: wind disturbance.
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Figure 5.29: Euler angles, body linear velocities, and bodyrotational velocities, for the Engine OFF case 3. Black
line: flatness planning.Blue line: references for inner-loop.Red line: controlled nonlinear model.Magenta line:
noisy measurements.
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6
Affine LPV M odeling

There is this famous quote that the theory of nonlinear systems is like a theory of
non-elephants. It is impossible to build a theory of nonlinear systems, because arbitrary

things can satisfy that definition.

Pablo Parillo
MIT News, 2010

In Chapter 5, a single nominal Linear Time-Invariant (LTI) model was used for the design
of a single robust LTI Trajectory Tracker (TT). This LTI controller was capable of landing
the helicopter in autorotation. Simulations showed that the crucial control of vertical posi-
tion and velocity exhibited outstanding behavior in terms of tracking performance, although
the tracking of horizontal positions and velocities was lacking some bandwidth. Increasing
the horizontal closed-loop bandwidth was investigated by testing modified LTI controllers
which, when evaluated on the nominal LTI model, showed promising results. Unfortunately,
closed-loop instability was observed when evaluated on theNonLinear (NL) model of Chap-
ter 2. Hence, improving the performance of the TT may necessitate an approach that better
exploits the system’s NL structure, while being computationally tractable (for on-line use).
Linear Parameter-Varying (LPV) systems have become celebrated as they represent an at-
tractive midway approach between LTI and NL structures, andhence LPV control could
potentially be applied to improve the performance of the TT.However, the LPV control
paradigm takes the existence of the plant, in LPV form, as a starting point. Since a sys-
tematic formulation of a NL system into a suitable LPV model remains often problematic,
the purpose of this Chapter is to present an affine LPV modeling approach—for the case
where a plant’s NL model already exists—that delivers a model suitable for control design.
Our LPV modeling method was applied to the helicopter NL model of Chapter 2, and re-
sulted in a LPV model having a large number of scheduling parameters. Unfortunately, it
became impossible to synthesize LPV controllers for such a high-order model, and hence
the simulations in this Chapter have been done on a simpler pendulum system.

Parts of this Chapter have been published in [1].
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6.1. Introduction

I n Chapter 4, we presented a combined trajectory planning and tracking system, capable
of safely landing the helicopter, in autorotation, in the vicinity of the planned North-East

landing spot. Our simulations of Chapter 5 showed that the tracking of horizontal positions
and velocities was lacking some bandwidth. Increasing the horizontal closed-loop band-
width was investigated, by testing upgraded controllers. These controllers, when evaluated
on the nominal Linear Time-Invariant (LTI) model, showed promising results. Unfortu-
nately, closed-loop instability was observed when tested on the helicopter, NonLinear (NL),
High-Order Model (HOM) of Chapter 2. Hence, tracking performance of horizontal posi-
tions and horizontal velocities could potentially be improved by considering one of the two
following options: i) remaining in the framework of a singlerobust LTI controller, using
a higher-order LTI plant for controller design (i.e. containing the main rotor flap-lag and
inflow dynamics), instead of the low-order plant used in Section 4.5.1of Chapter 4; or ii)
using another control method that better respects and exploits the system’s NL structure,
while being also on-line computationally tractable. To this end, the three main alternatives
are: 1) Nonlinear Dynamic Inversion (NDI) and/or Lyapunov based methods such as slid-
ing mode and backstepping; 2) methods in the realm of adaptive control; or 3) methods in
the areas related to gain-scheduling and Linear Parameter-Varying (LPV) approaches.

Now the first option, i.e. option (i) here-above, with the useof a higher-order LTI
plant (potentially in combination with a reduced-order observer to estimate the unmeasured
higher-order rotor dynamics) is attractive for its simplicity, and hence is worth investigat-
ing. However it was ruled out in this Chapter since, as statedin [2], it is generally not
recommended to ’hard-wire’ the higher-order main rotor dynamics into the feedback law,
whenever these higher-order dynamics are insufficiently well-captured by an LTI model
(which in practice may often be the case). Hence in this Chapter we have chosen to investi-
gate option (ii), and in particular the third alternative, i.e. the LPV approach, since there is
a plethora of mature LPV control methods, and Model Predictive Control (MPC) for LPV
systems, to choose from. This said, the first two alternatives should also be investigated
in future research projects. In particular the recent and promising developments of theL1

adaptive control [3] deserve further attention.

LPV systems allow to enclose NL behaviors into a linear framework [4, 5]. In fact,
LPV control methods can be seen as an extension of the standard H2 and H∞ LTI syn-
thesis techniques [6–13]. The LPV method amends also the main drawbacks of classical
gain-scheduling [14, 15] by: 1) eliminating the need for repeated designs/simulations, in
order to handle the global control problem; and 2) guaranteeing both stability and perfor-
mance, along all possible parameter trajectories. In addition LPV control design problems
are efficiently solved, by first expressing the problems as Linear Matrix Inequality (LMI)
optimizations [16]—subsequently formulated as Semi-Definite Programs (SDP)[17]—for
which there are several powerful numerical solutions [18, 19]. This resulted in a growing
number of applications [20], such as in aerospace [21–26], wind turbines [27], wafer step-
pers [28, 29], CD players [30], and robotic manipulators [31], to name a few. Now, and for
all its benefits, the LPV control paradigm typically takes the existence of a model of the
plant, in LPV form, as a starting point. However, a systematic formulation of a NL system
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into a suitable (quasi-)LPV1 model remains often problematic [32]. Hence, the problem
of simplifying a large scale, complex, NL model, such as our helicopter nonlinear HOM of
Chapter 2, into a LPV representation, suitable for control design, is highly relevant. When a
plant’s NL model is already available, there exists two mainmodeling avenues to transform,
or approximate, its NL representation into a LPV one, namelythe so-called local and global
approaches [32, 33]. The local approach consists in applying linearization theory of the
NL system to obtain local LTI models in a state-space form, and subsequently interpolate
these models to derive a LPV approximation. Within this framework several methods have
been developed, based upon e.g.: extended linearization [34], Jacobian linearization [35],
multiple-model design procedure [36], H2 norm minimization [37], multivariable polyno-
mial fitting [38], and poles, zeros, and gain interpolation [39, 40]. On the other hand the
global approach generates a LPV model which preserves the dynamic behavior of the NL
system. This can either be done by using a range of mathematical manipulations e.g.: state
transformation [41], velocity-based formulation [42], function substitution [43, 44], and
automated LPV model generation [32, 45], or alternatively by using a global identification
approach of the scheduling parameters, through the use of least-squares based estimations
or Prediction Error Methods (PEM) [46].

Often it is important that the global behavior of the LPV model be similar to the global
behavior of the NL system. This is typically the case when theLPV model is used for
prediction/simulation in open-loop [47], MPC or optimal control. On the other hand, it is
sometimes desirable that the local (frozen) behavior of theLPV model, i.e., for constant
scheduling, be representative of the local behavior of the NL system, i.e., local lineariza-
tions of the NL system. For such cases, a local approach wouldbe recommended2. This
is particularly the case when the LPV model is used for gain scheduled controller design,
where controllers are synthesized on the basis of local models.

For LPV systems, the simultaneous identification3 of the LPV basis functions and
scheduling parameters is a non-trivial problem, as it generally contains excessive degrees
of freedom, giving rise to an ill-conditioned system identification problem [48]. Previous
attempts towards such simultaneous identification problems have used nonlinear optimiza-
tion methods [49, 50]. Another approach to mitigate such ill-conditioned identification
problems requires the inclusion of additional constraintsor regularizations [47]. An even
simpler way would consist in having separate identificationsub-problems, e.g. by identi-
fying first the basis functions, followed by a separate identification of the scheduling pa-
rameters. We opt here for such a philosophy, i.e. by following the three-step methodology
introduced in [36], formulated as follows: 1) identify first a central LTI model; 2) identify
the basis functions; and finally 3) identify the scheduling parameters. Now, the method in
[36] generates a model which is highly effective for open-loop prediction and simulation,

1Thequasi-prefix is used to define LPV systems in which the scheduling parameters are endogenous, i.e. depen-
dent of system states and/or control inputs [20].

2Note that global embedding of the behavior of a nonlinear system into an LPV representation often does not
imply that the frozen aspects of the LPV models will have anything in common with the local linearizations of
the NL system [47, 48].

3Throughout this Chapter, and since the NL system is known, weuseLPV modelingand LPV identification
interchangeably.
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however the obtained LPV model is not truly in LPV form4, and hence can not be used for
LPV control design. Since our goal is modeling for control, we present in this Chapter an
alternative approach that, among others, delivers a LPV model suitable for LPV controller
synthesis.

Our method is based upon local linearizations of the NL system, along a nominal tra-
jectory, followed by an interpolation procedure. Specifically, our modeling method consists
in: 1) applying linearization of the NL system in order to obtain a set of local LTI models
in state-space form, and a set of affine remainder terms resulting from (among others) lin-
earizations of the NL system at non-equilibrium points; 2) finding a central model within
this set of local LTI models; 3) using Singular Value Decompositions (SVD) tools to de-
rive two sets of LPV basis functions5; 4) for the two sets of LPV basis functions, identify
two respective sets of LPV scheduling parameters6; and 5) using a Neural Networks (NN)
based approach to convert the LPV model into a quasi-LPV one,such that the scheduling
parameters may be estimated on-line.

Our method is identical to theglocal7 method of [36], with respect to item 1), and with
respect to the SVD-based machinery used to obtain the first set of LPV basis functions in
item 3). Our method differs from [36], as follows: a) first it generates a representation which
is truly in LPV form, as it provides a model for the affine remainder terms, and hence allows
to use the LPV model for controller design, over the completeoperating regime (hence valid
also at off-equilibria points); b) the choice of the central model and the choice of the first
set of scheduling parameters are set within theH∞ norm framework, as most robustness
results are expressed in terms ofH∞ distances; and finally c) our method allows the user to
specify an input-signal frequency range of interest, on which the local LTIs should best be
approximated8. In fact, our method is in spirit more reminiscent of the so-called Jacobian
linearization, or linearization gain-scheduled controller [5, 35], in which linearized plants
along equilibria (or alternatively a trajectory), associated with local deviation signals, are
used to design a parametrized family of linear controllers.Our modeling approach could
perhaps be seen as an extension of these methods since our approach does not rely upon
local deviation signals and hence can be used to approximatethe NL behavior of the plant
at off-equilibria points.

The LPV modeling method, presented in this Chapter, was applied to the helicopter
NL model of Chapter 2 and resulted in a LPV model having a largenumber of (i.e. more
than thirty) scheduling parameters. Unfortunately it became impossible to synthesize LPV
controllers with such a high-order LPV model. It is indeed well known that the numerical
conditioning and solvability of LMI problems play a crucialrole in LPV practical design

4This aspect will be discussed later, starting with Eq. (6.7).
5The first set of basis functions is used to approximate the local LTI models, whereas the second set is used to
approximate the affine remainder terms.

6The first set of scheduling parameters is obtained by minimizing theH∞ distance between the frozen-scheduling
LPV models and the respective LTIs, whereas the second set isobtained by minimizing theL2 norm of a vector.

7The acronymglocal stands for the combination of bothglobal andlocal.
8This is done since, for controller synthesis, design specifications are typically generated for specific frequency
ranges.
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methods [27–30]. Hence the simulation results, presented in this Chapter,have been done
on a simpler example, i.e. a modified pointmass pendulum. Although our focus is primarily
set upon LPV modeling for control, we provide extensive analysis of, both, open-loop and
closed-loop simulation results to illustrate the practicality of the method.

The remainder of this Chapter is organized as follows. In Section 6.2, the general LPV
modeling and optimization problems are defined. In Section6.3through6.8, a step by step
modeling approach is described, and solutions to the optimization problems are derived.
In Section6.9, open-loop and closed-loop simulation results are analyzed, usingH∞, µ,
and two LPV controllers. Finally, conclusions and future directions are presented in Sec-
tion 6.10.

The nomenclature is fairly standard. Vectors are printed inboldface. M⊤, M∗, M†

denote the transpose, the complex-conjugate transpose, and the Moore-Penrose inverse of
a real or complex matrixM, whereas He(M) (resp. Sym(M)) is shorthand forM + M∗

(resp. M + M⊤). We use⋆ as an ellipsis for terms that are induced by symmetry. Matrix
inequalities are considered in the sense ofLöwner. Furtherλ(M) denotes the zeros of
the characteristic polynomial det(sI − M) = 0. L∞ is the Lebesguenormed space s.t.
‖G‖∞ ≔ sup

ω∈R
σ̄(G( jω)) < ∞, with σ̄(G) the largest singular value of matrixG(·). Similarly,

H∞ ⊂ L∞ is theHardy normed space s.t.‖G‖∞ ≔ sup
Re(s)>0

σ̄(G(s)). Forω1 < ω2, ∆ω =

[ω1, ω2], we use‖G‖∆ω ≔ sup
ω∈∆ω

σ̄(G( jω)). RL∞ (resp. RH∞) represent the subspace of

real rational Transfer Functions (TFs) inL∞ (resp.H∞). For appropriately dimensioned

matricesK andM, where the latter is partitioned asM =

[

M11 M12

M21 M22

]

, the lower Linear

Fractional Transformation (LFT) is defined asFl(M,K) = M11+M12K(I−M22K)−1M21, and
the upper LFT is defined asFu(M,K) = M22+M21K(I −M11K)−1M12 under the assumption
that the inverses exist. ForM ∈ Cq×p, the structured singular valueµ∆(M) of M, with respect
to an uncertainty set∆ ⊂ Cp×q, is defined asµ−1

∆
(M) ≔ min∆∈∆{σ̄(∆) | det(I − M∆) = 0}.

