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Chapter 1

Curriculum Vitae

1.1 Renseignements généraux

Date et lieu de naissance : 16 octobre 1974 à Bruxelles, Belgique

Fonction actuelle: Professeur Assistant (maître de conférences) à la TU Delft
(Delft University of Technology)

Adresse professionnelle : Delft Center for Systems and Control, Delft University of Technology
Mekelweg 2
NL–2628 CD Delft
Pays-Bas
Internet: http://www.dcsc.tudelft.nl

Téléphone : 00.31.15.278.51.50

E-mail : x.j.a.bombois@tudelft.nl

Page WEB : www.dcsc.tudelft.nl/˜xbombois

1.2 Formation

• 1997-2000: Doctorat de troisième cycle, Grade de Docteur en Sciences
Appliquées de l’Université Catholique de Louvain (Belgique) obtenu le 14
novembre 2000, après soutenance de la Thèse intitulée :

Connecting Prediction Error Identification and Robust Control Analysis:
a new framework

Directeur de thèse : Michel Gevers

Membres du jury: Michel Gevers, Lennart Ljung, Paul Van den Hof,
Gérard Scorletti, Georges Bastin et Vincent Blondel.
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• 1992-1997: Diplôme d’Ingénieur Civil Electricien de l’Université Catholique
de Louvain (Belgique).

1.3 Expérience professionnelle

• Mai 2001 – ... : Professeur Assistant (maître de conférences) au Delft
Center for Systems and Control, Delft University of Technology, Delft,
Pays-Bas

• Novembre 2000 – Avril 2001: Assistant de recherche (post-doctorat),
Signals, Systems and Control Group, Delft University of Technology, Delft,
Pays-Bas

• Septembre 1997 – Octobre 2000: Assistant (doctorant), CESAME,
Université Catholique de Louvain, Louvain-la-Neuve, Belgique

1.4 Connaissance des langues

• Français: langue maternelle

• Anglais: langue de travail et d’enseignement; niveau C2 (le plus haut
niveau) dans le cadre européen commun de référence pour les langues

• Néerlandais: langue de travail et d’enseignement

1.5 Formations complémentaires

• Active and Collaborative learning (2004). Faculty of Technology, Policy
and Management, TU Delft. Charge horaire: 70 heures

• Coaching leadership (2011). DORFL leadership training. Charge horaire:
40 heures

• English Pronunciation Workshop (2011). Faculty of Technology, Policy
and Management, TU Delft. Charge horaire: 14 heures



Chapter 2

Activités d’enseignement

2.1 Aperçu général

Depuis le début de mon activité d’enseignement en octobre 1997, j’ai eu la
chance d’enseigner sur des sujets assez différents (électronique, mécanique, mé-
catronique, analyse du signal, identification des systèmes, automatique) et pour
une large diversité de publics:

• étudiants en science de l’Ingénieur au niveau licence (Bachelor of Science)

• étudiants en science de l’Ingénieur au niveau maîtrise (Master of Science)

• doctorants et chercheurs.

Mes tâches d’enseignements m’ont permis de donner des cours magistraux,
des séances de travaux dirigés et pratiques, d’encadrer des élèves en projets
de laboratoire et d’encadrer des travaux de fin d’étude. Elle m’a aussi per-
mis de bâtir des cours, des sujets d’examen, de mettre au point des travaux
dirigés et pratiques. De façon plus générale, j’ai pris part à l’organisation de
l’enseignement sous ses différentes formes : organisation matérielle, discussions
sur le contenu des cours, suivi et évaluation des élèves.

J’enseigne pour le moment en anglais et en néerlandais, mais j’ai aussi en-
seigné en français de 1997 à 2000.

Le volume annuel de mes activités d’enseignement s’élève actuellement à
environ 50 heures de cours magistraux, quatre heures de travaux dirigés et 150
heures environ pour l’encadrement d’étudiants (travaux de fin d’études,...). Si
l’on fait le bilan depuis 1997, j’estime avoir donné environ 350 heures de cours
magistraux et 600 heures de travaux dirigés et pratiques. Le temps passé à
l’encadrement de travaux de fin d’études peut être évalué à environ 1500 heures.

2.2 Détail des activités

2.2.1 Activités à la TU Delft

La TU Delft est la plus importante “Ecole d’Ingénieurs” néerlandaise avec ses
17000 étudiants. Je donne mes enseignements dans la faculté de mécanique qui

11
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est une des plus grandes de la TU Delft.

• Sc4110 Identification des systèmes (2002-...). Je suis le titulaire de ce
cours de maîtrise (bac+4) ayant une charge de cinq ECTS et qui est suivi
par une trentaine d’étudiants chaque année. Ce cours comporte 13 cours
magistraux, cinq séances de travaux dirigés (en salle et sur ordinateur)
et est achevé à la fois par un projet que les étudiants doivent réaliser
en laboratoire et par un examen oral. J’ai complètement renouvelé ce
cours à partir de celui que donnait Paul van den Hof auparavant. Ma
philosophie a été de présenter une méthode systématique pour aborder
le problème d’identification (càd déduire un modèle mathématique d’un
système physique à partir de mesures entrée-sortie). Cette méthode sys-
tématique considère les différents choix que l’on doit effectuer dans la
procédure d’identification (choix du signal d’excitation, choix de l’ordre
du modèle) et leur influence sur la qualité du modèle identifié. Les trans-
parents du cours sont disponibles à l’adresse internet suivante:
http://www.dcsc.tudelft.nl/˜xbombois/sc4110slides.pdf

• WBTP211 Mécatronique (2009-...): Je suis le responsable de ce cours/projet
de licence (bac+2) ayant une charge de 10 ECTS et qui est suivi par
300 étudiants chaque année. Ce cours comporte 11 cours magistraux, 40
heures de travaux pratiques en laboratoire et un projet final consistant
à construire un système mécatronique (système de distribution automa-
tisé). En tant que responsable de ce cours, je m’occupe de l’organisation
générale et dirige l’équipe pédagogique qui compte quatre enseignants et
neuf assistants. Je suis aussi responsable de la moitié des cours mag-
istraux1. Ces cours magistraux portent sur l’électronique (analyse des
circuits, amplificateur opérationnel, synthèse de filtres passifs et actifs)
et sur le moteur électrique à courant continu. J’ai fortement renouvelé la
manière d’enseigner cette partie du cours (qui lui existe depuis une dizaine
d’années).

• Encadrement de mémoires de fin d’études (2004-...). Depuis 2004, j’ai
encadré une trentaine de travaux de fin d’études (TFE). Ce travail de
fin d’études couvre la totalité de la deuxième année de maîtrise (bac+5)
et consiste en une étude bibliographique (15 ECTS) et en un travail de
recherche sur un sujet donné (45 ECTS). Parmi ces TFEs, la moitié a
été effectuée en collaboration avec différentes entreprises (Shell, British
Petroleum, NEM, OCE, Laborelec, Philips,...) et l’autre moitié sur des
sujets plus théoriques. Une liste est disponible à l’adresse internet suiv-
ante:
http://www.dcsc.tudelft.nl/˜xbombois/research.html

• WB3250 Analyse du signal (2005-2009). Paul Van den Hof et moi avons
monté ce cours de licence (bac+3) ayant une charge de 3 ECTS et qui est
suivi par 300 étudiants chaque année. Je me suis plus particulièrement
occupé du dévelopement d’une série d’exercices (travaux dirigés) qui sont
rassemblés dans un document de 130 pages. Ce document est disponible à

1Le cours doit être donné deux fois par an vu le nombre d’étudiants.
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l’adresse internet suivante: http://www.dcsc.tudelft.nl/˜xbombois/SR3exercises.pdf.
Jusqu’en 2009, je donnais les sept séances de travaux dirigés de ce cours
et j’étais responsable de l’examen écrit. Depuis lors, le cours est donné
par d’autres enseignants, mais le matériel de cours est resté inchangé.

• Sc4140ap Automatique (2002-2005): J’ai dévelopé et encadré le projet en
laboratoire qui terminait ce cours de quatrième année (bac+4). Ce projet
consistait en la synthèse et l’application de deux régulateurs pour une
manipulation à disques tournants.

2.2.2 Activités dans le cadre de l’Ecole doctorale hollandaise
en Automatique (DISC)

Depuis 2002, j’assure avec Paul Van den Hof le cours System Identification for
Control de l’école doctorale hollandaise en Automatique (DISC). Ce cours, qui
consiste en 8 séances de 2 heures partagées entre Paul Van den Hof et moi-même
(quatre séances chacun), est destiné aux doctorants en automatique des dif-
férentes universités hollandaises. Il a pour objectif de fournir à ces doctorants les
bases en identification pour la commande nécessaires à leur travail de recherche.
La réussite de ce cours requiert l’accomplissement de trois séries d’exercices.
L’adresse du site internet de ce cours est http://www.dcsc.tudelft.nl/˜discsysid.
En 2003 et 2011, à la demande des responsables de l’équivalent belge du DISC,
nous avons également assuré ce cours pour les doctorants belges.

2.2.3 Activités à l’Université Catholique de Louvain

En ma qualité d’assistant à la Faculté des Sciences Appliqués (Sciences de
l’Ingénieur), j’ai assuré, de 1997 à 2000, des séances de travaux dirigés et/ou
pratiques pour les cours de Mécanique et d’Analyse des Circuits Electriques. Le
cours de Mécanique s’adressait à des étudiants en deuxième année (bac+2) et
le cours d’Analyse des Circuits Electriques à des étudiants en troisième année,
spécialisation Electricité (bac+3). Le volume horaire annuel pour le cours de
Mécanique était de 90 heures et pour celui d’Analyse des Circuits de 35 heures.
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Chapter 3

Activités de recherche

3.1 Aperçu général

J’effectue, depuis 2001, ma recherche au sein du Delft Center for Systems and
Control (DCSC) en tant que professeur assistant (contrat à durée indéterminée).
Le Delft Center for Systems and Control est un groupe fort de treize académiques
et d’une cinquantaine de doctorants et de postdocs. Ce laboratoire a pour voca-
tion de concentrer, dans la faculté de mécanique, la recherche en automatique de
toute la TU Delft aussi bien au niveau théorique qu’au niveau des applications
(industrie des procédés, systèmes mécatroniques, robotique, ...).

Depuis le début de ma carrière académique, je suis parvenu à devenir un
expert reconnu dans le domaine de l’identification pour la commande robuste
et la synthèse de l’expérience d’identification. J’ai initié et développé une ligne
de recherche originale et cohérente à la frontière de différents domaines, ce qui
a permis la publication de 22 articles de journal dans les meilleures revues en
automatique. J’ai établi, dans ce cadre, des collaborations de longue durée
avec certains des principaux chercheurs en automatique (Prof. Gevers, Scor-
letti, Hjalmarsson, Van den Hof et Anderson). J’ai également travaillé en tant
que chercheur invité dans de nombreuses universités à travers le monde (KTH
Stockholm, Australian National University, Université Catholique de Louvain
et Ecole Centrale de Lyon,...).

Mes idées de recherche sont à l’origine du projet Autoprofit, un projet eu-
ropéen EU-FP7 STREP (2010-2013). Celui-ci a un budget de 2,5 millions
d’euros et regroupe différents partenaires académiques (TU Delft, TU Eind-
hoven, KTH Stockholm, RWTH Aachen) et industriels (ABB, SASOL, Boli-
den). En plus d’avoir initié ce projet par mes idées de recherche, j’ai également
participé à son élaboration avec P. Van den Hof et J. Ludlage et je suis le re-
sponsable d’un de ses modules de travail (work package leader). La coordination
scientifique de l’ensemble du projet est réalisée par Prof. Van den Hof.

J’encadre pour le moment trois doctorants. J’ai également encadré dans le
passé deux autres doctorants ainsi qu’un Postdoc. Ces thèses et ce postdoctorat
portent sur des sujets à la fois théoriques et pratiques.

15
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Finalement, je suis éditeur associé pour le journal Control Engineering Prac-
tice et pour le Conference Editorial Board of the IEEE Control Society.

Mes différentes contributions en recherche seront détaillées dans le chapitre 5.
Dans ce chapitre, nous nous limiterons aux activités proprement dites.

3.2 Encadrement de thèses de doctorat

Cette section est composée de deux parties: une partie concernant les thèses
que j’ai encadré dans le passé et une autre pour les thèses qui sont encore en
cours. Il est important de noter que, comme c’est aussi le cas en France, un
professeur assistant aux Pays-Bas n’a pas le droit d’être promoteur d’une thèse
de doctorat. Il a cependant la possibilité d’être encadrant (daily supervisor)
et, depuis quelques années, co-promoteur. La décision de nommer l’encadrant
journalier comme co-promoteur se fait généralement à la fin de la thèse.

Thèses achevées

• Robert Bos, Monitoring of industrial processes using large-scale first-principles
models. Thèse soutenue le 21 décembre 2006. J’étais l’encadrant de cette
thèse dont Paul van den Hof était le promoteur. Cette thèse a été realisée
avec le soutien de l’institut de recherche TNO-TPD. Voir aussi les publi-
cations J.11, C.17, C.18 et C.23.1 Robert Bos travaille chez Shell en tant
que reservoir engineer depuis la fin de son doctorat.

• Amol Khalate, Model-based feedforward control for inkjet printheads. Thèse
soutenue le 17 décembre 2013. Je suis le co-promoteur de cette thèse dont
Robert Babuska est le promoteur. Cette thèse a été realisée dans le cadre
du projet Octopus avec le soutien de Senter Novem, de l’entreprise Océ
et de l’Embedded Systems Institute (ESI). Voir aussi les publications J.16,
J.19, J.20, L.05, C.37, C.40, C.41, C.43 et C.45. Amol Khalate travaille
chez Océ en tant que hardware designer depuis la fin de son contrat à la
TU Delft.

J’ai aussi encadré Märta Barenthin Syberg, une doctorante de H. Hjalmarsson
à la KTH, lors de sa visite de trois mois à Delft en 2006. Des résultats de cette
visite, Märta a tiré un chapitre de sa thèse intitulée Complexity issues, vali-
dation and input design for control in system identification (KTH, Stockholm,
2008). Ce chapitre a été également publié sous la forme d’un article de journal
(article J.09).

Thèses que j’encadre pour le moment.

• Marco Forgione, Batch-to-batch model learning for control in process sys-
tems with application to cooling crystallization. Je suis le co-promoteur de
cette thèse de doctorat qui est dans sa phase de rédaction et devrait être

1La liste de mes publications est donnée au Chapitre 4.
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soutenue mi-2014. Cette thèse est realisée avec le soutien de l’Institute for
Sustainable Process Technology (ISPT). Voir les articles S.01, C.48, C.54,
C.57 et CS.03.

• Skander Tamaallah, Automatic autorotation of a rotorcraft Unmanned
Aerial Vehicle (UAV). Je suis l’encadrant de cette thèse de doctorat qui de-
vrait se terminer fin 2014. La thèse de Skander, ingénieur au NLR (Dutch
Aerospace Laboratory) est realisée avec le soutien de son employeur. Voir
les articles C.47 et C.60.

• Max Potters, Optimal identification experiment design for closed-loop sys-
tems operated with Model Predictive Control. Je suis l’encadrant de cette
thèse de doctorat qui devrait se terminer début 2016. Cette thèse est re-
alisée dans le cadre du projet Autoprofit avec le soutien de la Commission
Européenne (EU-FP7). Voir l’article CS.02 et le livrable D.03.

Paul Van den Hof est le promoteur des trois thèses ci-dessus. Je participe aussi
à l’encadrement d’Arne Dankers, un doctorant dont Paul est l’encadrant prin-
cipal. La thèse d’Arne (Identification of dynamic models in complex networks
with prediction error identification) est dans sa phase de rédaction et devrait
être soutenue mi-2014. Voir les publications J.21, C.46, C.51, C.55, C.56 et
S.03.

J’encadre également Vedran Peric, un doctorant de L. Vanfretti à la KTH,
durant la visite de neuf mois (octobre 2013-juin 2014) qu’il effectue à Delft. Son
sujet de thèse est l’identification des oscillations dans les réseaux électriques.

3.3 Encadrement d’un postdoctorat

Pendant un période de deux ans (2010-2012), j’ai encadré Ali Mesbah durant son
postdoctorat à la TU Delft. Ce postdoctorat a été réalisé dans le cadre du projet
Autoprofit avec le soutien de la Commission Européenne (EU-FP7). Le sujet de
recherche était Least costly performance diagnosis and plant re-identification et
a conduit aux articles S.02, C.44, C.49, C.53, CS.01 et aux livrables D.01, D.02
et D.04. Ali Mesbah travaille au MIT en tant que senior postdoctoral associate
depuis la fin de son postdoctorat à la TU Delft.

3.4 Gestion de projets de recherche

3.4.1 Projet européen EU-FP7 STREP “Autoprofit” (2010-2013)

Mes contributions sur la synthèse d’expériences d’identification faiblement per-
turbatrices (voir Chapitre 5) et mon intention de les utiliser en vue d’améliorer la
maintenance des systèmes de commande des procédés industriels sont à l’origine
du projet européen Autoprofit. Le nom complet de ce projet est Advanced Au-
tonomous Model-Based Operation of Industrial Process Systems (grant agree-
ment number: 257059). Celui-ci a un budget de 2,5 millions d’euros et regroupe
différents partenaires académiques (TU Delft, TU Eindhoven, KTH Stockholm,
RWTH Aachen) et industriels (ABB, SASOL, Boliden). En plus d’avoir initié
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ce projet par mes idées de recherche, j’ai également participé à son élaboration
avec P. Van den Hof et J. Ludlage et je suis le responsable d’un de ses modules
de travail (work package leader). La coordination scientifique de l’ensemble du
projet est réalisée par Prof. Van den Hof.

En tant que responsable du quatrième module de travail (WP4) de ce projet,

• je suis responsable de l’animation de l’équipe de chercheurs impliqués dans
ce module de travail. Cette équipe comprend les membres de trois parte-
naires du projet (ABB, KTH et TU Delft)

• je suis également responsable de la qualité scientifique des livrables liés à
ce module de travail. Voir D.01, D.02, D.03 et D.04.

• je suis le représentant du module de travail aux réunions semestrielles du
projet.