6.2.Problem statement
We suppose that a real-life system can be described by a known, NL state-space, Continuous-
Time (CT), dynamical model

∀t ≥ 0 ẋ(t) = f
(

x(t), u(t)
)

y(t) = f̃
(

x(t), u(t)
)

(6.1)

with f (·), f̃ (·), partially differentiable smooth functions,x(t) ∈ Px ⊂ Rnx the plant state,
y(t) ∈ Py ⊂ Rny the plant output,u(t) ∈ Pu ⊂ Rnu the control input,t the time variable, and
Px,Py,Pu some compact sets. In this simulation model, the simulated data is not perturbed
by noise. Further, we assume that the simulation model perfectly describes the behavior
of the NL system. However, as mentioned earlier, this model is deemed too complex for
control design. Hence, our goal consists in approximating the NL functionsf (·), f̃ (·), in
Eq. (6.1), by a quasi-LPV representation, suitable forµ or LPV control design. Next, and to
simplify the problem’s context, we consider here the approximation of functionf (·) only;
indeed procedures similar to the ones presented in the sequel for f (·) may also be applied
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to approximatef̃ (·). Hence, from now on we consider the case

∀t ≥ 0 ẋ(t) = f
(

x(t), u(t)
)

y(t) = x(t) (6.2)

Our procedure uses simulation data to identify a quasi-LPV model of the complex NL
model f (·). For this purpose, we apply to simulation model Eq. (6.2) a typical input trajec-
tory and store the corresponding output. This yields the following Input-Output (IO) signal
sequenceZN

≔
{

u(ti), y(ti)
}N
i=1. Since in our case we considery(t) = x(t), the setZN is

refereed in the sequel asZN
≔

{

u(ti), x(ti)
}N
i=1. We also assume that this sequence is infor-

mative9 enough for the identification of the quasi-LPV model, i.e. all relevant nonlinearities
of the system given by Eq. (6.2) have been excited over the entire working area.

Remark 8 We will encompass our discussion within the CT framework since stability and
performance requirements, for controller synthesis, are generally much more conveniently
expressed in this framework. In case an equivalent LPV Discrete-Time (DT) realization
is needed, this may be easily achieved by, either, discretizing the obtained CT LPV model
through one of the LPV discretization methods presented in [53] or, alternatively, by using
the equivalent DT formulations of the machinery outlined inthis Chapter.

We denote now the affine LPV model we want to identify as

P(θ(x(t), u(t))) ≔



















ẋ(t) = A0x(t) + B0u(t)

+
R
∑

r=1
θr (x(t), u(t))

(

Arx(t) + Bru(t)
) (6.3)

with θ(x(t), u(t)) ≔ [θ1(x(t), u(t)), ..., θR(x(t), u(t))]⊤ the non-stationary scheduling pa-
rameters defined on the compact setPθ, known as the scheduling space, and matrices
{Ar , Br}Rr=0 of appropriate sizes, representing the basis functions. Further, we also choose
to enclose our analysis within the affine LPV setting, with static scheduling-parameter de-
pendence, as dynamic dependence may lead to difficulties in terms of controller design and
implementation. There exists also a clear advantage in using the affine LPV structure. In-
deed, previous work on Takagi-Sugeno (TS) fuzzy models, which exhibit similarities with
LPV systems [54], has shown that, on a compact subset of the state and input space, the
approximation of the NL model Eq. (6.2) by the affine LPV model Eq. (6.3) can be made
arbitrarily accurate [47, 50].

Next we consider the situation where one needs to build a CT LPV model from sampled
measurements of the CT signalsu(t) andy(t). These DT signals, sampled with the sam-
pling periodTs > 0, are denotedu(ti) = u(iTs), i ∈ Z, as illustrated here for the input signal
u(·). Building a CT LPV model from samples of measured CT signalshas been addressed
recently in [55]. Our problem is here simpler since we are dealing with a noise-free NL
model, avoiding thus the difficult question of CT random process modeling from a sam-
pled CT noise source. Further, for LPV systems with static dependence, and concomitant

9Note that persistence of excitation, to ensure consistencyand convergence of the estimation as understood in the
LTI case [51], is an ill-defined concept in the LPV case [52]. Signal richness, referring to the informativity of a
data set w.r.t. coefficient parametrization and model order, is a more suitable LPV concept [52], but has yet to be
formalized within this context, and hence is not addressed further in our LPV modeling framework.
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to classical discretization theory [56], if the sampled and free-CT signals (i.e. inputs and
exogenous parameters) can be assumed to be piecewise constant on a sampling period, i.e.
Ts is sufficiently small, then the CT output trajectory may be completely reconstructed from
its sampled observations [32].

Non-stationary linearizations of the NL model, along a given trajectory, as suggested
for the Gain-Scheduling (GS) modeling framework in [57–59], and for the LPV modeling
framework in [36, 42, 60], have often been used to extend the validity of GS, or LPV, con-
trollers to operating regions far from equilibrium points.When combined with a sufficiently
small sampling periodTs, such an approach may allow to better capture the transient behav-
ior of the NL model. Accordingly, we also choose to base our LPV modeling methodology
upon such linearizations. The latter may be computed via first-order Taylor-series expan-
sions, or via classical numerical perturbation methods. From Eq. (6.2) and setZN, we
create a set of triplet elementsZN

Lin ≔
{

Āi , B̄i, di
}N
i=1

Āi =
δ f (x,u)
δx⊤

∣

∣

∣

∣

(xi ,ui)
B̄i =

δ f (x,u)
δu⊤

∣

∣

∣

∣

(xi ,ui )
di = f (xi , ui) − Āixi − B̄iui

(6.4)

with di the so-called affine remainder term. In Eq. (6.4) we have also used the shorthand
xi ≔ x(ti), ui ≔ u(ti) to streamline notations. We also define a sequence of CT LTI Transfer

Functions (TFs)Ḡi(s) ≔

[

Āi B̄i

I 0

]

, with matrices of appropriate size. Now, for each

operating point (xi, ui), we can approximate the NL model Eq. (6.2), in a local neighborhood
of (xi , ui), as

ẋ(t) = f
(

x(t), u(t)
) ≈ Āix(t) + B̄iu(t) + di (6.5)

while having exact equivalence at each operating point

ẋ(ti) = f
(

xi, ui
)

= Āixi + B̄iui + di i = 1, ...,N (6.6)

The two sets we have defined, namely IO setZN and linearization setZN
Lin, describe

the behavior of the NL system Eq. (6.2) from a global and local perspective, respectively.
Both will be used for the identification of our LPV model, resulting in a model valid for
both open- and closed-loop applications. As stated earlier, for the identification of the LPV
model we follow the three-step methodology introduced in [36], formulated as follows

• Step 1Identify the central model (A0, B0).

• Step 2Using (A0, B0), identify the basis functions{Ar , Br}Rr=1.

• Step 3Identify the scheduling parametersθ(x(t), u(t)).

Since our method builds upon results from [36], we first briefly recall this method. In
[36], the following LPV model is being identified

P̃(θ(x(t), u(t))) ≔



















ẋ(t) = A0x(t) + B0u(t)

+
R
∑

r=1
θr (x(t), u(t))

(

Arx(t) + Bru(t) + dr

) (6.7)
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with {dr }Rr=1 a set of basis vectors. Now, following the three-step structure outlined
here-above, the data flow for the identification of the model given in Eq. (6.7) is depicted
in Fig. 6.1.

Figure 6.1: Data flow for the LPV identification method [36]. Lines in blue represent the information flow from the
local system’s behavior, present in setZN

Lin. Lines in red represent the information flow from the global system’s
behavior, present in IO setZN. Lines in black represent internal information flows.

We notice, among others, that: i) matrices (A0, B0) are identified on the basis of the
global system’s behavior, whereas matrices{Ar , Br}Rr=1 are identified on the basis of the
local system’s behavior; and ii) the scheduling parametersθ(x(t), u(t)) are identified in a
two-step procedure, defined as follows: first, a set of scheduling parameters

{

θi
}N
i=1, i.e. for

each timeti , is being identified on the basis of the information available in the previously
identified set{Ar , Br , dr }Rr=1 together with the data available inZN

Lin, and next a CT mapping
θ(x(t), u(t)) is obtained by using the information available in the previously identified set
{θi}Ni=1 together with the data available in IO setZN.

The model in Eq. (6.7) allows to replace a computationally expensive, first-principles
based, NL model with a computationally tractable alternative. Typical applications for
the model in Eq. (6.7) include prediction/simulation in open-loop, e.g. on-line optimal
trajectory planning. Now, the difference between Eq. (6.7) and Eq. (6.3), is that Eq. (6.7)

contains an additional vector
R
∑

r=1
θr (x(t), u(t))dr, which role is to model the affine remainder

terms
{

di
}N
i=1. Strictly speaking, the model in Eq. (6.7) is neither in LPV form, nor in Piece-

Wise-Affine (PWA) form [61, 62], but rather in a hybrid mix of both. Besides, and due
to this additional vector, the model in Eq. (6.7) is not in a form suitable for LPV control
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design. Hence, in this Chapter, we extend the approach developed in Eq. (6.7) in order to
obtain a LPV model, suitable for both open- and closed-loop applications. To this end, we
replace the model in Eq. (6.7) by the following quasi-LPV model

P(η(x(t), u(t)), ζ(x(t), u(t)))≔






































ẋ(t) = A0x(t) + B0u(t)

+
S
∑

s=1
ηs(x(t), u(t))

(

Lsx(t) + Rsu(t)
)

+
W
∑

w=1
ζw(x(t), u(t))

(

Twx(t) + Zwu(t)
)

(6.8)

for some scheduling parametersη(x(t), u(t)) ≔ [η1(x(t), u(t)), ..., ηS(x(t), u(t))]⊤,
ζ(x(t), u(t)) ≔ [ζ1(x(t), u(t)), ..., ζW(x(t), u(t))]⊤, and matrices (A0, B0), and{Ls,Rs}Ss=1,
{Tw,Zw}Ww=1, of appropriate sizes. Next, we present the multi-step philosophy used to iden-
tify the quasi-LPV model given in Eq. (6.8)

• Step 1Identify the central model (A0, B0) from the local system’s behavior present
in

{

Āi , B̄i
}N
i=1, available in setZN

Lin.

• Step 2Using (A0, B0), identify the basis functions{Ls,Rs}Ss=1 from the local system’s

behavior present in
{

Āi , B̄i
}N
i=1, available in setZN

Lin.

• Step 3 Identify the basis functions{Tw,Zw}Ww=1 from the local system’s behavior

present in
{

di
}N
i=1, available in setZN

Lin, and from the global system’s behavior present
in IO setZN.

• Step 4 Identify the scheduling parametersη(x(t), u(t)) using, here-too, a two-step
approach.

– Step 4.1A set of scheduling parameters
{

ηi
}N
i=1, i.e. for each timeti , is being

identified on the basis of the information available in the previously identified
set{Ls,Rs}Ss=1 together with the data available in set

{

Āi , B̄i
}N
i=1. Basically, this

step consists in obtaining a value of the scheduling parameters from lineariza-
tions at timesti .

– Step 4.2A continuous-time mappingη(x(t), u(t)), that satisfies
{

η(x(ti), u(ti))
}N
i=1 ≈

{

ηi
}N
i=1, is obtained by using the information available in the previously identi-

fied set{ηi}Ni=1 together with the data available in IO setZN.

• Step 5 Identify the scheduling parametersζ(x(t), u(t)) using, here-too, a two-step
approach.

– Step 5.1A set of scheduling parameters
{

ζi
}N
i=1, i.e. for each timeti , is being

identified on the basis of the information available in the previously identified
set{Tw,Zw}Ww=1 together with the data available in set

{

di
}N
i=1.

– Step 5.2A continuous-time mappingζ(x(t), u(t)), that satisfies
{

ζ(x(ti), u(ti))
}N
i=1 ≈

{

ζi
}N
i=1, is obtained by using the information available in the previously identified

set{ζi}Ni=1 together with the data available in IO setZN.
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Following this five-step structure, the data flow for the identification of the model given
in Eq. (6.8) is depicted in Fig.6.2.

Figure 6.2: Data flow for the identification of our LPV model Eq. (6.8). Lines in blue represent the information
flow from the local system’s behavior, present in setZN

Lin. Lines in red represent the information flow from the
global system’s behavior, present in IO setZN. Lines in black represent internal information flows.

Remark 9 LPV properties cannot in general be inferred from underlying LTI properties,
i.e. frozen-scheduling deductions do not generally ensurethat LPV modeling characteris-
tics will be preserved with rapid parameter variations [63]. Hence, no formal proofs of
convergence between the NL model and our LPV model may be given via this engineering
practice.

Remark 10 Step 4.2 andStep 5.2 allow to use the model given by Eq. (6.8) for LPV control
design. Indeed, without the knowledge of the mappingsη(x(t), u(t)), andζ(x(t), u(t)), one
would be restricted to potentially more conservativeµ control methods, since the scheduling
parameters cannot be estimated on-line. Note that finding such smooth mappings is a non-
trivial task, and may even require some leap of faith, which one may be willing to take in
case the entire working area has been sampled with a dense enough grid.
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Remark 11 We restrict our discussion to full-order modeling, i.e matricesĀi and(A0, Ls,Tw)
have same size (resp.̄Bi and(B0,Rs,Zw)).

In the sequel we discuss, in more detail, our five step methodology.

6.3.Step 1: Identifying the central model (A0, B0)
As stated earlier, the model (A0, B0) is chosen within all models present in set{Āi , B̄i}Ni=1.
A natural approach consists in finding the model which may be defined as the mostcentral
one. Further, we will base this model selection within theH∞ framework10, since our pri-
mary focus is on modeling for control. In addition, for controller synthesis, design specifi-
cations are typically generated on various frequency ranges of interest∆ω = [ω1, ω2], ω1 <

ω2, which led us to use theH∞ norm on a frequency range of relevance, i.e. the‖ · ‖∆ω dis-
tance metric defined in the introduction Section as‖G‖∆ω ≔ sup

ω∈∆ω
σ̄(G( jω)) for a TFG( jω)

(see also Appendix A). This central model, i.e. the optimal model,Ĝ0(s) ≔

[

Â0 B̂0

I 0

]

,

is chosen as follows: compute, for each modelḠi(s) ≔

[

Āi B̄i

I 0

]

i ∈ {1, ...,N}, the

following meanµi and standard-deviationsi as

∀i ∈ {1, ...,N} µi = (1/N)
N
∑

j=1
‖Ḡi(s) − Ḡ j(s)‖∆ω

si =

[

(1/N)
N
∑

j=1

(

‖Ḡi(s) − Ḡ j(s)‖∆ω − µi

)2
]1/2 (6.9)

where‖ · ‖∆ω is obtained11 by minimizing the boundγ subject to the LMI of Eq. (6.48) (see
Appendix A). Next define the following extrema

µ
¯
= min

i
µi , µ̄ = max

i
µi , s

¯
= min

i
si , s̄= max

i
si (6.10)

The optimal modelĜ0(s) is now designated aŝG0(s) ≔ Ḡî(s), with the optimal index̂i
resulting from a simple, and readily solved, mean versus standard-deviation minimization
problem

î = arg min
i∈{1,...,N}

(

ρ
(

[µi − µ
¯
]/[µ̄ − µ

¯
]
)2
+

(

[si − s
¯
]/[ s̄− s

¯
]
)2
)

(6.11)

with ρ a user-defined weighting parameter.

6.4.Step 2: Identifying the basis functions {Ls,Rs}Ss=1
Whereas the role of the central modelĜ0(s) consists in capturing the most significant linear
behavior of the NL system, the role of the basis functions{Ls,Rs}Ss=1 (together with the

10Even though several other norms could be used, theH∞ norm provides guarantees on worst cases.
11There are three ways to compute‖·‖∆ω : 1) approximately, through frequency griding of the‖·‖∞ norm; 2) exactly,

through the LMI optimization problems presented in Appendix A; or 3) approximately, through a weightedH∞
norm minimization, using a strictly-proper, bandpass filter Wf , centered at∆ω, leading to‖Wf .(·)‖∞.
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scheduling parameters) consists in capturing the NL behavior of the system. We know
from Eq. (6.5) that the NL system may be approximated, in a local neighborhood of (xi , ui),
by ẋ(t) ≈ Āix(t)+ B̄iu(t)+ di . As the affine remainder termdi will be handled in the sequel,
we consider here only the following local behavior of the NL systemẋ(t) ≈ Āix(t)+ B̄iu(t).
Hence, the gap between the local NL behavior and the central model behavior may be
characterized, in a local neighborhood of (xi , ui), as follows

δẋ(t) = (Āi − Â0)x(t) + (B̄i − B̂0)u(t) (6.12)

Now from Eq. (6.12) one can build the following set{Āi−Â0, B̄i− B̂0}Ni=1, from which we
may derive the basis functions{L̂s, R̂s}Ss=1, through Singular Value Decompositions (SVD).
Such approaches have successfully been applied in the realmof LPV modeling in [36, 64,
65]. The approach outlined in this paragraph is not based on anyH∞ norm considerations,
rather it is identical to the highly efficient method presented in [36], and consists in first
transforming the information present, in matrix form, in{Āi−Â0, B̄i−B̂0}Ni=1 into a vectorized
form. Now, let

Υ = [1...1] (6.13)

be a row vector of lengthN. Define next the followingΦ andΩ matrices

Φ =

[

vec(Â0)
vec(B̂0)

]

⊗ Υ Ω =

[

vec(Ā1) , ..., vec(ĀN)
vec(B̄1) , ..., vec(B̄N)

]

(6.14)

with vec(·) the vertical vectorization of a matrix, and⊗ the Kronecker product. It is clear
that the information contained in{Āi − Â0, B̄i − B̂0}Ni=1 is now made available in (Ω − Φ).
Next, we can obtain a proper orthogonal decomposition of (Ω−Φ) which gives the principal
directions in the space of the coefficients of{L̂s, R̂s}Ss=1. This is done by obtaining a SVD
decomposition of the form

Ω −Φ = UΣV∗ (6.15)

Finally, let matrixU1..S, with S ≤ nx(nx + nu), contain the firstS columns of the left
singular vector matrixU in Eq. (6.15), then each basis function pair (Ls,Rs) is simply re-
covered from the matricization12 of each column ofU1..S. The chosen value forS will
depend upon the considered application, and its ’optimal’ value represents a trade-off be-
tween model accuracy and computational tractability of thecontrol synthesis.

6.5.Step 3: Identifying the basis functions {Tw,Zw}Ww=1
The idea here consists in providing a model for the affine remainder terms

{

di
}N
i=1. Suppose

we can find basis functions{Tw,Zw}Ww=1 and scheduling parametersζ(ti) ≔ [ζ1(ti), ..., ζW(ti)]⊤

such that

∀i ∈ {1, ...,N} di

[

xi

ui

]†
≈

[

W
∑

w=1
ζw(ti)Tw

W
∑

w=1
ζw(ti)Zw

]

(6.16)

with [·]† the left inverse, then by right-multiplying both sides with[x⊤i u⊤i ]⊤ we recover

di ≈
W
∑

w=1
ζw(ti)

(

Twxi + Zwui

)

. To determine the basis functions, we will again use SVDs.

12The operation that turns a vector into a matrix.



6.6.Step 4.1: Identifying the parameters
{

ηi
}N
i=1

6

229

First, we construct the matricesΛi andΨ such that

Λi = di

[

xi

ui

]†
Ψ =

[

vec(Λ1) , ..., vec(ΛN)
]

(6.17)

with vec(·) the vertical vectorization of a matrix. Next, we obtain a SVD decomposition of
the form

Ψ = UΣV∗ (6.18)

Now let matrixU1..W, with W ≤ nx(nx + nu), contain the firstW columns of the left
singular vector matrixU in Eq. (6.18), then each basis function pair{Tw,Zw}Ww=1 is simply
recovered from the matricization of each column ofU1..W.

Remark 12 Note that the approach outlined inStep 3 could potentially have additional
applications, within the LPV modeling problem, but also within the true context of system
identification when identifying a system from noisy measurements.

6.6.Step 4.1: Identifying the parameters
{

ηi
}N
i=1

We identify here the set of scheduling parameters
{

ηi
}N
i=1 ≔

{

η1(ti), ..., ηS(ti)
}N
i=1 on the ba-

sis of the information available in the previously identified set{Ls,Rs}Ss=1 together with the

data available in set
{

Āi , B̄i
}N
i=1. Indeed, since our focus is mainly on modeling for control,

we choose to approximate the local behavior of the NL system Eq. (6.2). This is done
by obtaining a value of the scheduling parameters from locallinearizations, i.e. by ap-

proximating the LTI modelsḠi(s) ≔

[

Āi B̄i

I 0

]

with the frozen-scheduling LPV model

Gi(s) ≔





















A0 +
S
∑

s=1
ηs(ti)Ls B0 +

S
∑

s=1
ηs(ti)Rs

I 0





















, for i = 1, ...,N. This can be formulated as

follows: for a given user defined frequency range∆ω = [ω1, ω2], find, at each timeti , the
optimal parameters{η̂(ti)}Ni=1, with η̂(ti) ≔ [η̂1(ti), ..., η̂S(ti)]⊤, that minimize

J1(ti) ≔ ‖Ḡi(s) −Gi(s)‖∆ω i = 1, ...,N (6.19)

Minimizing J1(ti) in Eq. (6.19) is equivalent to minimizing a scalar variable, subject
to the LMI of Eq. (6.48), or to the LMI of Eq. (6.49). These LMIs are function of de-
cision variablesP andQ, or F andK. Further, these LMIs are also function of matrices
A and B, given hereunder in Eq. (6.22), which are dependent on the decision variables
{

η1(ti), ..., ηS(ti)
}

. Due to the product of matricesP andQ (or F andK) with matricesA and
B, these LMIs become nonlinear. In such situations the projection lemma has often been
used to provide convex reformulations of the original problem. In our case, unfortunately, a
straightforward application of the projection lemma is notachievable, due to the structured
nature of our problem (see [66] for additional details). Hence, we choose to use an iterative
approach to solve Eq. (6.19). The procedure has a two-stage modus operandi: an initial-
ization stage, followed by a nonlinear-based refinement stage. The first stage computes
reasonable guess values for ˆη(ti). The idea here consists in approximating the maximum
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gain of the LTI matrices,̄Ai andB̄i, in the following way

∀i ∈ {1, ...,N}

XA(ηs(ti)) = Āi −
(

A0 +
S
∑

s=1
ηs(ti)Ls

)

XB(ηs(ti)) = B̄i −
(

B0 +
S
∑

s=1
ηs(ti)Rs

)

η̂(ti) = arg min
ηs(ti )
‖XA(ηs(ti))‖2 + ‖XB(ηs(ti))‖2

(6.20)

This is readily recast into the sum minimization of theL2-induced gains of two static
operators

∀i ∈ {1, ...,N} minimize
ηs(ti ),γA,γB

γA + γB

subject to γA > 0 γB > 0
[

γAI ⋆

XA(ηs(ti)) I

]

> 0

[

γBI ⋆

XB(ηs(ti)) I

]

> 0

(6.21)

Next, the second stage uses the initial guess values found inEq. (6.21) in order to solve
Eq. (6.19), through an iterative approach. Here‖ · ‖∆ω is computed via Eq. (6.49) since the
latter is convex in either the (F,K) or (A, B) matrices. These (A, B) matrices in Eq. (6.49)
are given by

Ḡi(s) −Gi(s) ≔

[

A B
C D

]

=





























Āi 0 B̄i

0 A0 +
S
∑

s=1
ηs(ti)Ls B0 +

S
∑

s=1
ηs(ti)Rs

I −I 0





























(6.22)

Our proposed approach is a simple two-step iterative LMI search, in spirit reminiscent

of D-K iteration synthesis [67]. First, partitionF andK, asF =

[

F11 F12

F21 F22

]

, andK =
[

K11 K12

K21 K22

]

, with the sub-block sizes matching the partitions in Eq. (6.22). Next, the

procedure reads as follows

1. Start with the initial value ˆη(ti) obtained from Eq. (6.21)

2. In Eq. (6.49) minimizeγ with respect to (F,K)

3. Keep (F12, F22,K12,K22) from step 2 since these variables multiply the unknowns
ηs(ti). Next in Eq. (6.49), minimizeγ with respect to the free variables
(η̂(ti), F11, F21,K11,K21)

4. Repeat from 2 until convergence or maximum iteration reached

Remark 13 Aside from D-K iteration, similar heuristics appear to workwell in practice,
such as model order reduction [68], LPV controller with parameter-dependent scalings
[69], or gain-scheduled controller with inexact scheduling parameters [70]. Analogously
to D-K iteration convergence—for which convergence towards a global optimum, or even
a local one, is not guaranteed [71, 72]—the above iterative method does not inherit any
convergence certificates, however in practice convergencehas been achieved within a few
iterations.
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Remark 14 In Appendix B, we examine a specific case for which the optimalvalue of the
scheduling parameters can be computed, thus avoiding any nonlinear iterative approach.

6.7.Step 4.2: Obtaining the mapping η(x(t), u(t))
The aim is here to find a suitable representation, or smooth CTmappingg(·), that satis-
fiesη(t) = g(x(t), u(t)) and

{

η(x(ti), u(ti))
}N
i=1 ≈

{

ηi
}N
i=1. To this end, this mapping will be

obtained by using the information available in the previously identified set{ηi}Ni=1 together
with the data available in IO setZN.

Now, for physically-intuitive plants, one may select the required states and inputs in
g(x(t), u(t)), based upon engineering judgment, and derive these mappings through popular
curve-fitting methods. For non-transparent systems, i.e. exhibiting significant dependences
among variables, one may consider formal/systematic tools such as: orthogonal/radial ba-
sis functions, principal component analysis, statisticalanalysis, fuzzy tools, or Neural Net-
works (NN). Regarding NN, it is well-known that, under mild assumptions on continuity
and boundedness, a network of two layers13 can be trained to approximate any IO relation-
ship arbitrarily well, provided there are enough neurons inthe hidden layer [73, 74]. Hence,
NN have found a wide range of applications in control theory [75]. But despite their pow-
erful features, NN have only seen limited usage in the LPV field [76–78]. This said, we
choose here to base theg(·) modeling on NN. We will further illustrate the applicability of
a two-layer feedforward NN, the first being sigmoid and the second linear, withl neurons
(l large enough), such that

η(t) = g(x(t), u(t)) = Cη.sη(t) (6.23)

with
sη(t) =Woη .κ

(

Wxη x(t) +Wuηu(t) +Wbη
)

(6.24)

andWoη ∈ RS×l , Wxη ∈ Rl×nx , Wuη ∈ Rl×nu containing the output and hidden layer weights.
Further,Wbη ∈ Rl contains the sets of biases in the hidden layer,Cη ∈ RS×S contains the
output linear maps, andκ(·) is the activation function, taken as a continuous, diagonal, dif-
ferentiable, and bounded static sigmoid nonlinearity. Here, all NN models will be based
upon a classical feedforward network, with the hyperbolic tangent activation transfer func-
tion in the hidden layer, and backpropagation training for the weights and biases.

6.8.Steps 5.1 and 5.2: Identifying the parameters
{

ζi
}N
i=1 and

obtaining the mapping ζ(x(t), u(t))
We identify here the set of scheduling parameters

{

ζi
}N
i=1 ≔

{

ζ1(ti), ..., ζW(ti)
}N
i=1 on the basis

of the information available in the previously identified set {Tw,Zw}Ww=1 together with the

data available in set
{

di
}N
i=1. This problem may be formulated as follows: find, at each time

ti , the optimal parameters{ζ̂(ti)}Ni=1, with ζ̂(ti) ≔ [ζ̂1(ti), ..., ζ̂W(ti)]⊤, that minimize

J2(ti) ≔ ‖di −
W
∑

w=1

ζw(ti)
(

Twxi + Zwui

)

‖2 i = 1, ...,N (6.25)

13The first being hidden sigmoid and the second linear.
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Remark 15 In Eq. (6.25) we have based the optimization on theL2 norm of a vector, as it is
computationally very cheap. An alternative approach wouldbe to consider theL∞ norm of
a vector, in order to be consistent with the identification ofthe scheduling variables

{

ηi
}N
i=1

in Section6.6.

Now using theΛi matrix defined in Eq. (6.17), we can rewrite Eq. (6.25) as

∀i ∈ {1, ...,N}
ζ̂(ti) = arg min

ζw(ti )
‖vec(Λi) − U1..W [ζ1(ti), ..., ζW(ti)]⊤‖22 (6.26)

which can be solved through linear least-squares. AsU1..W is an orthogonal matrix, the
solution of Eq. (6.26) reduces to

∀i ∈ {1, ...,N} ζ̂(ti) = U⊤1..W vec(Λi) (6.27)

The reconstructed remainder term, used in the sequel withinthe model evaluations, is
readily computed as

∀i ∈ {1, ...,N} d̂i =

W
∑

w=1

ζ̂w(ti)
(

Twxi + Zwui

)

(6.28)

The next step requires the determination of a suitable representationh(·), that satisfies
ζ(t) = h(x(t), u(t)) and

{

ζ(x(ti), u(ti))
}N
i=1 ≈

{

ζi
}N
i=1. To this end, this mapping will be ob-

tained by using the information available in the previouslyidentified set{ζi}Ni=1 together
with the data available in IO setZN. The mappingh(·) is here as well based upon a NN
representation, and the associated procedure is identicalto the one of Section6.7.