• je suis responsable de la rédaction du rapport annuel sur l’avancement
des travaux de ce module de travail et chargé de la présentation sur cet
avancement lors des réunions annuelles d’évaluation du projet à la Com-
mission Européenne à Bruxelles. Les évaluateurs nommés par la Com-
mission Européenne ont particulièrement apprécié nos résultats dans leur
dernier rapport (novembre 2012):

“WP4 has progressed exceptionally well. Methods have been pro-
posed which have been validated on the two benchmark problems,
and corresponding software has been developed. This WP has
exhibited very good collaboration between the academic and in-
dustrial partners (in particular TUD, KTH and ABB), also good
liaison with WP3, and several papers have been written.”

A côté de mon rôle de work package leader,

• je suis membre du comité de pilotage (steering committee) du projet

• j’anime les activités de recherche de la TU Delft dans ce projet. Ces ac-
tivités sont concentrées principalement sur deux modules de travail (WP3
et WP4)

• je gère avec P. Van den Hof le budget alloué à la TU Delft pour ce projet
(540 kilo-euros)

• j’ai organisé la procédure de recrutement des deux jeunes chercheurs (Ali
Mesbah et Max Potters) que l’on a pu engager (temporairement) pour ce
projet

3.4.2 Projet “Octopus” - Smart System Adaptability (2007-
2012)

Le projet Octopus a regroupé un consortium composé d’un partenaire indus-
triel Océ Technologies et différents partenaires académiques (TU Delft, TU
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Eindhoven, l’Université de Nijmegen et l’Université de Twente); l’institut de
recherche Embedded Systems Institute (ESI) ayant la responsabilité de la gestion
du projet. Ce projet a été partiellement financé par Senter Novem (Ministère
néerlandais des Affaires Economiques) dans le cadre du programme Bsik (projet
P90600).

Le budget alloué à l’équipe du Delft Center for Systems and Control dans
ce projet était de 220 kilo-euros. Cette équipe était composée de Prof. Babuska
et de moi-même ainsi que d’un doctorant (Amol Khalate) engagé dans le cadre
de ce projet. Mon rôle dans ce projet a été

• d’organiser la procédure de recrutement de ce doctorant

• d’animer les activités de recherche de notre équipe au sein de ce projet
multi-disciplinaire.

• de représenter notre équipe lors des réunions des partenaires de ce pro-
jet. Robert Babuska et moi-même nous rendions alternativement à ces
réunions.

Les résultats du module de travail dans lequel nous avons travaillé avec l’équipe
de la TU Eindhoven ont été particulièrement appréciés par notre partenaire
industriel. En effet, on peut lire dans les minutes de la réunion finale du projet:

“Océ is very happy with the results achieved in inkjet print head
control. This research line is very successful; the results can be picked
up on short term, very nice!”.

Notre doctorant a d’ailleurs été le seul doctorant à avoir été engagé par Océ au
terme du projet.

3.4.3 Projet “Automatic autorotation of a rotorcraft Unmanned
Aerial Vehicle (UAV)” (2006-2014)

Ce projet est un projet de collaboration entre le NLR (Dutch Aerospace Labora-
tory) et le Delft Center for Systems and Control. Dans ce projet, le NLR finance
la thèse de doctorat d’un de ses ingénieurs (Skander Taamallah); thèse de doc-
torat qu’il effectue à mi-temps tout en continuant une partie de ses activités au
NLR. Je suis responsable de l’animation scientifique de ce projet ainsi que du
budget alloué par le NLR pour l’encadrement de Skander (50 kilo-euros).

3.4.4 Batch Crystallization Control for Pharmaceutical Manu-
facturing (2007-2013).

Bien qu’étant principalement responsable depuis 2011 de l’encadrement du doc-
torant (Marco Forgione) de notre groupe travaillant dans ce projet, j’ai égale-
ment participé aux réunions des partenaires de ce projet depuis ce moment. Ce
projet regroupe un consortium de partenaires industriels (Albemarle, Bruker
Optics, DSM, Friesland Campina, IPCOS, MSD, Perdix Analytical Systems et
Zeton) et de deux partenaires académiques (TU Delft et TU Eindhoven). Ce
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projet a un budget total de 2,4 millions d’euros (dont 240 kilo-euros pour le
doctorat de Marco Forgione) et est réalisé avec le soutien de l’Institute for Sus-
tainable Process Technology (ISPT).

3.5 Collaborations nationales et internationales

J’ai eu la chance de pouvoir travailler et publier des articles avec un cinquantaine
de chercheurs différents. Dans la liste suivante, je me limite cependant aux
collaborations principales.

1. G. Scorletti, professeur à l’Ecole Centrale de Lyon, sur les aspects de
l’analyse de la robustesse. Voir les articles J.01 à J.04, J.07, J.09, J.13,
J.18 et J.19.

2. M. Gevers, professeur à l’Université Catholique de Louvain, sur différents
aspects de l’identification des systèmes (identifiabilité, identification pour
la commande, ...). Voir les articles J.01 à J.04, J.07, J.12, J.15 et J.17.

3. H. Hjalmarsson, professeur à la KTH Stockholm, sur la synthèse optimale
de l’expérience d’identification. Voir les articles J.09, J.13, J.22 et S.02.

4. P.M.J. Van den Hof, professeur à la TU Delft et à la TU Eindhoven, sur dif-
férents aspects de l’identification des systèmes (identification des réseaux,
synthèse optimale de l’expérience d’identification). Voir les articles J.07,
J.08, J.11, J.21, S.01, S.02 et S.03.

5. B.D.O. Anderson, professeur à l’Australian National University, sur l’identification
pour la commande et la commande H∞. Voir les articles J.02 à J.06 et
J.10.

6. P. Heuberger, professeur assistant à la TU Eindhoven, sur l’identification
de modèles dynamiques dans les réseaux complexes. Voir les articles J.21
et S.03.

7. A. Bazanella, professeur associé à l’Université de Porto-Alegre, sur les
problèmes d’identifiabilité. Voir les articles J.12 et J.17.

8. R. Babuska, professeur à la TU Delft, sur la commande et l’identification
des systèmes d’impression. Voir les articles J.16, J.19 et J.20

9. P-J. van Overloop, professeur assistant à la TU Delft, sur l’identification
des canaux d’irrigation. Voir les articles J.14 et C.52.

10. A. Lanzon, professeur à l’Université de Manchester, sur la commande H∞.
Voir les articles J.05 et J.10.

3.6 Séjours en laboratoire

• à la KTH (Stockholm, Suède), invité par H. Hjalmarsson: nombreux
séjours d’une semaine ou deux ainsi qu’un séjour d’un mois en 2007
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• à l’Australian National University (Canberra, Australie), invité par B.D.O.
Anderson: deux séjours d’un mois en 2001 et 2002 et dix jours en 2006

• à l’Université de Caen et à l’Ecole Centrale de Lyon, invité par G. Scorletti:
nombreux séjours d’une ou deux semaines. En mai 2014, je ferai un séjour
d’un mois en tant que professeur invité à l’Ecole Centrale de Lyon.

• à l’Université Catholique de Louvain (Belgique), invité par M. Gevers:
nombreux séjours d’une ou deux semaines

• à l’Université de Linköping (Suède), invité par L. Ljung: deux mois en
2001

• à l’Université de Cambridge (Royaume-Uni), invité par G. Vinnicombe:
une semaine en 2000

• à l’Université de Lorraine, invité par M. Gilson: une semaine en 2005

3.7 Activités éditoriales

• Editeur associé pour le journal IFAC Control Engineering Practice depuis
2012

• Editeur associé depuis 2012 pour le Conference Editorial Board of the
IEEE Control Society qui organise la Conference on Decision and Control
(CDC) et l’American Control Conference (ACC)

• Membre du comité international de programmation pour les conférences
suivantes:

– Mathematical Theory of Networks and Systems (MTNS) en 2004

– IFAC Symposium on System Identification (SYSID) en 2012

– European Control Conference (ECC) en 2013

• Co-président du programme (program co-chair) du prochain workshop an-
nuel de l’ERNSI (European Network on System Identification) à Ostende
(Belgique), septembre 2014

3.8 Participation à des jurys de thèse de doctorat

• pour la thèse de Robert Bos à la TU Delft en 2006

• pour la thèse de Jonas Mårtensson à la KTH Stockholm en 2007

• pour la thèse de Jakob Kjøbsted Huusom à la Technical University of
Denmark en 2008

• pour la thèse d’Amol Khalate à la TU Delft en décembre 2013
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3.9 Autres activités académiques

• Présentation plénière intitulée Design of optimal identification experiments
for control, donnée aux 3èmes Journées Identification et Modélisation Ex-
périmentale (JIME) à Douai en 2011. L’article J.18 est l’article de journal
qui a été tiré de cette présentation plénière.

• Membre de deux comités de sélection pour un maître de conférence à
l’Ecole Centrale de Lyon en 2010 et 2012

• Lecteur pour les journaux Automatica, IEEE Transactions on Automatic
Control, Control Engineering Practice, Journal of Process Control, Inter-
national Journal of Adaptive Control and Signal Processing

• Outstanding reviewer pour Automatica en 2001

• Organisateur des colloques hebdomadaires de mon laboratoire en 2012

• Mon directeur de thèse (M. Gevers) a utilisé les résultats de ma recherche
pour sa présentation plénière à la 44th IEEE Conference on Decision and
Control (2005).