6.9.Application to the modeling and control of a modified
pointmass pendulum

The LPV modeling method, presented in this Chapter, was applied to the helicopter NL
model of Chapter 2, and resulted in a LPV model having a large number of (i.e. more
than thirty) scheduling parameters. Unfortunately, it became impossible to synthesize LPV
controllers with such a high-order LPV model. Hence, the simulation results, presented in
this Chapter, have been done on a simpler example, the pointmass pendulum. In this section,
both Open-Loop (OL) and Closed-Loop (CL) analysis of our LPVmodeling framework
will further be discussed. Now, the rotational motion of thedriven and damped, pointmass
pendulum, is given by

d
dt

[

x1(t)
x2(t)

]

=

[

x2(t)
−bx2(t) − a2 sinx1(t)

]

+

[

0
ϑ(u(t))

]

with ϑ(u(t)) = csinu(t)
(6.29)

with [x1 x2]⊤ = [θ θ̇]⊤ the states,θ the rotation angle,u the input torque,a =
√

g/L the
angular frequency,g the acceleration due to gravity,L the pendulum length, see Fig.6.3, b a
measure of the dissipative force, with values: (L = 3, b = 2), andϑ(·) a fictional nonlinearity
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Figure 6.3: The pointmass pendulum example representing the nonlinear plant.

(with coefficientc = 4) with the intent of increasing the NL model generality. Obviously,
the system in Eq. (6.29) can exactly be recast into quasi-LPV form, using a global approach,
i.e. by choosing two scheduling parametersθ1(·) andθ2(·), such thatθ1(t) = sinx1(t)/x1(t)
andθ2(t) = sinu(t)/u(t). We have purposely chosen a simple example, as to better illustrate
the practicality of our modeling method, which will be used to derive several LPV models.

6.9.1.Building the LPV models
To derive the LPV models we excite the pendulum model from itsrest position with a 20
s. long sine-sweepu(t) = Asin(2π. f .t), A = 1, with frequencyf in the range 0.001–1 Hz,
sampled with a periodTs = 0.05 s., resulting in 401 data points. The purpose is also to
illustrate the applicability of our modeling method in a conservative context, i.e. for the
case where the control input signal-richness (used for identification) is rather limited, as
is the case with this single sine-sweep signal chosen here, and for the case of a relatively
high sampling period, resulting thus in few data points (here only a few hundreds). Fur-
ther we also use a frequency range of interest defined as a widelow-pass filter∆ω with
[ω1, ω2] = [0, 10] Hz, to be able to test the model at frequencies outside the0.001–1 Hz
band used during identification.

First, thecentralmodelĜ0(s), obtained according to Eq. (6.11), with ρ = 100, is found
to be model nr. 185, i.e.G185(s). Next, Table6.1 and Table6.2 are given to provide an
overview of the SVD results—of Sections6.4and6.5—used to derive the basis functions,
where thecaptured energyrefers to the percentage ratio between the sum of the retained
singular values to the sum of all singular values.

Table 6.1: Number of retained basis functions, in the SVD decompositions of Section6.4.

Nr. of Basis Functions inU1..S

S=2 S=1

Captured Energy ofU1..S (%) 100 53



6

234 6. Affine LPV Modeling

Table 6.2: Number of retained basis functions, in the SVD decompositions of Section6.5.

Nr. of Basis Functions inU1..W

W=3 W=2 W=1

Captured Energy ofU1..W (%) 100 79 51

From Table6.1, we see that matrixU1..S has 2 columns, and hence the maximum value
of S is 2. Similarly from Table6.2, we see that matrixU1..W has 3 columns, and the
maximum value ofW is 3. To better analyze our modeling framework we will use three LPV
models: the first two to evaluate the OL response, whereas thethird one will be used for
dynamic output feedback control design14. The first two assume full-information, whereas
the third corresponds to the case where only statex1 is measured. The first model, model
M1, with S = 2,W = 3, retains all basis functions, and hence corresponds to thebest model
we can build. On the other hand, both models M2 and M3, withS = 1, W = 1, retain
the least amount of energy in the basis functions, but are computationally most efficient.
Summarizing, the three models are described as

1. Model M1. Generated withS = 2, W = 3, and a 10-neurons network withη(t) =
g(x1(t), x2(t)), ζ(t) = h(x1(t), x2(t))

2. Model M2. Generated withS = 1, W = 1, and a 10-neurons network withη(t) =
g(x1(t), x2(t)), ζ(t) = h(x1(t), x2(t))

3. Model M3. Generated withS = 1, W = 1, and a 10-neurons network withη(t) =
g(x1(t)), ζ(t) = h(x1(t))

Note that functionsg(·) andh(·) are functions of the states only, rather than both states
and inputs, since better validation results were obtained this way when exciting the LPV
models with fresh inputs (i.e. inputs not used during the identification process). Next,
to compare the effectiveness of the proposed LPV models, we define the following cost
functions

1. Cost C1. For an evaluation of the optimization problem Eq. (6.19), we define the
mean of the local TF deviation in terms of costJP1 ≔

1
N

∑N
i=1 J1(ti), with J1(·) the

cost function of Eq. (6.19), andN the data length.

2. Cost C2. For an evaluation of the optimization problem Eq. (6.25), we define the

following cost JP2 ≔ 100%. 1
nx

nx
∑

k=1
max

(

1 −
∥

∥

∥δk−δ̂k

∥

∥

∥

2
∥

∥

∥δk−mean(δk)
∥

∥

∥

2

, 0
)

, with nx the number of

states,δk ∈ RN a time-domain vector representing thekth row of d, the latter being
defined in Eq. (6.4). Further,δ̂k ∈ RN is a time-domain vector representing thekth

row of d̂, the latter being defined in Eq. (6.28).

14In most practical situations, when designing control systems, one does not have access to the full state-vector.
In the case of the pendulum, often only the rotation angleθ is being measured.
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For our NL system Eq. (6.2) recall that, at each operating pointti , we had

ẋ(ti) = f
(

xi, ui
)

= Āixi + B̄iui + di i = 1, ...,N

Hence the purpose of cost C1 is to check whether the LPV systemdefined by Eq. (6.30),
with its scheduling parameters evaluated at a frozen-scheduling for time ti , does (or not)
represent a good approximation of the LTI system given here-under by Eq. (6.31).

P(η(x(t), u(t))) ≔



















ẋ(t) = A0x(t) + B0u(t)

+
S
∑

s=1
ηs(x(t), u(t))

(

Lsx(t) + Rsu(t)
) (6.30)

ẋ(t) = Āix(t) + B̄iu(t) (6.31)

On the other hand, the purpose of cost C2 is to check whether the reconstructed remain-
der termd̂i at a frozen-scheduling for timeti , defined by Eq. (6.28), does represent (or not)
a good approximation of the remainder termdi , defined by Eq. (6.4). Note also that costs
C1 and C2 evaluate the models before the inclusion of the NN component.

The results are given in Table6.3, where all LMIs used to compute cost C1 are solved
using YALMIP [79] with the SeDuMi solver [19]. For model M1, since we kept all basis
functions, the cost functionsJP1 and JP2 reveal a perfect match between Eq. (6.30) and
Eq. (6.31), and between the remainder termsd̂i anddi respectively. On the other hand,
models M2 and M3 use the minimum set of basis functions. Thesemodels are equivalent
in terms ofJP1 and JP2, since different only through their respective NN representation.
We see thatJP2 is still high (which is good), and that the simple approach Eq. (6.20), to
compute the scheduling parameters, gives a very low value for JP1 (which is also good).
For this example, we see that the NL refinement forJP1 (to compute the scheduling param-
eters) is not even necessary, although on a different example [1] it did provide substantial
improvements. This preliminary modeling review shows thatmodels M2 and M3, although
based on the minimum set of basis functions, may potentiallyprovide good model fidelity
in OL. In the sequel we provide additional evaluations of both OL and CL behavior.

Table 6.3: Cost Functions:JP1 andJP2 .

LPV Costs
Model JP1 JP1 JP2

Model from Eq. (6.20) from iterative refinement (%)

M1 0 N.A. 100
M2=M3 0.34 0.32 74

6.9.2.Open-Loop analysis
To better compare the effectiveness of the proposed LPV models we define the following
additional cost functions
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1. Cost C3. For a comparison of time-domain outputs inl2[0,∞), we use fresh data
sets, namely step-inputs, and sine-inputs at varying amplitudes and frequencies, and

compute the Best-FiT (BFT)≔ 100%. 1
nx

nx
∑

k=1
max

(

1−
∥

∥

∥sk−s̃k

∥

∥

∥

2
∥

∥

∥sk−mean(sk)
∥

∥

∥

2

, 0
)

with sk ∈ RN a

time-domain vector representing thekth row of x (x being the state-vector of the NL
system), and similarlỹsk ∈ RN being the LPV counterpart.

2. Cost C4. Using the variables defined forC3, we compute the Variance-Accounted-
For (VAF)

VAF ≔ 100%. 1
nx

nx
∑

k=1
max

(

1− var(sk−s̃k)
var(sk) , 0

)

. Roughly speaking the VAF tends to capture

signal closeness in terms of their respective "shapes".

In this section we have added the NN part to the LPV models (we use the NN MAT-
LAB Toolbox). All models become now quasi-LPV models (also written as qLPV). We
will compare next the behavior of the CT quasi-LPV models with that of the CT NL sys-
tem. We excite the quasi-LPV models with data sets not used during the modeling build-up.
First, we use sine-inputs, for several fixed amplitudes and fixed frequencies (again not used
during identification), and present the respective BFT and VAF for each model in Table6.4
through6.6.

Overall all three models exhibit very good to excellent fit with the NL model, for
input amplitudes below one (i.e. the value used during identification). The accuracy of
these quasi-LPV models diminishes when the input amplitudeis increased above one, even
though model M2 still retains a very good fit. We also note thatmodel M2, even though
based on fewer basis functions than M1, is roughly at least asgood as model M1. This
may be explained by the fact that the NN models were trained with a very small data set.
Indeed good identification data sets may be two orders of magnitude bigger, in the tens of
thousands of points rather than a few hundreds [80]. Hence, and even though there is no
measurement noise in these simulations, a model with fewer to-be-estimated parameters,
like M2, may provide, in this case, a higher quality model. The fit for model M3 is slightly
worse than that of M2, e.g. for input amplitudes above one. This may be explained by the
fact that the identification of M3’s NN was based on statex1 only.

Table 6.4: Time response to sine-inputs for M1. Left value isBFT (%), Right value is VAF (%).

Input Input Frequency (Hz)
Amplitude 0.25 0.5 0.75 1

0.25 93 99 94 100 96 100 97 100
0.5 97 100 91 99 94 100 94 100
0.75 93 100 90 99 91 99 92 100
1 94 100 91 99 90 99 90 99
1.5 78 97 81 97 79 97 73 95
1.75 0 0 54 88 69 95 61 92
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Table 6.5: Time response to sine-inputs for M2. Left value isBFT (%), Right value is VAF (%).

Input Input Frequency (Hz)
Amplitude 0.25 0.5 0.75 1

0.25 93 100 87 98 90 99 91 99
0.5 94 100 87 98 88 99 89 99
0.75 96 100 90 99 90 99 90 99
1 94 100 94 100 93 100 91 99
1.5 83 97 86 98 80 98 77 97
1.75 80 96 77 96 68 95 63 94

Table 6.6: Time response to sine-inputs for M3. Left value isBFT (%), Right value is VAF (%).

Input Input Frequency (Hz)
Amplitude 0.25 0.5 0.75 1

0.25 91 99 87 98 90 99 90 99
0.5 93 99 86 97 88 98 88 99
0.75 95 100 88 98 87 98 89 99
1 97 100 91 99 88 98 81 97
1.5 73 95 85 98 81 97 62 94
1.75 55 90 74 96 70 94 53 91

Finally, we also compare the model responses to a step input of amplitudeA = 0.5, with
the outcomes given in Table6.7, and Fig.6.4 through6.6, where again the respective high
model quality is being confirmed.

Table 6.7: Time response to step input of AmplitudeA = 0.5.

Quasi-LPV Costs
Model BFT (%) VAF (%)

M1 70 97
M2 72 98
M3 55 96

We do see that all models exhibit some steady-state error on state x1. This may po-
tentially be attributed to the training of the NN models, i.e. in this case with few data. In
summary, model M2 provides good model fidelity in OL, coupledwith slightly better com-
putational efficiency than model M1 (since having fewer scheduling parameters, and hence
fewer NN models to evaluate), and may thus be used for OL prediction, whereas model M3
has also shown to be a suitable candidate for subsequent controller design, in a dynamic
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output feedback framework (based upon measurementx1).
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Figure 6.4: M1 outputs for step input of AmplitudeA = 0.5 (legend: ’–.’ NL x1; ’– –’ NL x2; ’–’ qLPV x1; ’.’
qLPV x2).
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Figure 6.5: M2 outputs for step input of AmplitudeA = 0.5 (legend: ’–.’ NL x1; ’– –’ NL x2; ’–’ qLPV x1; ’.’
qLPV x2).
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Figure 6.6: M3 outputs for step input of AmplitudeA = 0.5 (legend: ’–.’ NL x1; ’– –’ NL x2; ’–’ qLPV x1; ’.’
qLPV x2).

6.9.3.Closed-Loop analysis
The objective of this section is to evaluate the quasi-LPV model M3 in a CL setting. To
this end, we define the generalized plantGP(s) which maps the exogenous inputsw =
[r⊤ n⊤]⊤ and control inputsu, to controlled outputsz = [zu

⊤ zp
⊤]⊤ and measured outputs

v = [r⊤ e⊤]⊤, see Fig.6.7. The signals consist further ofr the reference signals,n the
sensors noise,e the tracking errors,zu the actuators performance signal (to limit actuator
deflection magnitudes and rates), andzp the desired performance in terms of closed-loop
signal responses. The plant used for control synthesis is denotedP (plantP0 and uncertainty
Θ will be addressed in the sequel), and for the weights, we use the standard robust control
weights, which include the performance weight Wp(s), the actuator weight Wu(s), and the
sensor noise weight Wn(s), all given in Appendix C. The generalized plantGP(s) is further
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Figure 6.7: Control synthesis: two degrees-of-freedom control structure.

given by
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(6.32)

The goal of the control synthesis consists in finding a dynamic controllerK(s) that
establishes closed-loop stability, while guaranteeing aL2-gain boundγ from the exogenous
inputsw to the controlled outputsz, such that

∫ T

0
z⊤(t)z(t) dτ ≤ γ2

∫ T

0
w⊤(t)w(t) dτ ∀T ≥ 0 (6.33)

In the sequel, we will synthesize four controllers—oneH∞ LTI, one robustµ LTI, and
two LPV ones—and compare their reference tracking performance to step reference in-
puts. The controller synthesis is based upon a two-degrees-of-freedom control structure,
see Fig.6.7. The feedback part is used to reduce the effect of uncertainty, whereas the feed-
forward part is added to improve tracking performance [81], and for optimality, both will
be designed in one step. These four controllers are defined asfollows

• Controller 1: H∞ LTI controller . The purpose is here to synthesize a controller
which is not based on model M3, but rather based upon a nominalLTI model. This
latter model is obtained from a single linearization, at a rest position, of the NL

model defined in Eq. (6.29). This nominal LTI modelPnom≔

[

Anom Bnom

[1 0] 0

]

, used
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for control design, is computed via a first-order Taylor-series expansion of the NL
model, at its equilibrium point [x1 x2]⊤ = [0 0]⊤, see Appendix C. Further, for this
H∞ LTI controller, the control synthesis does not include any robustness with respect
to some uncertaintyΘ, hence in Fig.6.7we have

P = P0 = Pnom (6.34)

Now, with Eq. (6.34) in mind, we can rewrite Eq. (6.32) as follows

(

z
v

)

= GP

(

w
u

)

(6.35)

with GP(s) the generalized plant. Obtaining here a LTI controllerK(s) that mini-
mizes theL2-gain boundγ from the exogenous inputsw to the controlled outputsz,
is equivalent to the minimization of theH∞ norm of a standard, weighted, mixed-
sensitivity S/KS criterion. Here, the controllerK(s) is computed such that [82]

K = arg min
K
‖Fl

(

GP,K
)‖∞ (6.36)

We will consider this controller as the benchmark controller. The next three con-
trollers will be synthesized using the LPV model M3, and willalso be compared to
this benchmark controller.