• Arne Dankers (voir section 3.2) a obtenu le “Best Junior Paper Award” à
la 12th European Control Conference (2013) pour le papier C.59

• (Co-)organisateur de deux sessions invitées au 16th IFAC Symposium
on System Identification (2012) et d’un mini-symposium au 16th Inter-
national Symposium on Mathematical Theory of Networks and Systems
(2004)

• Membre du comité d’organisation locale du workshop annuel de l’ERNSI
(European Network on System Identification) à Maastricht (Pays-Bas) en
2011 (60 participants)

• Membre du comité d’organisation du symposium Systems and Control:
Challenges for the 21st Century à Delft en juin 2004 (151 participants).
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Travaux et publications

Un grand nombre de mes publications sont disponibles à l’adresse internet suiv-
ante: www.dcsc.tudelft.nl/∼xbombois/pub.html

Mémoire de thèse

T.01 X. Bombois. Connecting Prediction Error Identification and Robust Con-
trol Analysis: a new framework. Université Catholique de Louvain (Bel-
gique), 163 pages, novembre 2000.

Articles de journal, publiés ou acceptés

J.01 X. Bombois, M. Gevers et G. Scorletti, “A measure of robust stability for a
set of parametrized transfer functions”, IEEE Transactions on Automatic
Control, Vol. 45(11), pages 2141-2145, 2000.

J.02 X. Bombois, M. Gevers, G. Scorletti et B.D.O. Anderson, “Robustness
analysis tools for an uncertainty set obtained by prediction error identifi-
cation”, Automatica, Vol. 37(10), pages 1629-1636, 2001.

J.03 M. Gevers, X. Bombois, B. Codrons, G. Scorletti et B.D.O. Anderson,
“Model validation for control and controller validation in a prediction error
identification approach - Part I : theory”, Automatica Vol. 39(3), pages
403-415, 2003.

J.04 M. Gevers, X. Bombois, B. Codrons, G. Scorletti et B.D.O. Anderson,
“Model validation for control and controller validation in a prediction error
identification approach - Part II : illustrations”, Automatica Vol. 39(3),
pages 417-427, 2003.

J.05 A. Lanzon, B.D.O. Anderson et X. Bombois, “Selection of a single uniquely
specifiable Hinf controller in the chain-scattering framework”, Automatica,
Vol. 40(6), pages 985-994, 2004.

23
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J.06 X. Bombois, B.D.O. Anderson and M. Gevers, “Quantification of frequency
domain error bounds with guaranteed confidence level in Prediction Error
Identification”, Systems and Control Letters, Vol. 54(5), pp. 471-482,
2005.

J.07 X. Bombois, G. Scorletti, M. Gevers, P. Van den Hof and R. Hilde-
brand, “Least costly identification experiment for control", Automatica,
Vol. 42(10), pp. 1651-1662, 2006.

J.08 S. Douma, X. Bombois and P. Van den Hof, “Validity of the standard
cross-correlation test for model structure validation", Automatica, Vol.
44(5), pp. 1285-1294, 2008.

J.09 M. Barenthin, X. Bombois, H. Hjalmarsson and G. Scorletti, “Identifica-
tion for control of multivariable systems: controller validation and exper-
iment design via LMIs", Automatica, Vol. 44(12), pp. 3070-3078, 2008.

J.10 B.D.O. Anderson, A. Lanzon, A. Dehghani and X. Bombois, , “Quantita-
tive effects of weight adjustments in H-infinity control", Optimal Control,
Applications and Methods, Vol. 30, pp. 267-286, 2009.

J.11 R. Bos, X. Bombois and P. Van den Hof, “Accelerating simulations of
computationally intensive first principle models using accurate quasi linear
parameter varying models”, Journal of Process Control, Vol. 19, pp. 1601-
1609, 2009.

J.12 M. Gevers, A.S. Bazanella, X. Bombois and L. Miskovic, “Identification
and the information matrix: how to get just sufficiently rich”, IEEE Trans-
actions on Automatic Control, Vol. 54(12), pp. 2828-2840, 2009.

J.13 X. Bombois, H. Hjalmarsson and G. Scorletti , “Identification for robust
H2 deconvolution filtering”, Automatica, Vol 46(3), pp. 577-584, 2010.

J.14 P.J. van Overloop, I.J. Miltenburg, X. Bombois, A.J. Clemmens, R.J.
Strand, N.C. van de Giesen and R. Hut , “Identification of resonance
waves in open water channels”, Control Engineering Practice, Vol. 18, pp.
863-872, 2010.

J.15 M. Gevers, X. Bombois, R Hildebrand and G. Solari, “Optimal experiment
design for open and closed-loop system identification”, Communications in
Information and Systems, Vol 11(3), pp. 197-224, 2011.

J.16 A. Khalate, X. Bombois, R. Babuska, H. Wijshoff and R. Waarsing,
“Performance improvement of a drop-on-demand inkjet printhead using
an optimization-based feedforward control method”, Control Engineering
Practice, Vol. 19, pp. 771-781, 2011.

J.17 A.S. Bazanella, X. Bombois and M. Gevers, “Necessary and sufficient con-
ditions for uniqueness of the minimum in prediction error identification”,
Automatica, Vol. 48(8), pp. 1621-1630, 2012.
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J.18 X. Bombois and G. Scorletti, “Design of least costly identification ex-
periments - the main philosophy accompanied by illustrative examples”,
Journal Européen des Systèmes Automatisés, Vol 46(6-7), pp. 587-610,
2012.

J.19 A.A. Khalate, X. Bombois, G. Scorletti, R. Babuska, S. Koekebakker, W.
de Zeeuw, “A waveform design method for a piezo inkjet printhead based
on robust feedforward control”, IEEE/ASME Journal of Microelectrome-
chanical Systems, Vol 21(6), pp. 1365-1374, 2012.

J.20 A.A. Khalate, X. Bombois, S. Ye, R. Babuska and S. Koekebakker, “Min-
imization of cross-talk in a piezo inkjet printhead based on system identi-
fication and feedforward control”, Journal of Micromechanics and Micro-
engineering, Vol 22(11), paper 115035 (21 pages), 2012

J.21 P. Van den Hof, A. Dankers, P. Heuberger, X. Bombois, “Identification
of Dynamic Models in Complex Networks with Prediction Error Meth-
ods - Basic Methods for Consistent Module Estimates”, Automatica, Vol.
49(10), pp. 2994-3006, 2013.

J.22 D. Katselis, C. Rojas, M. Bengtsson, E. Bjornson, X. Bombois, N. Shariati,
M. Jansson and H. Hjalmarsson,“Training Sequence Design for MIMO
Channels: An Application-Oriented Approach”, accepté en octobre 2013
en vue d’une publication dans EURASIP Journal on Wireless Communi-
cations and Networking

Articles de journal, soumis

S.01 M. Forgione, X. Bombois and P. Van den Hof,“Optimal data-driven model
improvement for model-based control”, soumis à Automatica, mai 2013

S.02 A. Mesbah, X. Bombois, J. Ludlage, H. Hjalmarsson, M. Forgione, P.
Van den Hof,“Least Costly Closed-loop Performance Diagnosis and Plant
Re-identification” soumis à Journal of Process Control, juin 2013

S.03 A. Dankers, P. Van den Hof, X. Bombois, P. Heuberger,“Identification of
Dynamic Models in Complex Networks with Prediction Error Methods
- Predictor Input Selection”, soumis à IEEE Transactions on Automatic
Control, octobre 2013

Chapitres de livre

L.01 M. Gevers, X. Bombois, B. Codrons, F. De Bruyne et G. Scorletti, The
Role of Experimental Conditions in Model Validation for Control, dans
“Robustness in Identification and Control”, A. Garulli, A. Tesi and A.
Vicino eds., Lecture Notes in Control and Information Sciences, Vol.245,
Springer Verlag, 1999, pages 72-86 (15 pages).
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L.02 X. Bombois, B.D.O. Anderson et M. Gevers , Mapping parametric confi-
dence ellipsoids to Nyquist plane for linearly parametrized transfer func-
tions, dans “Model Identification and Adaptative Control”, G.C. Goodwin
ed., Springer Verlag, 2000, pages 53-71 (18 pages).

L.03 B.D.O. Anderson and X. Bombois, Analysis of weight change in H∞ con-
trol design, dans “Control and Modeling of Complex Systems: Cybernet-
ics in the 21st Century”, K. Hashimoto, Y. Oishi and Y. Yamamoto eds.,
Birkhauser Boston Inc., 2002, pages 113-130 (18 pages).

L.04 M. Gevers, X. Bombois, G. Scorletti, P. Van den Hof and R. Hildebrand,
Experiment design for robust control: why do more work than is needed?,
dans “Control of Uncertain Systems: Modelling, Approximation and De-
sign”, B. Francis and J.C. Willems Eds., Springer Verlag, Lecture Notes
in Control and Information Sciences, Volume 329, 2006, pp. 139 - 162 (24
pages).

L.05 S. Koekebakker, M. Ezzeldin, A. Khalate, R. Babuska, X. Bombois, P.
van den Bosch, G. Scorletti, S. Weiland, H. Wijshoff, R. Waarsing, W. de
Zeeuw, Piezo printhead control: jetting any drop at any time, dans “Model-
based design of adaptive embedded systems”, T. Basten, R. Hamberg, F.
Reckers et J. Verriet Eds, Springer, 2013, pp. 41 - 85 (45 pages).

Articles de conférence, avec comité de lecture

Les articles C.03, C.04, C.06, C.19, C.20, C.22, C.25, C.39, C.42, C.49, C.50 et
C.52 ont été présentés dans des sessions invitées.

C.01 B.D.O. Anderson, X. Bombois, M. Gevers and K. Kulcsar, "Caution in
iterative modelling and control design", IFAC Workshop on Adaptive Con-
trol and Signal Processing, Glasgow, pp. 13-19, 1998.

C.02 X. Bombois, M. Gevers and G. Scorletti, "Controller Validation for a
Validated Model Set", 5th European Control Conference, paper 869 (CD-
ROM), Karlsruhe, 1999.

C.03 X. Bombois, M. Gevers and G. Scorletti, "Controller Validation based on
an identified model", 38th IEEE Conference on Decision and Control, pp.
2816-2821, Phoenix, Arizona, 1999.

C.04 M. Gevers, X. Bombois, B. Codrons, G. Scorletti and F. De Bruyne ,
"Model validation for robust control and controller validation in a predic-
tion error framework", 12th IFAC Symposium on System Identification,
paper WeAM1-1 (CD-ROM), Santa Barbara, California, 2000.

C.05 X. Bombois, M. Gevers, G. Scorletti and B.D.O. Anderson , "Controller
Validation for Stability and for Performance based on an uncertainty re-
gion designed from an identified model", 12th IFAC Symposium on System
Identification, paper WePM1-6 (CD-ROM), Santa Barbara, California,
2000.
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C.06 X. Bombois, M. Gevers and G. Scorletti , "Controller Validation for Sta-
bility and for Performance based on a frequency domain uncertainty region
designed with stochastic embedding", 39th IEEE Conference on Decision
and Control, paper TuM06-5 (CD-ROM), Sydney, Australia, 2000.

C.07 B. Codrons, X. Bombois, M. Gevers and G. Scorletti, "A practical appli-
cation of recent results in model and controller validation to a ferrosilicon
production process", 39th IEEE Conference on Decision and Control, pa-
per WeP07-6 (CD-ROM), Sydney, Australia, 2000.

C.08 X. Bombois, B.D.O. Anderson and M. Gevers , "Frequency domain image
of a set of linearly parametrized transfer functions", 6th European Control
Conference, paper WeA07-1, pp. 1416-1421, Porto, 2001.

C.09 X. Bombois, G. Scorletti, B.D.O. Anderson, M. Gevers and P. Van den
Hof, "A new robust control design procedure based on a PE identification
uncertainty set", 15th IFAC World Congress, Barcelona, 2002.

C.10 X. Bombois and B.D.O. Anderson, "On the influence of weight modifi-
cation in Hinf control design", 41th IEEE Conference on Decision and
Control, Las Vegas, 2002.

C.11 A. Lanzon, B.D.O. Anderson and X. Bombois, "On uniqueness of cen-
tral H-infinity controllers in the chain-scattering framework", 4th IFAC
Symposium on Robust Control Design, Milano, 2003.

C.12 X. Bombois and Paresh Date , "Connecting PE Identification and robust
control theory: the multiple-input single-output case. Part I: Uncertainty
region validation", 13th IFAC Symposium on System Identification, paper
WeA01-02, Rotterdam, 2003.

C.13 X. Bombois and Paresh Date , "Connecting PE Identification and ro-
bust control theory: the multiple-input single-output case. Part II: Con-
troller validation", 13th IFAC Symposium on System Identification, paper
WeA01-03, Rotterdam, 2003.

C.14 S. Douma, X. Bombois and P. Van den Hof , "Validation test based pa-
rameter uncertainty versus assumption-based confidence bounds", 13th
IFAC Symposium on System Identification, paper FrP03-03, Rotterdam,
2003.

C.15 A. Lanzon, X. Bombois and B.D.O. Anderson , "On weight adjustments
in Hinf control design", 7th European Control Conference, Cambridge,
2003.

C.16 X. Bombois, G. Scorletti, P. Van den Hof and M. Gevers, "Least costly
identification experiment for control. A solution based on a high-order
model approximation", 2004 American Control Conference, pp. 2818-
2823, Boston, 2004.
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C.17 R. Bos, X. Bombois and P. Van den Hof, "Accelerating large-scale non-
linear models for monitoring and control using spatial and temporal cor-
relations", 2004 American Control Conference, pp. 3705-3710, Boston,
2004.

C.18 R. Bos, X. Bombois and P. Van den Hof, "On model selection for state
estimation for nonlinear systems", 7th International Symposium on Dy-
namic and Control of Process systems, Cambridge, Massachusetts, 2004.

C.19 X. Bombois, G. Scorletti, P. Van den Hof, M. Gevers and R. Hildebrand,
"Least costly identification experiment for control", 16th International
Symposium on Mathematical Theory of Networks and Systems, Louvain,
2004.

C.20 X. Bombois, B.D.O Anderson and M. Gevers, "Frequency domain uncer-
tainty sets with guaranteed probability level in Prediction Error Identifi-
cation", 16th International Symposium on Mathematical Theory of Net-
works and Systems, Louvain, 2004.

C.21 X. Bombois, G. Scorletti, M. Gevers, R. Hildebrand and P. Van den Hof,
"Cheapest open-loop identification for control", 43th IEEE Conference on
Decision and Control, Atlantis, Bahamas, 2004.

C.22 X. Bombois, G. Scorletti and P. Van den Hof, "Least disturbing closed-
loop identification experiment for control", IFAC World Congress, Praha,
2005.

C.23 R. Bos, X. Bombois and P. Van den Hof, "Designing a Kalman filter
when no noise covariance information is available", IFAC World Congress,
Praha, 2005.

C.24 S. Douma, X. Bombois and P. Van den Hof, "Validity of the standard
cross-correlation test for model structure validation", IFAC World Congress,
Praha, 2005.

C.25 X. Bombois, M. Gevers, G. Scorletti, "Open-loop vs. closed-loop identi-
fication of Box-Jenkins models: a new variance analysis", CDC-ECC’05,
Sevilla, 2005

C.26 A. Lanzon, B.D.O. Anderson and X. Bombois, "A Newton-Raphson algo-
rithm for calculating the effects of changes in weights on an Hinf design",
CDC-ECC’05, Sevilla, 2005.

C.27 R. Bos, X. Bombois and P. Van den Hof, "Accelerating simulations of first
principle models of complex industrial systems using quasi linear param-
eter varying models", CDC-ECC’05, Sevilla, 2005.

C.28 X. Bombois and M. Gilson, "Cheapest identification experiment with
guaranteed accuracy in the presence of undermodeling", 14th IFAC Sym-
posium on System Identification, pp. 505-510, Newcastle, 2006
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C.29 M. Gevers and X. Bombois, "Input design: from open-loop to control-
oriented design", 14th IFAC Symposium on System Identification, pp.
1329-1334, Newcastle, 2006

C.30 M. Barenthin, X. Bombois and H. Hjalmarsson, "Mixed H2 and Hinf in-
put design for multivariable systems", 14th IFAC Symposium on System
Identification, pp. 1335-1340, Newcastle, 2006.

C.31 X. Bombois, B.D.O. Anderson and G. Scorletti, "Open loop vs. Closed-
loop identification of Box-Jenkins systems in a Least Costly Identification
context", European Control Conference 2007, pp. 4510-4517, Kos, 2007

C.32 A.J. den Dekker, X. Bombois and P. Van den Hof, "Likelihood Based Un-
certainty Bounding in Prediction Error Identification using ARX models:
a simulation study", European Control Conference 2007, pp. 2879-2886,
Kos, 2007

C.33 G. Scorletti, X. Bombois, M. Barenthin and V. Fromion, "Improved effi-
cient analysis for systems with uncertain parameters", 46th IEEE Confer-
ence on Decision and Control, pp 5038-5043, New Orleans, 2007

C.34 A.J. den Dekker, X. Bombois and P. Van den Hof, "Finite Sample Con-
fidence Regions for Parameters in Prediction Error Identification using
Output Error Models", 17th IFAC World Congress, pp. 5024-5029, Seoul,
2008

C.35 X. Bombois, M Barenthin and P. Van den Hof, "Finite-time experiment
design with multisines", 17th IFAC World Congress, pp. 11445-11450,
Seoul, 2008,
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Chapter 5

Introduction

Model-based engineering is the dominant engineering paradigm to systematic
design and maintenance of engineering systems. In those technology fields where
dynamics plays a role, model-based control acts as an enabling technology that
is essential for the design and realization of high-performance and robustly op-
erating systems.

The design of a control loop for a real-life system (the so-called true system)
can generally be divided in two essential steps:

1. Modelling: the determination of a mathematical model of the true system
coupled with information about the model uncertainty. This step can
be performed using a first-principles approach (physical modelling), using
experimental data collected on the system (system identification) or a
combination of both approaches.

2. Robust Control Design: The design of a controller using the identified
model of the true system; followed by the verification of the robustness of
this controller against model uncertainty (see e.g. [54]1).

The first step (i.e. modelling systems in order to control them) is a com-
plicate task. The model must, on the one hand, be sufficiently accurate to
guarantee high performance, but the model should also remain relatively simple
since, otherwise, it would become impossible to design a controller based on that
model. This is a challenge for both modelling approaches (first principles and
system identification). In my research until now, I have mostly concentrated on
(linear) system identification as modelling technique for control and I will thus
from now on restrict attention to this modelling technique. Note nevertheless
that we have also addressed the question of accelerating first-principles mod-
els (see J.11 et C.60). Indeed, if such models can be very accurate2, they are
generally much too complicate and computationally expensive to be used in a
model-based control strategy.