• Controller 2: Robust µ LTI controller . First, the identified affine LPV model M3,
as defined in Eq. (6.3), is given by

P(θ(t)) ≔

{

ẋ(t) = A0x(t) + B0u(t) +
R
∑

r=1
θr (t)

(

Arx(t) + Bru(t)
)

(6.37)

with R = S +W, S andW the number of basis functions retained in Section6.4and
6.5, respectively, and

[θ1(t), ..., θR(t)]⊤ ≔
[

η̂1(t), ..., η̂S(t), ζ̂1(t), ..., ζ̂W(t)
]⊤

[A1, ...,AR] ≔ [L1, ..., LS,T1, ...,TW]
[B1, ..., BR] ≔ [R1, ...,RS,Z1, ...,ZW]

(6.38)

Now, it is also useful to first rescale plantP(θ(t)) in Eq. (6.37) as follows

P(α(t)) ≔



















ẋ(t) = Ã0x(t) + B̃0u(t)

+
R
∑

r=1
αr (t)

(

Ãrx(t) + B̃ru(t)
) (6.39)

such thatα(t) ≔ [α1(t), ..., αR(t)]⊤, with |αr (t)| ≤ 1. Here, the generalized plantGP(s)
has a linear fractional dependence on the scheduling parameterα(t). This plantGP(s)
can be represented by the upper LFT interconnection

(

z
v

)

= GP

(

w
u

)

= Fu(M,Θ)

(

w
u

)

(6.40)
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whereM(s) is a known LTI plant, see Fig.6.8. Further,Θ ≔ blockdiag(α1Ik1, ..., αRIkR)
represents some block diagonal operator specifying how thescheduling parameters
enter the plant dynamics, and{Ikr }Rr=1 denotes identity matrices whose sizes corre-
spond, in a sense, to the "complexity" of the scheduling parameter variations. Next,
the feedback structure associated with the LFT interconnection Eq. (6.40) is given by


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(6.41)

with zθ, andwθ, the inputs and outputs of operatorΘ, shown in Fig.6.8.

Figure 6.8: StandardM − Θ − K robust control framework.

We further proceed by treating the scheduling parameter variations, i.e. given inΘ, as
fixed uncertainties (not measured on-line). This represents an approximation of the
LPV model given in Eq. (6.39), which is here considered as a set of LTI models rather
than a time-varying model. This scheduling parameter variations is addressed here
within the robust control framework, by consideringΘ as a time-invariant uncertainty,
such that

σ̄(Θ) ≤ 1 (6.42)

The CL operator from exogenous inputsw to controlled outputsz is given by

T(M,K,Θ) = Fl
(

Fu(M,Θ),K
)

(6.43)

with K(s) the to-be-synthesized controller. Again, the goal of the controller is to
minimize theL2-gain boundγ from the exogenous inputsw to the controlled outputs
z, despite the uncertaintyΘ. Based upon Eq. (6.42) and small gain considerations [83,
84], this goal is approximated by the minimization of theH∞ norm ofFl

(

M,K
)

. Now,
if Θ presents some structure, better performance may be obtained by synthesizing
K(s) through D-K iteration [67, 85]
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K = arg min
K

inf
D,D−1∈H∞

‖DFl
(

M,K
)

D−1‖∞ (6.44)

with D(s) a stable and minimum-phase scaling matrix, chosen such that D(s)Θ =
ΘD(s). Using [86] we obtain, for our example (see Appendix C for the problem data),
after five iterations, a 12th order controller based upon an 8th orderD(s)-scaling. The
controller is further reduced to 5th order, after balancing and Hankel-norm model re-
duction [87], without any significant effect on CL robustness/performance.

In summary, we have obtained a single robust LTI controller,for a family of LTI
plants. Recall however that a major approximation was made,namely the LPV model
in Eq. (6.39) is considered as a set of LTI models, by assumingΘ to be time-invariant.
Clearly, such an approach is not sufficient to prove stability and performance of the
original, time-varying system, i.e. the LPV model in Eq. (6.39) [88]. In other words,
theL2-gain from the exogenous inputsw to the controlled outputsz may be much
higher than theH∞ norm of DFl

(

M,K
)

D−1. This robust control approach should
only be viewed as a necessary condition to prove stability and performance of the
original LPV system. In other words, if the controllerK(s), obtained from Eq. (6.44),
does not meet the desired stability and performance objectives, then it is pointless to
consider other controllers, such as LPV ones, that do take the time-varying aspect of
the system into account. This said, this robust control approach, as presented here,
is known to work well in practice for scheduling parameters having sufficiently slow
time-variations.

Let us now examine a more sophisticated control approach, which takes the time-
varying nature of the scheduling parameters into account. To this end, we consider now
controllers which are also in LPV form, and hence also time-varying. The goal of anH∞-
based, output-feedback, control problem for LPV systems consists in finding, for all pa-
rameter trajectories15 Θ(t) ≔ blockdiag(α1(t)Ik1, ..., αR(t)IkR), a dynamic controllerK(s)
that establishes closed-loop stability, while truly minimizing theL2-gain boundγ from the
exogenous inputsw to the controlled outputsz.

Over the years the subject of LPV control has received much attention, resulting in a
plethora of control methods. Although a full review of LPV control methods is beyond the
scope of this Chapter, we briefly mention here the following classifications

• So-called polytopic—also known as quadratic—techniques [7, 89–92], versus so-
called scaled small-gain—also known as Linear Fractional Representations (LFR) or
norm-bounded—approaches [6, 8, 9, 12, 13, 92–94].

• So-called Parameter-Independent Lyapunov Function (PILF) techniques (such as the
methods listed in the previous alinea), versus so-called Parameter-Dependent Lya-
punov Function (PDLF)—also known as griding—approaches [10, 11, 69, 70, 95–
99].

15Notice that nowΘ(t) is a time-varying operator.
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We summarize next some general guidelines

• Polytopic PILF approaches tend to be less conservative thanthe scaled small-gain
PILF ones [92, 100, 101]. However, this comes at the expense of an exponential
growth in the number of LMIs.

• PILF methods enjoy twin relevant properties: 1) simplicity, having controller com-
plexity typically equaling that of the plant; and 2) numerical tractability. However
PILF methods are based upon the quadratic stability/robustness condition, known to
be only a sufficient condition [102].

• PDLF methods can improve performance, i.e. decrease conservatism, in case the
scheduling parameter time-derivative is known to be bounded [102]. However, PDLF
approaches often lead to additional difficulties, namely an infinite number of LMIs
emanating from the parameter-dependent LMI structure. Hence, PDLF methods rely
upon so-called griding techniques, resulting in poor computational tractability.

In light of the previous discussion, and in order to validateour LPV modeling frame-
work in CL, we implement here two (H∞-based) LPV control methods: 1) a so-called
polytopic PILF one; and 2) a so-called scaled small-gain PDLF one. Keeping in mind syn-
thesis simplicity and low online computational effort, we choose methods [7] and [69] as
the respective control approaches. These two LPV controllers are defined as follows

• Controller 3: Polytopic PILF LPV controller . In the LPV modelP(α(t)), given by
Eq. (6.39), the scheduling parameterα(t) is defined on a compact setPα, represented
by a hypercube of dimensionR, with its vertices corresponding to the extremal values
of {αr (t)}Rr=1. Let {w j | j ∈ {1, ..., J}, J = 2R} be the vertices of this polytope, then we
can define the following convex hull

Co
{

w1, ...,wJ
}

≔

{ J
∑

j=1

λ jw j ,

J
∑

j=1

λ j = 1, λ j ≥ 0
}

(6.45)

with Co(·) the abbreviation denoting the convex hull. For LPV model M3, we have

R = S +W = 2, implying J = 22 = 4 vertices, given byw1 =

[

1
1

]

, w2 =

[

1
−1

]

,

w3 =

[

−1
1

]

, w4 =

[

−1
−1

]

, since we had normalized the scheduling parameters

as |αr (t)| ≤ 1. In Eq. (6.39) the dependency onα(t) is affine, hence the vertices of
the state-space matrix polytope, used for controller design, are given byP(w j), j ∈
{1, ..., J} (see [7] for further details). The controller synthesis16 follows the lines of
classicalH∞ synthesis, with the difference that it is based upon theH∞ quadratic
stability and performance concept (since both plant and controller are time-varying).
The global LPV controllerK(α(t)) is obtained through interpolation of local con-
trollers, the latter being synthesized at each vertexP(w j) [7]. Since the method re-
quires the control-matrix to be independent of the time-varying scheduling parame-
ter, we pre-filtered the LPV model with the low-pass filter defined at the beginning of

16The polytopic PILF LPV controller synthesis method [7] is available in the MATLAB Robust Control Toolbox.
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Section6.9.1. A gainγ = 0.92, in Eq. (6.33), was achieved with the weights defined
in Appendix C. Although the synthesized controllerK(α(t)) is time-varying—and
hence represents an improvement compared to the previous LTI µ controller—the
quadratic stability and performance concept assumes arbitrarily fast varying schedul-
ing parametersα(t). Obviously this may result in some conservatism, in case the
scheduling parameters have a bounded rate of variation.

• Controller 4: Small-gain PDLF LPV controller . This last controller is also referred
in the sequel as the LPV-LFT controller. Again, both plant and controller are depen-
dent on the time-varying scheduling parameterΘ(t) ≔ blockdiag(α1(t)Ik1, ..., αR(t)IkR).
The CL operator from exogenous inputsw to controlled outputsz is adjusted from
Eq. (6.43) to become

Tlpv(M,K,Θ(t)) = Fl
(

Fu(M,Θ(t)), Fl(K,Θ(t))
)

(6.46)

The to-be-designed LPV controllerK(Θ(t)) is obtained by minimizing theL2-norm
of operatorTlpv [69]. Moreover, the controller synthesis method also takes parameter
time-derivative into account, implying a dependence on both Θ(t) and its derivative
Θ̇(t). This results in an infinite-dimensional LMI problem [69] which, in our case,
was tackled by using a small grid, containing only the extrema ofΘ(t) andΘ̇(t). Since
the method [69] is an iterative method17, good starting values for the scalings were
obtained by performing a robustµ synthesis, with constant scalings, on the (Ã0, B̃0)
plant (this plant is defined in Eq. (6.39)). A gainγ = 0.51, in Eq. (6.33), was achieved
with the weights defined in Appendix C, after ten iterations.

Remark 16 The purpose of this CL experiment is not so much on specific aspects related
to controller weight selection, but rather on highlightingany general similarities or differ-
ences, obtained when synthesizing various controllers, while using two modeling options:
either LTI or our LPV based method. Similarly, and although,for generality, some robust-
ness with respect to signal noise was included during the controller synthesis process (with
weight Wn(s)), the simulation results, presented hereunder, consider only reference tracking
in a noise-free and disturbance-free environment.

Discussion of results
The validation of all controllers, on the NL plant, is done using step inputs on thex1 refer-
ence signal, starting from a zero initial condition, i.e. pendulum at rest, see Fig.6.9–Fig.6.11.
With respect to our LPV modeling method, we provide the following main conclusions and
recommendations:

• TheH∞ controller exhibits a steady-state error, which remains persistent despite sev-
eral modifications of the performance weightWP(s). Compared to theH∞ controller,
which is designed on a linearization of the NL plant, all other controllers designed
using our LPV modeling methodology, i.e. on model M3, do not exhibit any steady-
state error, and hence achieve much better reference tracking. This is achieved even
though model M3 has been built with the least number of basis functions.

17The small-gain PDLF LPV controller synthesis method [69] is not available in the MATLAB Robust Control
Toolbox.
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• Best practice would be to first design a robustµ controller (especially if the NN model
has been trained with few data), and view it as a benchmark design. Then, it would
be interesting to implement at least one PILF LPV control method, and one PDLF
LPV control method, in order to be able to compare results.
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Figure 6.9: Closed-Loop step response of NL model with controllers: re f erence→ x1. Cyan line: H∞
controller. Red dotted line:µ controller. Black dash-dotted line: LPV-Polytopic controller. Blue dashed
line: LPV-LFT controller.

With regard to control, we provide the following main conclusions:

• The robustµ controller and the polytopic PILF LPV controller exhibit very similar
tracking performance, although the control input of the latter one is much smoother,
see Fig.6.11.

• Comparison of robustµ control with several LPV control methods has primarily been
addressed in [103–107]. Except for [107], all authors have reported that LPV meth-
ods were less conservative than a standardµ approach. Indeed, the distinct advantage
of LPV control methods is based upon the on-line measurementof the scheduling
parameters (and potentially its derivatives). However forLPV-LFT methods, this
advantage needs to be put into perspective, since all LPV-LFT control methods (ex-
cept for the most prominent contribution [94]) have been based upon static scaling,
whereasµ uses dynamic scaling.

• If additional robustness is required, to account for unmodelled dynamics and NL
effects, then one may add a complex full-block input multiplicative uncertaintyΘc(s)
at the input of the plant. The uncertainty structureΘ(s) in Fig. 6.8is then replaced by

a mixed, real and complex, uncertainty structure

[

Θc 0
0 Θ

]

, for which several LPV

control methods exist, e.g. [8, 69].