1The references [.] pertain to the reference list at the end of this document; the other
references to the list in Chapter 4.

2especially if their unknown parameters have been calibrated using experimental data
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System identification [33, 38] can be an elegant technique to obtain models
that are both simple and accurate. A system identification procedure is made
up of different steps. First, an experiment has to be performed on the true sys-
tem to collect informative data. This is done by applying an excitation signal to
the system either in open or in closed loop. Once data have been collected, an
identification criterion (e.g. the prediction error criterion) determines, within
an a-priori selected set of candidate-models, the particular model that is best
able to explain the data. The choice of the model set is in this sense crucial and
techniques are available to make this choice3.

Even if the model set has been intelligently chosen, obtaining accurate mod-
els for control using system identification remains a difficult task. Indeed, the
quality of the identified model highly depends on the identification experiment
that has been performed and a badly designed experiment generally leads to
models for which the uncertainty is too high for the design of a satisfactory
controller for the true system. Consequently, it is very important to optimize
the path that starts by the design of the identification experiment and finally
leads to a satisfactory control performance. This has been the main objective
of my research since the beginning of my academic career.

Since the mid-eighties, intensive research has been conducted in this area by
the groups of Prof. Gevers and Van den Hof (see e.g. [14, 10, 23, 9]). These
efforts have shown the advantages of closed-loop identification techniques with
respect to open-loop techniques. Techniques alternating (closed-loop) identifica-
tion steps and control design steps have also been developed [44]. The reasoning
is that, to obtain an accurate model for control, the data have to be collected
in circumstances close to the ones the plant will face when operated with the
to-be-designed controller.

In these early years, the apparent incompatibility between the uncertainty
information delivered by classical system identification [33] and the uncertainty
descriptions used in mainstream robust control theory [54] meant that limited
attention was paid to the concept of uncertainty region, in general, and to its
possible use to verify the robustness of the controller designed with the identi-
fied model, in particular. Consequently, there was still no technique that allows
one to verify whether a controller designed with the identified model stabilizes
and achieves sufficient performance with the true system.

The uncertainty region deduced after an identification experiment is indeed
quite particular. If a full-order model set is used, the uncertainty region is a set
of parametrized transfer functions whose parameter vector is constrained to lie
in an ellipsoid (see [33] or the thesis T.01). The size of the ellipsoid is given by
the covariance matrix of the identified parameter and is therefore dependent on
the identification experiment. The structure is also particular when reduced-

3We will make often the assumption that the model set is rich enough to describe the
system (full-order model structure). Such a model set can be determined iteratively using
model structure validation based on residual tests. See [33], the publication J.08 or the
identification slides http://www.dcsc.tudelft.nl/˜xbombois/sc4110slides.pdf.
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order model sets are used (see [18, 20] or T.01). Indeed, the uncertainty region
is, in this case, a set containing all transfer functions whose frequency response
lies, at each frequency, in an ellipse in the Nyquist plane.

Due to these particular structures, the classical results of robustness anal-
ysis could not be applied to the uncertainty descriptions delivered by system
identification. We have bridged this gap by developing new robustness analysis
tools adapted to those particular types of uncertainty regions. These robustness
tools allow one to verify whether a controller designed from the identified model
will stabilize and achieve sufficient performance with the unknown true system.
Note also that the development of these new robustness analysis tools required
extensive use of the computational possibilities provided by the optimization
problems using Linear Matrix Inequalities constraints; an approach that could
be considered as entirely novel for the system identification community. The
results have been first developed for SISO systems whose performance is mea-
sured in the H∞ framework (see J.01, J.02, J.03 and C.06). They have been
then extended towards MIMO systems in J.09 and towards H2 performance
measures in J.13.

These novel robustness tools have been my first step in optimizing the path
between the identification experiment and a satisfactory control performance.
However, because little attention had been devoted to analyzing the choice of
data used to identify the model and its uncertainty region, we still had no insight
into the best way to design the identification experiment to guarantee that, with
the identified model and its uncertainty, a robust controller meeting the perfor-
mance requirements can be designed. The size of the model uncertainty is indeed
directly related to the performed identification experiment. Consequently, if we
do not design correctly the identification experiment, the identified uncertainty
could prove too large to meet all the performance requirements. This is es-
pecially true for systems (such as systems in the process industry) for which
collecting identification data entails a very important economical cost. Indeed,
because of that high economical cost, the experiments are, in those cases, gen-
erally short and the excitation signal of low power; which in turn leads to large
model uncertainty if the excitation signal is not chosen with care.

This observation led me to the development of a new framework for optimal
identification experiment design, in the context of “identification for robust con-
trol”. It is novel essentially in that it takes the dual viewpoint to the classical
way of posing optimal experiment design problems. To state this in a nutshell,
the classical way is to seek the optimal input signal (or the optimal input signal
spectrum) that minimizes some control-oriented measure of the quality of the
identified model, subject to constraints on the input signal power (and/or on
the output signal power). Representative examples of such approach can be
found in [16, 24, 33, 12, 32, 8, 21, 27]. From a robust control point of view, such
an approach is not always the most sensible choice: one should not spend more
effort on the identification than what is needed to achieve the required robust
control performance. Or in other words, one should just spend the necessary
efforts to obtain an uncertainty region which is just small enough for the design
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of satisfactory controller.

In our new optimal experiment design framework, the objective is to design
the least costly identification experiment which nevertheless guarantees that the
collected data are sufficiently informative about the dynamics of the true sys-
tem for the corresponding identification to deliver a model with a sufficiently
small uncertainty for the design of a robust controller meeting the performance
requirements. The least costly experiment is, among all experiments satisfying
the control performance requirements, the one that causes the least perturba-
tion to the normal operations of the plant. Technically speaking, the framework
is based on the robustness tools for the uncertainty regions delivered by system
identification and on the affine relation existing between the power spectrum
of the excitation signal and the inverse of the covariance matrix (i.e. the size
of the uncertainty region) [32]. This framework was first developed in a SISO
H∞ framework in J.07, but has been extended to a MIMO framework and H2

performance measures in J.09 and J.13, respectively. In [22], H. Hjalmarsson
has also proposed a methodology which, at the cost of a second-order approx-
imation, allows one to consider a large variety of performance measures in the
least costly framework.

One of the main conclusions of the work so far is that the cost of the identi-
fication can be dramatically decreased by optimizing the excitation signal. As
an example, the paper [2] shows that we can identify an accurate model using
an identification experiment that is ten times shorter when using an optimized
excitation signal. Other illustrative examples are given in J.18.

It is worth noticing that we have been able to interest the industry for the
least costly identification paradigm. As expected, because of the important eco-
nomical costs linked to identification experiments in those areas, this interest
mainly comes from the large process industries. As an example, one of my MSc
students has applied the developed techniques to identify a small-scale direct
sheet plant at Tata Steel (IJmuiden, The Netherlands) in 2012. On a larger
scale, within the Autoprofit project (2010-2013), we have gathered a consor-
tium of industrial partners (ABB, SASOL and Boliden) which will allow the
applications of these optimal experiment ideas under realistic industrial circum-
stances.

The Autoprofit project is an EU-KP7 STREP project (budget 2.5 million)
that is mainly based on my research ideas. This project not only aims at de-
veloping our least costly framework towards industrial applications, but also
at improving the maintenance of model-based control systems using the least
costly philosophy.

Once a model has been identified and a satisfactory controller has been de-
signed, it is indeed important to maintain the performance of this controller
over time. The performance of a controller can indeed be significantly reduced
by the inherent (gradual) time-varying nature of the plant dynamics. For this
purpose, the closed-loop performance has to be continuously monitored and the
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cause of any performance drop should be determined before any re-identification
of the plant dynamics is decided. Indeed, if a re-identification of the plant dy-
namics seems the only solution to restore the initial closed-loop performance
when the cause of the performance drop is a control-relevant plant change. It is
by far not the optimal solution when the cause of the performance drop is to be
found elsewhere. As a matter of fact, in real practice, closed-loop performance
degradation mostly results from (temporary) variations in disturbance charac-
teristics or sensor/actuator failures. Knowing the relatively high economical
costs of a re-identification (even in the least costly context), a sustainable con-
troller maintenance procedure should therefore contain a so-called performance
diagnosis step that would be performed when a closed-loop performance drop is
observed. The performance diagnosis should verify whether it is likely that the
performance degradation is due to a control-relevant plant change.

Within the Autoprofit project, we have developed a general closed-loop per-
formance diagnosis method formulated as an hypothesis test and involving a
diagnosis experiment on the plant. This diagnosis experiment boils down to a
short identification experiment from which a model of the current plant dynam-
ics can be deduced. We have also addressed the problem of optimal experiment
design for the diagnosis problem at stake. The optimal experiment design is
performed in the least-costly context in order to minimize the cost of the di-
agnosis experiment while guaranteeing a pre-specified accuracy for detecting
the cause of the performance drop. An optimal trade-off is sought between
the contradictory objectives of obtaining an accurate diagnosis and obtaining a
cheap diagnosis experiment (particularly with respect to a re-identification ex-
periment). To our knowledge, the design of optimal experiments for closed-loop
performance diagnosis had not been investigated in the literature.