• If knowledge of the scheduling parameters is somewhat inexact, then [108] may be
of interest.
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Figure 6.10: Closed-Loop step response of NL model with controllers: re f erence→ x2. Cyan line: H∞
controller. Red dotted line:µ controller. Black dash-dotted line: LPV-Polytopic controller. Blue dashed line:
LPV-LFT controller.
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Figure 6.11: Closed-Loop step response of NL model with controllers: control inputu. Cyan line: H∞
controller. Red dotted line:µ controller. Black dash-dotted line: LPV-Polytopic controller. Blue dashed
line: LPV-LFT controller.
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6.10.Conclusion
We have presented a comprehensive affine quasi-LPV modeling framework, allowing to de-
rive models which are suitable for open-loop and close-loopapplications such as robust and
LPV controller design. In addition, the versatility of the proposed modeling framework may
potentially allow to consider other types of control analysis and synthesis avenues, provided
some form of model clustering is used, such as those in the realm of Piece-Wise-Affine
and Piece-Wise-Linear methods. Since our LPV modeling approach does not incorporate
any information on parameter time-derivatives, it is expected that significant enhancements
could potentially be obtained in this area.

Our modeling method was applied to the helicopter high-order nonlinear model of
Chapter 2, and resulted in a LPV model having a large number of(i.e. more than thirty)
scheduling parameters. Unfortunately, it became impossible to synthesize LPV controllers
with such a high-order LPV model. In fact, the numerical conditioning and solvability of
LMI problems play a crucial role in LPV practical design methods. A way to mitigate
such problems would consist in applying some LPV model reduction techniques, in order
to obtain a LPV model having fewer scheduling parameters, hence better suited for LPV
controller synthesis.
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6.11.AppendixA: Kalman-Yakubovich-Popov (KYP) Lemmawith
spectral mask constraints

We recall here how to compute the‖ · ‖∆ω norm, i.e. theH∞ norm with spectral mask
constraints, through the use of the Kalman-Yakubovich-Popov (KYP) Lemma [109] with
spectral constraints [110, 111].

6.11.1.Preliminaries
Lemma 2 Let real scalarsω1 ≤ ω2, ωc = (ω1 + ω2)/2, and a Transfer Function (TF)

G(s) ≔

[

A B
C D

]

be given, then the following statements are equivalent.

1. ∀γ > 0, λ(A) ⊂ C− ∪ C+, ‖G‖2
∆ω
< γ2 (6.47)

2. There exists matrices P and Q, of appropriate size, such that
P = P∗, Q > 0, and L(P,Q) + Θ < 0, with

L(P,Q) =

[

A B
I 0

]∗ [ −Q P+ jωcQ
P− jωcQ −ω1ω2Q

] [

A B
I 0

]

Θ =

[

C D
0 I

]∗ [
I 0
0 −γ2I

] [

C D
0 I

]

(6.48)

3. There exists matrices F and K, of appropriate size, such that
∀l ∈ {1, 2} Ml(F,K) + Θ < 0

Ml(F,K) = He
(

[

F
K

]

[

I − jωl I
]

[

A B
I 0

]

)

WithΘ given in Eq. (6.48) (6.49)

Proof 2 Invoke the KYP Lemmas with spectral mask constraints, from [110] and [111], to
prove (ii) and (iii) respectively.

Hence, the norm‖ · ‖2
∆ω

is obtained by minimizing the boundγ2 defined in Eq. (6.47),
which is computationally done by minimizingγ2 subject to the LMI in alinea 2), or 3).
Both approaches in 2) and 3) of Lemma2 will be used in this Chapter. Now letn be the
number of decision variables, andm the number of rows of LMIs, then comparing 2) and 3)
shows that, while both have similarm, they differ in terms ofn, i.e. n2

x+nx versusn2
x+nxnu,

respectively. Since the asymptotic computational complexity, or flop cost, of SDP solvers
is in O(n2m2.5 + m3.5) for SeDuMi [19], and inO(n3m) for MATLAB LMI-lab [ 112], the
former approach is more efficient for large problems, and hence is the method we will use
most often, however, the latter has the advantage that, for fixedF andK, it is also affine in
the problem’sA andB matrices, and hence can be used in a bi-convex framework.

6.12.Appendix B: Identifying the set of parameters
{

η1(ti), ..., ηS(ti)
}N
i=1 for a specific case

Here we consider a situation for which the optimal value of the scheduling parameters can
be computed, avoiding thus an iterative approach the like ofSection6.6. We examine the
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specific case where matricesLs are not identically zero, however with matricesRs identi-
cally zero. Now Eq. (6.22) becomes equivalent to

Ḡi(s) −Gi(s) ≔

[

A B
C D

]

=





























Āi 0 B̄i

0 A0 +
S
∑

s=1
ηs(ti)Ls B0

I −I 0





























(6.50)

Here Eq. (6.50) corresponds to a situation where the control-input matrix, of all LTI
models, is independent of the time-varying scheduling parameter (all matrices̄Bi are iden-
tical). This may be a specificity of the NL model, or alternatively, it may be achieved by
(low-pass) filtering the control input of all LTI models [7]. In addition, we revert here to
a standard weightedH∞ norm minimization instead of the KYP-based formalism used in
Section6.6, hence replacing Eq. (6.19) by the following: find, for each timeti , the parame-
tersη̂(ti) ≔ [η̂1(ti), ..., η̂S(ti)]⊤ that minimize

J1(ti) ≔ ‖Wf (s)
(

Ḡi(s) −Gi(s)
)‖∞ (6.51)

with Wf (s) a strictly-proper, bandpass filter, centered at∆ω. Now, if we consider the fol-
lowing assumption

• A.1 In Section6.4, all basis (i.e. columns) inU1..S are retained when computing
{Ls,Rs}Ss=1.

then Eq. (6.51) becomes convex, and the optimal value ˆη(ti) can be found through a three-
step procedure. But before solving Eq. (6.51), we give first the following result, which will
prove useful in the sequel.

Lemma 3 Let Wf (s) ≔

[

Af Bf

C f 0

]

, Ḡi(s) ≔

[

Āi B̄i

I 0

]

, Gi(s) ≔





















A0 +
S
∑

s=1
ηs(ti)Ls B0

I 0





















,

be given, with matrices of appropriate size. Let

Wf (s)
(

Ḡi(s) −Gi(s)
)

≔





















A11 A12 B11

0 A22 B0

C11 0 0





















(6.52)

with A11 =

[

Af Bf

0 Āi

]

, A12 =

[

−Bf

0

]

, B11 =

[

0
B̄i

]

, C11 =
[

C f 0
]

, and A22 = A0 +

S
∑

s=1
ηs(ti)Ls, then the following two statements are equivalent

1. ∀γ > 0, Wf (s) ∈ RH∞,
(

Ḡi(s) −Gi(s)
) ∈ RL∞, ‖Wf

(

Ḡi(s) −Gi(s)
)‖2∞ < γ2 (6.53)



6

250 6. Affine LPV Modeling

2. ∃(P,Q), P = P⊤, Q = Q⊤ = P−1, with matrix partitions in P and Q matching those

in Eq. (6.52), given by P=

[

P11 P12

P⊤12 P22

]

, Q =

[

Q11 Q12

Q⊤12 Q22

]

, with

Γ
(

Xη,P11,P12,Q11,Q12
)

≔ ...




























Sym
(

A11Q11 + A12Q⊤12

)

⋆ ⋆ ⋆

A⊤11+ Xη Sym
(

P11A11
)

⋆ ⋆

B⊤11 B⊤11P11 + B⊤0 P⊤12 −γ2I ⋆

C11Q11 C11 0 −γ2I





























< 0 (6.54)

and Xη = P11A11Q11 + P11A12Q⊤12 + P12A22Q⊤12

Proof 3 The proof is a straightforward application of the Bounded Real Lemma (BRL)
[113] in LMI form [ 82], with further: 1) a congruence transformation [114] with diag(J, I , I ),

J =

[

Q11 I
Q⊤12 O

]

; and 2) a change of variable given by Xη . Note that for stable systems,

i.e.
(

Ḡi(s) −Gi(s)
) ∈ RH∞, one has to add the condition J⊤PJ =

[

Q11 I
I P11

]

> 0

Now, solving Eq. (6.51) reduces to a three-step procedure

1. First, solve
∀i ∈ {1, ...,N} minimizeγ
with respect to Xη,P11,P12,Q11,Q12

subject to γ > 0, and the LMIs of Lemma3
(6.55)

2. ComputeA22 = P
†

12

(

Xη − P11A11Q11 − P11A12Q⊤12

)

Q⊤
†

12, with (·)† the Moore-Penrose
inverse. Note thatP12 andQ⊤12 are skinny and fat matrices, hence, by virtue of the
respective left and right inverse,A22 is well-defined

3. Finally, minimize theL2-induced gain of static operator18 XA22 = A22−
(

A0+
S
∑

s=1
ηs(ti)Ls

)

,

such that
∀i ∈ {1, ...,N} η̂(ti) = arg min

ηs(ti )
‖XA22‖2 (6.56)

which is solved as in Eq. (6.21)

6.13.Appendix C: Problem data
The nominal model, corresponding to a linearization of the pendulum NL model at [x1 x2]⊤ =
[0 0]⊤, used forH∞ controller design, is given by

Anom=

[

0 1
−3.2667 −2

]

Bnom=

[

0
4

]

The data for model Eq. (6.37) is given by

A0 =

[

0 1
−2.7915 −2

]

B0 =

[

0
3.0631

]

18Note that, thanks to assumptionA.1, the quantityA22 can exactly be recovered from
(

A0 +
S
∑

s=1
ηs(ti )Ls

)

.
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A1 =

[

0 0
−0.0170 0

]

B1 =

[

0
−1

]

A2 =

[

0 0
0.2205 −0.3446

]

B2 =

[

0
−0.9125

]

The data for model Eq. (6.39) is given by

Ã0 =

[

0 1
−2.8896 −1.8459

]

B̃0 =

[

0
3.4962

]

Ã1 =

[

0 0
−0.0159 0

]

B̃1 =

[

0
−0.9342

]

Ã2 =

[

0 0
0.1556 −0.2433

]

B̃2 =

[

0
−0.6441

]

θ̄1 = 0.9092, θ1
¯
= −0.9595 θ̄2 = 0.2588, θ2

¯
= −1.1530

The maximum rates for the LPV-LFT controller are

¯̇α1 = 11.59, α̇1
¯
= −12.10 ¯̇α2 = 11.13, α̇2

¯
= −11.72

The LTI performance weights in Fig.6.7 are based upon the guidelines of [81]. We
have used

Wu(s) =
s

s+ 2π
Wn(s) = 0.005

For theH∞, µ, and LPV-LFT controllers, after several trials, we settledfor

WP(s) =
s/2+ 0.25π

s+ 0.25π
102

For the LPV-Polytopic controller, we have used

WP(s) =
s/2+ 0.25π

s+ 0.25π
106
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7
Conclusions and future research

Perfect is the enemy of good.

Aphorism commonly attributed to Voltaire

A good enough solution that works, is immeasurably better than a perfect solution yet to
be implemented.

Justin Lloyd
A Mastermind’s Guide to Personal Development, 2009

In this Chapter the most important results achieved in this thesis are first presented, and
further objectives and opportunities for future research are identified and outlined.
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7.1.Contribution of this thesis

T he primary objective of this thesis was to develop a, model-based, automatic safety re-
covery system that could safely fly and land a small-scale helicopter Unmanned Aerial

Vehicle (UAV) in un-powered flight (i.e. autorotation). Theflight control solution presented
in this thesis incorporates a classic guidance and control logic, in which the guidance mod-
ule is decoupled from the control module. The goal of the guidance module, or Trajectory
Planning (TP), is to generate open-loop, feasible and optimal autorotative trajectories, for
the helicopter, whereas the aim of the control module, or Trajectory Tracking (TT), consists
in comparing the current state values with the optimal reference values produced by the TP,
and then formulate the feedback controls, enabling thus thehelicopter to fly along these
optimal trajectories. The work presented in this thesis resulted in the first demonstration
of a, real-time feasible, model-based TP and model-based TT, for the case of a small-scale
helicopter UAV, with an engine OFF condition (i.e. autorotation). The validation was per-
formed on a helicopter high-fidelity simulation, based upona nonlinear, High-Order Model
(HOM). In the sequel we outline additional concluding remarks, relative to the various
solutions and results presented in this thesis.

• With regard tohelicopter modeling, we developed two helicopter nonlinear models.
One is a first-principles based, HOM, developed in Chapter 2,and used to validate
the Flight Control System (FCS). The second one is a gray-box1, Low-Order Model
(LOM), developed and used in Chapter 3 to obtain optimal autorotative trajectories.
The latter model provides a good approximation of the HOM of Chapter 2, while
having better computational efficiency when compared to the HOM. However, this
comes at a price, namely a time-consuming identification of various empirical coeffi-
cients, using input-output data from the HOM. In addition, each new helicopter con-
figuration, or modification thereof (e.g. mass and inertia adjustments), will require
a re-identification of all empirical coefficients. By contrast, the HOM represents a
flexible modeling approach, readily updated in case of new helicopter configurations,
although its associated CPU time, per model evaluation, is higher.

• With respect to theoff-line TP, developed in Chapter 3, based upon the realm of
constrained, nonlinear optimal control, we summarize herethe main findings

1. For fixed initial altitude, increasing the initial velocity has only a relatively lim-
ited effect on flight time and stabilized rate of descent.

2. For fixed initial altitude, the flight time is strongly correlated with the initial
altitude and the induced velocity in hover.

3. For fixed initial altitude, increasing the initial velocity complicates somewhat
the flare maneuver.

4. For hover initial conditions, the higher the initial altitude, the more the optimal
autorotative trajectory resembles a vertical flight path.

• With respect to theon-line TP and TT of Chapters 4 and 5, using the combined
paradigms of differential flatness and robust control, we summarize here the main

1Using a mix of first-principles and various empirical coefficients.
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findings for both the engine ON (i.e. power-on) and engine OFF(i.e. power-off, also
known as autorotation) flight conditions, for the case of a small-scale helicopter UAV

1. The proposed TP and TT approach is validated on the high-fidelity, first-principles
based, helicopter HOM, developed in Chapter 2, for both engine ON and en-
gine OFF trajectories. The methodology is real-time feasible since it allows for
a computationally tractable determination, and tracking,of the optimal trajec-
tories. In addition, both the engine ON and engine OFF cases are based upon
the same planning and tracking system architecture. Further, main rotor Rev-
olutions Per Minute (RPM) is not used, being neither necessary for the engine
OFF trajectory planning, nor for the corresponding trajectory tracking, hence
simplifying the overall system design.