As the diagnosis step is closely intertwined with the re-identification step
performed if a control-relevant plant change is diagnosed, a unified framework
is furthermore proposed for the optimal design of both the diagnosis experiment
and the possible re-identification experiment. In a nutshell, the diagnosis and
re-identification experiments are designed in such a way that the sum of the
excitation costs related to these two experiments is minimized while guarantee-
ing a pre-specified diagnosis accuracy and, in the cases where a re-identification
is needed, guaranteeing that the re-identified model is accurate enough for re-
designing the controller. These contributions can be found in the publications
C.44,C.49,C.53 and S.02.

As part of the PhD project of Marco Forgione (see Section 3.2), we have
also recently proposed another alternative framework for optimal identification
experiment design for control (see C.57 et S.01). In this new framework, there is
no longer a strict distinction between an identification phase and a phase where
the designed controller operates the true system without any excitation. As
opposed to this classical setup, an optimal excitation signal is (or, at least, can
be) applied throughout the lifetime of the closed loop. This allows to gradually
reduce the model uncertainty and improve the controller (that is updated at
fixed interval). It is important to note that this excitation increases the perfor-
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mance (in the future) by reducing the model uncertainty, but also reduces the
present performance (due to the perturbation caused on the normal operation).
We therefore seek the excitation signal that maximizes the overall performance
over the entire lifetime of the closed loop. Since the overall performance is
negatively influenced by both the model uncertainty and the excitation signal,
the objectives of the least costly and of the more classical optimal experiment
design frameworks are somehow combined in this novel framework.

The philosophy on identification for robust control developed since the begin-
ning of my academic career has also allowed me to participate to more applied
research projects such as the Octopus project in collaboration with the printer
manufacturer OCE. In this project, we addressed the question of improving the
printing quality of inkjet printheads. This printing quality is severely affected
by oscillations in the ink channel. These oscillations are created by the drop jet-
ting process and the cross-talk between neighbouring channels. Consequently,
the printing quality could be improved if the actuation pulse that commands
the drop jetting process could be re-designed to effectively damp these oscilla-
tions. To achieve this pulse redesign (feedforward control) in a robust way, we
have identified a model of the printhead at different setpoints (i.e. for different
jetting frequencies). This has allowed us to design a robust pulse whose efficacy
has been demonstrated using both simulation and experimental results. See e.g.
J.20.

In Chapters 6 to 10, the above research results will be presented in more
details. In Chapters 11 and 12, some other research projects that are further
away from my main research line will also be presented. Finally, in Chapter 13,
I will present some ideas for future research.



Chapter 6

Robustness analysis for

uncertainty regions delivered by

identification

6.1 Prediction-error Identification

In this chapter, we will present the robustness analysis tools we have developed
for the uncertainty regions delivered by system identification. We will restrict
attention to the case where the chosen model structure (model set) for the iden-
tification is rich enough to describe the true system. The results corresponding
to reduced-order model structures can be found in T.01 or C.06. To simplify
the notations, we will present the mathematical framework assuming that the
true system is SISO. Note however that the (main) differences between the SISO
and MIMO cases will be reported after each stage. We will also assume that
the true system is operated in closed loop with an existing controller Cid. We
therefore consider the case where we want to perform an identification to design
a new controller C that will improve the performance of the existing controller
Cid. Note that the open-loop setting is a special case of the closed-loop setting
where the controller Cid is zero. Let us first present some results of system
identification and, in particular, prediction-error identification [33].

We consider the identification of a linear time-invariant single input single
output system with a model structure M = {G(z, θ), H(z, θ)}, θ ∈ Rk, that is
able to represent the true system. Thus, the true system is given by:

S : y(t) = G0(z)u(t) +

=v(t)
︷ ︸︸ ︷

H0(z)e(t)

= G(z, θ0)u(t) +H(z, θ0)e(t) (6.1)

for some unknown parameter vector θ0 ∈ Rk, and with e(t) a white noise of
variance σ2e . With some abuse, we use the symbol “z” both for the shift operator
(see (6.1)) and for the Z-transform variable. We further assume that the true
system S is operated in closed loop with an existing LTI controller Cid (see
Figure 6.1).
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 = 0

r(t)

Figure 6.1: Closed-loop identification: the data set ZN is collected by exciting
the closed loop made up of the true system and a controller Cid using an external
signal r(t)

In order to identify the true system, an identification experiment has to be
performed. For this purpose, an excitation signal r(t) (t = 1...N) is applied to
the closed loop as shown in Figure 6.1 and the corresponding input and output
data are measured: ZN = {y(t) u(t) | t = 1...N}. During the identification
experiment, we have the following relations:

y(t) =

yr(t)
︷ ︸︸ ︷

G0Sidr(t)+Sidv(t) (6.2)

u(t) =

ur(t)
︷ ︸︸ ︷

Sidr(t)−CidSidv(t) (6.3)

with Sid = (1 + CidG0)
−1 the sensitivity function of the closed loop [Cid G0].

When designing the experiment, besides the choice of the duration N of the
identification experiment, the user has also to determine the excitation signal
r(t) (in particular, the power spectrum Φr(ω) of r). Consequently, when we
will optimally design the identification experiment (see Chapter 7), these two
variables will be the design variables. In this chapter, we will suppose that
these variables have been a-priori chosen. The only condition imposed on the
excitation signal is that the data set ZN has to be informative enough for the
identification of (6.1). This can be easily achieved e.g. by choosing the excita-
tion signal as a (filtered) white noise.

Once the data set ZN has been collected, prediction error identification can
be used to determine a consistent estimate θ̂N of the true parameter vector θ0
using the following criterion:

θ̂N
∆
= arg min

θ

1

N

N∑

t=1

ǫ2(t, θ) (6.4)

with ǫ(t, θ)
∆
= H(z, θ)−1 (y(t)−G(z, θ)u(t)).

The identified parameter vector θ̂N is asymptotically normally distributed
around θ0:
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θ̂N ∼ N (θ0, Pθ) (6.5)

and, given the full-order model structure assumption, the covariance matrix

Pθ has the following expression [33]: Pθ = σ2
e

N

(
Ē
(
ψ(t, θ0)ψ(t, θ0)

T
))−1

with

ψ(t, θ) = −∂ǫ(t,θ)
∂θ

. It is possible to rewrite the expression of Pθ in such a way
that its dependence on the identification duration N and on the excitation
spectrum Φr(ω) becomes visible (see J.07):

P−1
θ =

(
N

σ2e

1

2π

∫ π

−π

Fr(e
jω, θ0)Fr(e

jω, θ0)
∗Φr(ω)dω

)

+

(

N
1

2π

∫ π

−π

Fv(e
jω, θ0)Fv(e

jω, θ0)
∗dω

)

(6.6)

with Fr(z, θ0) =
Sid

H0
ΛG(z, θ0), Fv(z, θ0) =

ΛH(z,θ0)
H0

−CidSidΛG(z, θ0), ΛG(z, θ) =
∂G(z,θ)

∂θ
and ΛH(z, θ) = ∂H(z,θ)

∂θ
. We observe in (6.6) that the covariance matrix

“decreases” both when N and Φr(ω) “increase”. It is also important to note that
the covariance matrix can easily be estimated using the identified parameter
vector θ̂N and the data set ZN :

Pθ ≈
σ̂2e
N

(
N∑

t=1

ψ(t, θ̂N )ψT (t, θ̂N )

)−1

(6.7)

with σ̂2e =
1

N

N∑

t=1

ǫ2(t, θ̂N ).

Let us now assess the uncertainty of the identified parameter vector θ̂N . This
can be done by using (6.5) to construct a confidence ellipsoid U centered at the
identified parameter vector θ̂N and containing the unknown true parameter
vector θ0 at an user-chosen probability level α:

U = {θ ∈ Rk | (θ − θ̂N )TP−1
θ (θ − θ̂N ) < χα} (6.8)

with χα such as Pr(χ2(k) < χα) = α. This ellipsoid in the parameter space in
turn defines an uncertainty region in the space of transfer functions G(z, θ) and
that contains G0(z) = G(z, θ0) at the same probability α:

D = {G(z, θ) | θ ∈ U} (6.9)

After an identification experiment in a full-order model structure, we are thus
able to determine an uncertainty region D centered at the identified model
G(z, θ̂N ) and containing the true system G0 at a self-chosen probability α (e.g.
α = 0.95). This uncertainty region D is a set of parametrized transfer function
whose parameter vector is constrained to lie in an ellipsoid U . D is only a func-
tion of the identified model G(z, θ̂N ) and of the (estimated) covariance matrix
Pθ of θ̂N . It is important to realize that the uncertainty region D is therefore
different for each set of data collected on the true system G0(z). Indeed, for each
set of data, you obtain a different model G(z, θ̂N ), a different covariance matrix
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Pθ and thus a different uncertainty set D. Moreover, the smaller the covariance
matrix of θ̂N is, the smaller the uncertainty region is and thus the more we have
confidence that the true system G0(z) is “close” to the identified model G(z, θ̂N ).

Remark 1. Since we identify the true system in a full-order model structure,
the only source of uncertainty is the stochastic noise v(t) which makes of the
identified parameter vector θ̂N a random variable. This can also be observed
in the expression of the uncertainty region where we see that the size of the
uncertainty is determined by the covariance matrix Pθ of θ̂N . When identify-
ing in a reduced-order model structure, the uncertainty is function of both the
structural mismatch and of the noise [18, 20].