2. For the engine OFF case, a single Linear Time-Invariant (LTI) controller is
capable of controlling and landing the helicopter system, in autorotation, for
a relatively large variation in forward and vertical vehicle velocity (at least up
to approximately 8 to 10 m/s), and for relatively large variations in main rotor
RPM (approximately in the 50% to 110% range).

3. For the engine ON case, the vehicle state at an initial timeti has only a limited
impact (if any) on the set of reachable states for all admissible input signals
and for all time instants in an interval [0, t f ], with t f ≫ ti . If we omit the
on-board electrical power supply system from the vehicle energy balance, i.e.
considering only vehicle potential, kinetic, and main rotor energies, then the
total vehicle energy may decrease or increase, depending onvehicle height and
vehicle velocity. By contrast, the total vehicle energy, inthe engine OFF case,
is always decreasing. Hence, we conjecture that the size of this reachable set,
for the engine OFF case, is much smaller when compared to its engine ON
counterpart and, consequently, feasible trajectories aremuch harder to find in
the engine OFF case.

4. For the engine ON case, it is relatively easy to find equilibrium points, i.e.
steady-state flight conditions, at which the nonlinear model can be linearized.
The so-obtained LTI models can subsequently be used for LTI control design.
For the engine OFF case, this set of equilibrium points, i.e.steady autorotative
flight conditions, is rather small and in certain situationseven non-existent. For
example, when an engine failure happens at a low altitude, the helicopter does
not even reach a steady-state autorotation, rather it is continuously in transition
from one non-equilibrium point to the next. To mitigate thisproblem, the ap-
proach used in this thesis consists in excluding the main rotor RPM from the
state-vector, and use the resulting "quasi-steady" approach to find the equilib-
rium points.

5. For the engine ON case, helicopter operations can remain at a velocity which
stays in the neighborhood of the design-point velocity, i.e. in the neighborhood
of the equilibrium point velocity which was used to derive the LTI model for
control design. This allows to maximize the linear behaviorof the system. On
the other hand, helicopter operations with the engine OFF will inevitably result
in a wide range of flown velocities, including high descent rates, and even flight
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into the chaotic Vortex-Ring-State (VRS). Indeed, a brief transition through the
VRS may in some cases be required. This obviously tends to ’amplify’ the
nonlinear behavior of the system.

6. For the engine ON case, the designer can choose to keep the bandwidth of the
closed-loop system rather small, by only considering gentle and smooth ma-
neuvers in the design specification phase. For the engine OFFcase, a higher
closed-loop bandwidth is definitely required (especially in the vertical channel),
if proper trajectory tracking is to be performed. This may complicate the con-
troller design, since higher-order LTI models (for controller design) may have
to be considered. This complicates also the practical implementation, since
higher-bandwidth actuators may become compulsory.

7. For the engine OFF case, our results show that the crucial control of vertical
position and velocity exhibit outstanding behavior in terms of tracking perfor-
mance, and does not require an additional increase in control bandwidth. How-
ever, the tracking of horizontal positions and horizontal velocities is clearly
lacking some bandwidth (i.e. the flown trajectories are clearly lagging the
planned ones). Although a further increase of the horizontal closed-loop band-
widths provided good results when evaluated on the LTI modelused for con-
trol design, this increase in closed-loop bandwidths resulted, unfortunately, in
closed-loop instabilities, when evaluated on the nonlinear helicopter model of
Chapter 2.

8. For the engine OFF case, tracking performance of horizontal positions and hor-
izontal velocities could potentially be improved, by considering one of the two
following options: i) remaining in the framework of a singlerobust LTI con-
troller, using a high-order LTI plant for controller design(i.e. containing the
main rotor flap-lag and inflow dynamics), instead of a low-order plant as used
in Chapter 4; or ii) using another control method that betterrespects and ex-
ploits the system’s nonlinear structure, e.g. in the realm of nonlinear, adaptive,
or Linear Parameter-Varying (LPV) methods.

• With respect to theaffine LPV modeling method, developed in Chapter 6, we have
shown, using a pointmass pendulum (i.e. a nonlinear example), that our LPV mod-
eling strategy was capable of reproducing the open-loop behavior of the original
nonlinear dynamical system. Furthermore, we have shown that controllers (whether
robust or LPV), designed using our LPV model, achieved better reference tracking,
when compared to a controller designed using a linearization of the nonlinear system.

7.2.Recommendations for future research
In light of the research objective of this thesis and the results achieved so far, we identify
and discuss next some stimulating opportunities for futureresearch. In particular, if the
next step is to perform flight tests and achieve an experimental validation of an automatic
autorotation system, then the general control architecture, as used in this thesis, and outlined
in Fig.1.15of Chapter 1, may have to be replaced by the one given in Fig.7.1. In the sequel
we will elaborate on the new blocks of Fig.7.1, as well as several other areas that warrant
further exploration.
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Figure 7.1: Upgraded two degree of freedom control architecture.

• For the case of an engine failure, the"engine OFF event" first needs to be recog-
nized. Here the use of an engine torque sensor could prove very useful. For example,
a sudden reduction in measured torque, if accompanied by fixed main rotor collective
input and a decelerating main rotor speed, could be indicative of an engine failure.
However, a sudden reduction in engine torque if accompaniedby, either, reduced
main rotor collective input or accelerating main rotor speed, would not indicate an
engine failure [1]. An additional clue for the detection of engine failure could also
come from the yaw channel. Indeed, a jerk is generally felt onthis channel, since the
tail rotor will tend to overcompensate the reduced main rotor torque [1]. As a final
point, it should be noted that, for the case where engine power is not lost suddenly but
rather gradually, it may become much more difficult to quickly detect such a failure.

• Actuator dynamic models, with amplitude and rate constraints, ought to be in-
cluded in the HOM of Chapter 2, and in any model used for control design. Indeed, it
is well-known that maximum control gains and crossover frequencies may be limited
by actuator rate saturation2. Further, actuator rate saturation can have a significant
detrimental effect on the handling qualities of an aerospace vehicle [3], and directly
lead into, either, degraded performance, limit cycles, or even closed-loop instability
[3, 4]. For example, the crashes of the SAAB Gripen fighter jet in February 1989
and August 1993 [2, 5], and the crash of the Lockheed Martin YF-22 fighter jet in
April 1992 [2, 6] are all primarily related to actuator rate saturations. These satu-
rations resulted in so-called Pilot-Induced-Oscillation(PIO), and subsequent loss of
vehicle control. Several approaches could be adopted to avoid saturation problems in
systems which are known to have actuator limits. The first onelives in the realm of
optimal control. Here the control action is decided throughthe use of constrained op-

2Actuator saturation or rate limits has even been implicatedin the meltdown of the Chernobyl nuclear power plant,
in April 1986 [2].
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timization algorithms, known as Model Predictive Control (MPC) [7]. Other options
are related to the so-called anti-windup compensation, in which a nominal controller
(that does not explicitly take the saturation constraints into account) is first designed.
Then, in a second step, an anti-windup compensator is designed to handle the satura-
tion constraints. Anti-windup approaches are attractive in practice because: 1) they
allow for control design in a linear framework; and 2) no restrictions are placed upon
the nominal controller design. Excellent tutorials exist in this area, see [8–10]. Re-
cently, promising extensions have even considered the caseof a simultaneous design
of both the nominal controller and the anti-windup compensator [11, 12].

• An estimation filter, e.g. a state estimator, is typically an integral part of a UAV FCS.
Indeed, the quantities required for flight control, like position, velocity, and attitude,
are not measured directly or, if measured, are noisy and often not available at the re-
quired frequency. Hence, an estimation filter is often required to derive smooth, and
high-frequency state updates, from available sensor measurements. For example, our
Align T-REX helicopter is fitted with a flight computer featuring data logging capa-
bilities, as well as a variety of low-cost sensors, such as: 1) an Inertial Measurement
Unit (IMU) containing three accelerometers and three gyroscopes that measure ac-
celerations and angular velocities, respectively, in the inertial body frame; 2) a Global
Positioning Sensor (GPS) providing a direct measurement ofthe helicopter’s inertial
position and velocity; 3) a compass measuring the vehicle’smagnetic heading; 4) a
barometric pressure sensor for altitude measurement during cruise flight; and a 5)
a Laser Range Finder (LRF) for altitude measurement during take-off and landing.
Hence, the helicopter’s position, velocity, and attitude can be obtained through the
integration of the high-frequency, noisy, biased, and drifting IMU outputs, with the
noisy, low-frequency outputs, with bounded error characteristics, of the remaining
sensors. Since in our case the vehicle’s kinematic and measurement equations are
nonlinear, the nonlinear extension to the original Kalman Filter, i.e. the Extended
Kalman Filter (EKF) [13, 14], represents the most common approach for our real-
time estimation problem. However, since based upon linearizations and calculation
of Jacobian matrices, the EKF is also known to exhibit numerical issues and even
divergence in some situations. To mitigate such problems, the so-called Unscented
Kalman Filter (UKF) [15, 16] has been developed. For all its benefits, it was reported
in [17–19] that, for the case of aerospace applications, the UKF did not offer substan-
tial performance gains, when compared to the EKF. Hence, forour application, we
would recommend evaluating first the simpler EKF filter.

• Small-scale UAVs are far more sensitive to atmospheric windand gust disturbances,
than their full-scale counterparts, since the mean wind magnitude is often compara-
ble to the speed of the UAV, and consequently this brings upfront the relevance ofa
mean wind estimation capability. The knowledge of the mean wind profile mag-
nitude, and direction, is indeed helpful for two reasons. First, it allows to enhance
the accuracy and feasibility of the computed trajectories during the planning phase,
since knowledge of the wind can be included in the model used for planning. Sec-
ond, for good trajectory tracking3, the velocities of the vehicle with respect to the

3In flight dynamics models, the aerodynamic forces are functions of the vehicle aerodynamic velocities, not of
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relative wind, i.e. the vehicle aerodynamic velocities, should be made available to
the controller. Direct wind measurement can be obtained through, either, a ground-
based anemometer, or through some sort of weather balloon. The first option does
not provide information on wind profile (as a function of altitude), whereas the sec-
ond may be costly, and potentially impractical. Hence, the need for wind estimation,
rather than wind measurement, becomes obvious. With regardto kinematics, the ve-
hicle’s ground track velocity vector (i.e. the inertial velocity, measured with GPS)
can be decomposed into the sum of a vehicle’s airspeed vectorand a wind vector.
As stated earlier, GPS data is available on-board the helicopter. Hence, if the wind
velocity vector is known, it can be subtracted from the GPS velocity to obtain an
air-relative velocity. Alternatively, if the air-relative velocity vector is known, it can
be subtracted from the GPS velocity vector to obtain the windvelocity vector. The
determination of the vehicle’s air-relative velocity vector can be done through two
approaches. The first approach, and widely used approach forfixed-wing aircrafts,
consists in mounting an air-data unit, combining precise measurements of airspeed
amplitude, through a pitot-static pressure sensor, and airspeed orientation, through
angle-of-attack and angle-of-sideslip vanes. The second approach is a model-based
one (often derived from relatively simple models) in which the vehicle’s air-relative
velocity vector is estimated based upon the knowledge of themodel, and based upon
the measured control inputs. Here, the first approach is generally ruled out for heli-
copters, since such an air-data system needs to operate outside the main rotor down-
wash and, even if placed at the front of the fuselage, may onlybe effective when the
vehicle is traveling at high forward speed. Hence, the preferred approach for wind
and airspeed estimation, for helicopters, consists in using a model-based estimation
procedure, together with GPS and control input measurements (sometimes also in
combination with heading measurements from the compass sensor). Such a strategy
has often successfully been applied to the case of autonomous guided airdrop systems
(i.e. paraplanes), see also [20, 21].

• For theLow-Order Model (LOM) of Chapter 3, the empirical coefficients are es-
timated in a multiple-model structure, meaning that for each point in the operating
grid, a set of coefficients is being identified thanks to data generated from the High-
Order Model (HOM). However, as stated earlier, this identification method becomes
rather tedious for large grids. An alternative approach, potentially easier to imple-
ment since not based upon the multiple-model concept, consists in identifying the
coefficients using the optimal control framework. Here, the empirical coefficients
constitute the unknown control inputs of a continuous-time, nonlinear, dynamical
system. These inputs are obtained by solving a constrained,optimal control problem,
which goal is to fit the outputs of the LOM with those of the HOM in some optimal
sense. Once identified, a model defining the relation betweenthese empirical coeffi-
cients and the helicopter control inputs and states, needs to be found (e.g. through a
Neural Networks (NN) representation). In [22] we presented preliminary results for
such a LOM approach.

• With regard to theoff-line Trajectory Planning of Chapter 3, we discuss several

vehicle inertial velocities.
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areas that may benefit from further improvements

1. As stated in Section3.4, direct optimal control methods have several advantages
when compared to indirect methods. Specifically, the first-order necessary con-
ditions do not need to be explicitly derived, and the large radii of convergence
allow for less accurate initial guess on states and control inputs. Hence, direct
methods are appealing for complicated applications. Further, PseudoSpectral
(PS) discretization methods have the known advantage of providing exponential
rate of convergence for the approximation of analytic functions. For all those
benefits, the direct optimal method used in our application has also shown some
inherent limitations. For example, it was in some cases uncertain whether the
solution obtained was truly optimal. Indeed, fluctuated solutions were observed
as the number of discretization nodes was varied.

2. We also noticed that the use of lookup tables, within the LOM, had a negative
impact on the exponential convergence of the method, even when queried with
cubic B-Splines interpolating functions. Solving the optimal control problem
became at times computationally intractable, and at times either infeasible, or
feasible but very probably sub-optimal. This said, nonsmooth problem formu-
lations are far from uncommon in aerospace. To mitigate thisknown issue,
several approaches could be investigated such as: 1) a PS knotting method as in
[23]; or 2) a hybrid global/local collocation method as in [24].

3. We solved the NonLinear Programming problem (NLP) via a Sequential Quadratic
Programming (SQP) approach. SQPs belong to the class of iterative, gradient-
based methods, and gradient methods are known as local methods. We did
notice this sensitivity to local minima, by obtaining distinct optimal solutions,
for distinct initial guesses.

4. Since in our case we did not use any mesh refinement grid (as to keep the prob-
lem computationally tractable), the obtained optimal solution provided only the
state and control values at the discrete nodes. Hence, the optimal solution satis-
fied only the discretized constraints (i.e. the problem is said to be discrete-time
feasible [25]). This implies that, for a small number of nodes, no guarantees
may be given regarding the solution of the original continuous-time problem
[25]. Obviously, one way to mitigate such a problem would be to increase the
number of nodes, at the cost of higher computational time.

5. Finally a robustness analysis of the obtained trajectories4, with respect to model
and signal uncertainties, potentially within the realm of stochastic optimization,
would represent an interesting avenue for future research.

• With regard to theon-line Trajectory Planning (TP) of Chapters 4 and 5, we rec-
ommend considering the following aspects

1. It may be beneficial to add a feedback path into the trajectory planning, de-
noted by a dashed line in Fig.7.1, which would allow to re-generate an optimal
reference trajectory, based upon the current state. This functionality may, for

4This could also apply to the flatness-based trajectory planning.
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example, be of interest in the following cases: 1) within theframework of an
obstacle avoidance capability; or 2) if the helicopter experiences an increasing
difficulty at tracking the current reference trajectory.

2. One could also consider adding an optical sensor, coupledwith an on-board
3D map of the environment, in order to identify suitable geographical locations
for a safe landing. If in addition the set of reachable statescould efficiently be
computed on-line, then one would be able to provide feasiblelanding positions
to the TP.

3. The optical sensor could also potentially be fused with the other sensors in order
to increase the accuracy of the estimated helicopter state-vector (computed in
the estimation filter).

• With regard to theon-line Trajectory Tracking (TT) of Chapters 4 and 5, we rec-
ommend considering the following aspects

1. The NL helicopter model of Chapter 2 is subject to periodicloads, due to blades
rotation, that result in a time-varying trim condition. Linearizing the NL heli-
copter dynamics, around this trim condition, can be done at each rotor position,
to yield a Periodic Linear Time-Varying (PLTV) system, witha period equal
to one rotation of the rotor. For PLTV systems the classical modal analysis
methodologies, based upon time-invariant eigenstructures, are not applicable
anymore [26]. Hence, if one wants to apply the well-established analysis and
control tools for LTI systems, a transformation of the PLTV system into a LTI
one becomes necessary. There are roughly four main methods to perform such
a transformation or approximation [27]. The first, and simplest one, consists
in evaluating the PLTV system at a single rotor position (i.e. at a single blade
azimuth position), and obtain a LTI system. Clearly this approach may lead to
poor results. An already better method would consist in averaging the PLTV
state-space matrices over one or more rotor periods. The next two methods
provide LTI models with higher accuracy, but require additional mathematical
steps. The third method uses Floquet theory [26, 28], and the associated char-
acteristic exponents called Floquet multipliers, to obtain constant state-space
matrices. The fourth method uses the so-called Multi-BladeCoordinate (MBC)
transformation (also known as the Coleman transformation)[26, 29–31], i.e.
by transforming quantities from rotating blade coordinates into a non-rotating
frame. Basically the MBC describes the overall motion of a rotating blade ar-
ray in the inertial frame of reference. The MBC transformation results in a
weakly periodic system which is subsequently converted into a LTI system by
averaging over one period [31]. In this thesis, obtaining an LTI approximation
from the PLTV system was done using the second method as discussed in Sec-
tion 2.4.1of Chapter 2, by averaging over four rotor periods. Althoughvery
easy to implement, it is well-known that this method may not provide an LTI
model of highest accuracy. Hence, we recommend trying a moresophisticated
approach to derive the LTI system. With regard to the MBC method, this latter
is particularly well-suited for rotors having three or moreblades, and may in-



7

270 7. Conclusions and future research

volve significant inaccuracies for a two-bladed rotor5 [32]. The Floquet method
is numerically more intensive6 than the averaging method used in this thesis
[35], however it may potentially provide LTI models with higheraccuracy and
hence would deserve further investigations.

2. For a digital implementation of the controller, several continuous- to discrete-
time transformations exist (depending on the type of control framework used
[36, 37]). The goal, obviously, is to select a transformation that best preserves
the properties of the continuous-time design.

3. A general approach to mitigate the interaction problem, between the FCS and
the main rotor dynamics, could be to use higher-order LTI models (i.e. contain-
ing the main rotor flap-lag and inflow dynamics), for control design, possibly in
combination with a reduced-order observer in order to estimate the unmeasured
main rotor states.

4. The addition of a roll and pitch attitude stabilization loop may potentially allow
to increase the tracking bandwidth. The complete control system would then
involve multiple nested control loops, namely: 1) the innermost-loop, which
controls the attitude of the vehicle; 2) the middle-loop, which controls the ve-
locity; and 3) the outer-loop, which controls the position.

5. Since system delays impose severe limitations on the bandwidth of the closed-
loop system [38], all hardware delays—due to actuator dead-time, sensor pro-
cessing, and the effects of digital implementation on-board the embedded com-
puter—need to be estimated, modeled, and added to all modelsdeveloped within
this thesis.

6. Helicopter dynamics is highly coupled, especially during hover and low-speed
flight. In order to reduce the coupling effects, and hence simplify the subsequent
controller design, it may be worthwhile to add a decoupling module, in the form
of open-loop dynamic crossfeeds, inserted in-between the controller outputs and
the plant inputs, see [39, 40].

7. It is customary to place the closed-loop poles in a suitable region of the complex
plane. This is often done in order to guarantee satisfactorysystem transients
behavior, and to indirectly enforce constraints on the controller bandwidth, and
hence: 1) minimize any controller interaction with actuator dynamics, structural
modes, or any other vehicle higher-order dynamics; and 2) allow for a digital
implementation of the controller dynamics. This can be done, in a systematic
way for LTI controllers, in the Linear Matrix Inequality (LMI) framework, see
[41, 42].

8. In Chapters 4 and 5, a single nominal LTI model was used for the design of
a single robust LTI TT controller. Relatively good trackingresults have been
obtained, although the tracking of horizontal velocity andposition could poten-
tially be improved, by considering one of the two following options: 1) remain-
ing in the framework of a single robust LTI controller, however combined with

5As a reminder, our Remote-Controlled (RC) Align T-REX helicopter has a two-bladed main rotor.
6Although some progress has been done with Fast-Floquet methods [33, 34].
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a higher-order LTI plant, instead of the low-order plant used in Section4.5.1of
Chapter 4; or 2) by considering a more sophisticated controlmethod, which bet-
ter exploits the system’s nonlinear structure. If the nonlinear HOM of Chapter
2 could somewhat be simplified, and written in closed-form, then an additional
plethora of nonlinear control tools would become available, such as: feedback
linearization, (incremental) nonlinear dynamic inversion, or nested saturated
control in [43–46], backstepping in [47–50], adaptive control in [50–53], and
even passivity-based control approaches [54]. On the other hand, if a low-order
formulation of the LPV model of Chapter 6 could be obtained, then here too
another array of control options may become available: obviously LPV [55],
but also the application of Model Predictive Control (MPC) to LPV Systems
[56, 57], or PieceWise Affine (PWA) control [58–60]. To the best of our knowl-
edge, the last two control options have not even been appliedto a six degree
of freedom helicopter system, as yet. Beyond these well-known options, we
also mention the recent developments in the area of nonsmooth optimization
for control [61–63], which allow the formulation of multiple competing objec-
tives (in time- or frequency-domain), subject to additional structural constraints
such as: controller order, and/or state/input time-domain specifications. Al-
though endowed with local convergence certificates only, this newly emerging
approach is very promising, since it avoids the use of Lyapunov variables, and
hence is numerically efficient for large systems. Ultimately, it would be rather
fascinating to be able to compare some, or most, of the previously mentioned
TT methods, and investigate the various pros and cons of eachmethod.

9. Instead of using LTI control methods, and if blade azimuthmeasurement is
available, one could also consider using a PLTV nominal model for control de-
sign, in combination with a periodic control method [64, 65], and check whether
better tracking performance could so be achieved. For the case of wind tur-
bines, it was shown in [32] that periodic Linear Quadratic Regulators (LQRs)
performed no better than LQRs synthesized in the LTI framework. However,
periodic control has also been extended toH∞ and MPC control methods [64]
and it would be interesting to further evaluate these alternative control methods.

10. One could also consider adding some preview control to the current architec-
ture. Indeed, since the optimal trajectory is precomputed,one could use a non-
causal controller (based upon future information with regard to the reference
signals) in order to increase the overall closed-loop bandwidth [38, 66].

11. In this thesis we used a TT approach, i.e. tracking a time-parameterized refer-
ence trajectory. This said, within the field of motion control for autonomous ve-
hicles, the path-following approach is rather popular. Theidea of path-following
is to have the vehicle converge to, and follow, a path withouttemporal restric-
tions. When compared to trajectory-tracking, path-following strategies seem
to exhibit enhanced performance, smoother convergence, and reduced control
effort [67, 68].

12. Finally, a variety of robustness related topics could beconsidered. First, our
nominal LTI controller designed with one linearized model could be applied to
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other linearized models7, as a first step towards controller validation [69, 70]. In
this thesis, we skipped this intermediate step to go directly to the controller val-
idation on the nonlinear HOM of Chapter 2. Next, we only provided a prelim-
inary demonstration of the robustness of the FCS with respect to sensors noise
and wind disturbance. Hence, we do recommend a more thoroughanalysis of
the wind disturbance rejection capability. Further, it wasalso shown in [71]
that by adding an acceleration feedback loop, one could attenuate the effects of
model uncertainties and disturbances, and could improve tracking performance.
Also, depending on the selected model-based control method, robustness guar-
antees could either be provideda priori, through e.g. LPV control techniques,
or a posteriorias in [72] by: 1) first applying classical gain-scheduling tech-
niques in the control design process; 2) next, obtaining a Linear Fractional
Representation (LFR) of the global closed-loop system; and3) finally analyzing
the system robustness by invoking results from Integral Quadratic Constraints
(IQC) theory [73].

• With regard to theon-line Trajectory Planning and Trajectory Tracking of Chap-
ters 4 and 5, one could also consider an integrated approach rather than our segregated
TP-TT approach, see our discussion in Section1.5.2of Chapter 1. In particular if the
nonlinear helicopter plant can be modeled as a LPV system then one of the many
MPC-LPV algorithms, i.e. MPC for LPV systems [56, 57, 74–88], could be used.

• With regard to theaffine LPV model of Chapter 6, the method was applied to the
helicopter HOM of Chapter 2 and resulted in a LPV model havinga large number
of scheduling parameters. Unfortunately, it became impossible to synthesize LPV
controllers with such a high-order LPV model. In fact, the numerical conditioning
and solvability of LMI problems play a crucial role in LPV practical design methods
[89–92]. As such, we recommend applying some LPV model reduction techniques
[93, 94] in order to obtain a LPV model having fewer scheduling parameters, thus
better suited for LPV controller synthesis. Another aspectcould be to consider re-
placing theH∞ framework, used in the LPV modeling process, by the nu-gap metric
[95–97]. This latter provides a measure of the separation between open-loop systems,
in terms of their closed-loop behavior. Hence the nu-gap maypotentially provide
some added-value, when modeling for control. Finally, our LPV modeling method
was applied for the case of a single and simple example, i.e. the pointmass pendu-
lum. Although preliminary encouraging results were obtained, definitive conclusions
may only be drawn after some sort of Monte-Carlo type simulations performed on a
variety of nonlinear plants.

7These linearized models are obtained by griding the flight envelope.
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L ist of Abbreviations

The following abbreviations are used in this thesis.

AGL Above Ground Level
AOA Angle Of Attack
BA BAsis
BDA Battle Damage Assessment
BFT Best-FiT
BRL Bounded Real Lemma
CCW Counter-ClockWise
CG Center of Gravity
CL Closed-Loop
CT Continuous-Time
CW ClockWise
DCSC Delft Center for Systems and Control
DT Discrete-Time
EC Expansion Coefficients
EKF Extended Kalman Filter
FAA Federal Aviation Administration
FCS Flight Control System
FFT Fast Fourier Transform
Fus Fuselage
GOA Global Orthogonal Approaches
GPOPS General Pseudospectral OPtimal control Software
GPS Global Positioning Sensor
HER High Energy Rotor
HJB Hamilton-Jacobi-Bellman
HOM High-Order Model
HT Horizontal Tail
H-V Height-Velocity diagram
ICAO International Civil Aviation Organization
IMU Inertial Measurement Unit
IO Input-Output
IP Interior Point
IQC Integral Quadratic Constraints
ISR Intelligence Surveillance and Reconnaissance
KKT Karush-Kuhn-Tucker
KYP Kalman-Yakubovich-Popov
LFR Linear Fractional Representation
LFT Linear Fractional Transformations
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282 List of Abbreviations

LHS Left-Hand-Side
LMI Linear Matrix Inequality
LOM Low-Order Model
LPV Linear Parameter-Varying
LQG Linear Quadratic Gaussian
LQR Linear Quadratic Regulator
LRF Laser Range Finder
LTI Linear Time-Invariant
MILP Mixed Integer Linear Programming
MIMO Multiple-Input Multiple-Output
MPC Model Predictive Control
MR Main Rotor
MS Multiple-Shooting
MTOW Maximum Take-OffWeight
NACA National Advisory Committee for Aeronautics
NDI Nonlinear Dynamic Inversion
NED North-East-Down
NL Non-Linear
NLP NonLinear Programming problem
NLR National Aerospace Laboratory
NN Neural Networks
ODEs Ordinary Differential Equations
OL Open-Loop
PDLF Parameter-Dependent Lyapunov Function
PEM Prediction Error Methods
PID Proportional Integral Derivative
PILF Parameter-Independent Lyapunov Function
PIO Pilot-Induced-Oscillation
P-L-F Pitch-Lag-Flap
PS PseudoSpectral
PWA PieceWise Affine
qLPV quasi-LPV
R/C Radio/Remote Controlled
RHS Right-Hand-Side
RPM Revolutions Per Minute
SAR Search And Rescue
SCP State and Control Parameterization
SDP Semi-Definite Programs
SEAD Suppression of Enemy Air Defenses
S.I. International unit System
SQP Sequential Quadratic Programming
SS Single-Shooting
s.t. such that
SVD Singular Value Decompositions
TF Transfer Function
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TP Trajectory Planner/Planning
TPP Tip-Path-Plane
TR Tail Rotor
TRBT Tail Rotor Blade Tip
TS Takagi-Sugeno
TT Trajectory Tracker/Tracking
UAS Unmanned Aerial System
UAV Unmanned Aerial Vehicle
UKF Unscented Kalman Filter
VAF Variance-Accounted-For
VD Vehicle Dynamics
VRS Vortex-Ring-State
VT Vertical Tail
VTOL Vertical Take-Off and Landing
wrt with respect to
2D 2 dimensional
3D 3 dimensional
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