Remark 2. For the sequel, it is important to note that the classical parametriza-
tions of G(z, θ) in system identification are all Linear Fractional Transformations
(LFTs) of the parameter vector θ [54].

Remark 3 (MIMO systems). The uncertainty region D in the case of a
MIMO true system would be identical. The parametrization G(z, θ) is however
in this case a matrix of transfer functions. Each element of this matrix is an
LFT in θ.

Remark 4. The expression of the uncertainty ellipsoid U is based on the
asymptotic distribution (6.5) which is thus in theory only valid for N → ∞.
We have analyzed the validity of this uncertainty ellipsoid for small values of
N in the papers C.32, C.34 and C.39. One of the main observations of these
papers is that, in order to guarantee Pr(θ0 ∈ U) ≈ α, a smaller data set can be
somehow compensated by a larger excitation signal.

6.2 Controller design and controller validation

6.2.1 Controller design

The identified model G(z, θ̂N ) can now be used to design a new controller C(z)
for the true system G0(z). This controller C stabilizes and achieves satisfac-
tory performance with the model G(z, θ̂N ). Despite all the care brought in the
design of the identification experiment, the model G(z, θ̂N ) is nevertheless only
an approximation of the true system G0. Consequently, the controller that has
been designed from G(z, θ̂N ) is not guaranteed to either stabilize G0 or achieve
the desired performance with G0.

In order to derive this guarantee, the framework of Robustness Theory, in-
troduced in the early 80’s in [53, 11], is an elegant solution. Based on the
concept of uncertainty regions of which the set D given in (6.9) is a particular
example, this framework allows one to verify whether the model-based controller
C stabilizes all systems in the considered uncertainty set and achieves sufficient
performance with all these systems. In other words, the controller is a-posteriori
validated for stability and for performance.
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Remark. Another approach would consist in directly designing a robust con-
troller which stabilizes and achieves sufficient performance with all plants in the
uncertainty set. We will here disregard this approach since the optimization to
deduce this robust controller leads to a very complicate iteration process (D-K
iteration [54]) that is not guaranteed to converge and that leads to an explo-
sion of the order of the controller. This direct design of the robust controller is
nevertheless much more simpler for feedforward controller (see e.g. Chapter 10)
and for (deconvolution) filters (see J.13).

6.2.2 Controller validation

Since D is the uncertainty region delivered by the identification experiment, the
validation of the controller C designed from the identified model G(z, θ̂N ) has
to be performed using this uncertainty region D. Recall that this uncertainty
contains the unknown true system at an user-chosen probability α. The main
challenge in using D in a robustness analysis procedure is that this uncertainty
region is not standard in mainstream robust control (see Section 6.3).

The validation of the designed controller C(z) is made up of two essential
steps:

• controller validation for stability: verification whether C stabilizes all sys-
tems in D (and therefore also the true system G0)

• controller validation for performance: we compute the worst case perfor-
mance achieved by C over the plants in D and we verify if this worst
case performance is sufficient with respect to the controller specifications.
This worst case performance is of course a lower bound of the performance
achieved by the controller C with G0.

The controller validation procedure for stability is unequivocal. The controller
validation for performance involves the computation of the worst case perfor-
mance. In order to define the worst case performance, we first need to define
a performance measure of a closed-loop system [C G]. There are many ways
to measure the performance of a closed-loop system. However, most commonly
used criteria uses some norm of a weighted closed-loop transfer function T (G,C),
e.g.

T (G,C) =
W (z)

1 +G(z)C(z)
(6.10)

with W an user-chosen weight. Instead of a scalar transfer function, T (G,C) can
also be a matrix containing all four (weighted) closed-loop transfer functions:

T (G,C) =Wl

(
GC

1+GC
G

1+GC
C

1+GC
1

1+GC

)

Wr (6.11)

with some prescribed weights Wl = diag(Wl1(z),Wl2(z)) and Wr

= diag(Wr1(z),Wr2(z)).



46 CHAPTER 6. ROBUSTNESS ANALYSIS

A possible norm that can be considered to define the performance is the
largest singular value of T at each frequency ω. The performance of the loop is
thus defined at each frequency as:

J(G,C, ω) = σmax

(
T (G(ejω), C(ejω)

)
(6.12)

For scalar T , (6.12) reduces to the modulus of T at each frequency. The H∞

norm of T is the maximum over the frequency of J(G,C, ω).

With (6.12) as performance measure, we can state that the loop [C G]
achieves sufficient performance if J(G,C, ω) remains below some threshold γ
at each frequency (i.e. ‖T (G,C)‖∞ < γ). At a given frequency ω, the worst
case performance achieved by the controller C over all plants in the uncertainty
region D is then defined as:

JWC(D, C, ω) = sup
G∈D

J(G,C, ω) (6.13)

where J(G,C, ω) is defined in (6.12). Consequently, a controller will be deemed
validated for performance if JWC(D, C, ω) < γ at each frequency.

Instead of the largest singular value, we can also consider the H2 norm to
define the performance. The worst-case performance achieved by C over the
plants in D is then:

JWC(D, C) = sup
G∈D

J(G,C) with J(G,C) = ‖T (G,C)‖2 (6.14)

Here, the worst case performance is not dependent on the frequency and a con-
troller is deemed validated if JWC(D, C) < γ.

Remark 1 (MIMO systems). The validation of a controller in the MIMO
case is completely equivalent to the SISO case (except for some obvious nota-
tional changes when defining the closed-loop transfer functions).

Remark 2. In [22], H. Hjalmarsson shows that a very large variety of perfor-
mance measures can in fact be used in our framework at the cost of a second-
order Taylor approximation. The condition is e.g. that the performance of
the loop [C G] is defined as a deviation with respect to the performance of the
designed loop [C G(z, θ̂N )]. An example of such a measure will be used in Chap-
ter 9. For the performance measures considered in [22], the designed controller
C can also be nonlinear (such as a MPC controller).

6.3 Robustness tools

6.3.1 Robust performance analysis - controller validation for
performance

Let us first focus on the controller validation for performance. The worst case
performance defined in the previous section can be computed as

√
ζopt with ζopt

the solution of the following optimization problem:
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minimize ζ (6.15)

subject to

J2(G(z, θ), C) < ζ ∀θ ∈ U (6.16)

Here J represents both the frequency-dependent and frequency-independent per-
formance measures. Owing to this formulation, we will be able to compute the
worst case performance if we can rewrite (6.16) as a tractable constraint.

Consider the loop [C G(z, θ)] with G(z, θ) a plant in the uncertainty re-
gion D. Due to the particular parametrization of G(z, θ) (see Remarks 2 and 3
in Section 6.1), the loop [C G(z, θ)] can be rewritten in the so-called LFT frame-
work represented in Figure 6.2. In this representation, we represent the transfer
function/matrix T :

z = T (G(z, θ), C) w

M(z)

∆

w z

Figure 6.2: LFT representation of T (G,C)

by separating a fixed/known part M(z) from an varying/uncertain part ∆. The
uncertain part ∆(θ) is here a known function of θ. Depending on the situation,
∆ will be equal to θ or to I ⊗ θ (I represents the identity matrix and ⊗ repre-
sents the Kronecker product). More particularly, if the system is SISO, we will
have that ∆ = θ, while ∆ is given by I ⊗ θ when G(z, θ) represents a MIMO
system (see J.09).

Once the loop has been rewritten in the LFT framework, we can rewrite
the constraint (6.16) using the so-called separation of graph theorem1 [17, 45,
46]. An important ingredient of this approach is to determine an explicit
parametrization (called set of multipliers) of the quadratic constraints satisfied
by the graphs [I ∆T ]T of all uncertainties ∆(θ), θ ∈ U . In [46], such set of mul-
tipliers is derived for the classical uncertainty sets encountered in the robustness

1The separation of graph theorem is equivalent to the µ-analysis approach [54]
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analysis literature. However, the set corresponding to the uncertainty region D
is not classical. The uncertainty ∆(θ) has indeed a very particular structure,
especially in the MIMO case i.e. a block-diagonal matrix with a parameter vec-
tor constrained in an ellipsoid repeated on the diagonal. A very general set of
multipliers has been deduced in J.09 for this type of uncertainty. With this set
of multipliers, we can deduce a LMI constraint which implies (6.16). Using this
LMI constraint in the optimization problem (6.15), we thus obtain an upper
bound on the worst case performance2.

The procedure above is a very general procedure which is absolutely nec-
essary for many cases, e.g. MIMO systems (see J.09), performance measure
expressed with the H2 norm (see J.13). However, in the case of a SISO system
and an H∞ performance measure such as (6.12), we can exactly compute the
worst case performance JWC(D, C, ω). Indeed, it is proven in J.02 that the con-
straint J2(G(θ), C, ω) < ζ can be expressed as a quadratic expression in θ for
each ω. Since U is an ellipsoid, θ ∈ U can also be expressed as a quadratic ex-
pression in θ. The S-procedure [6] can then be used to derive an LMI constraint
linear in ζ which is equivalent to the original constraint (6.16) (see J.02 for
more details). This equivalent LMI constraint has the following form:

∃τ > 0 such that A(ζ, C)− τ B(P−1
θ , θ̂N ) < 0 (6.17)

with τ a scalar decision variable, A(ζ, C) a know matrix that is linear in ζ and
function of the controller C and B(P−1

θ , θ̂N ) also a know matrix that is linear

in P−1
θ and function of θ̂N .

Remark. If we use the performance measures proposed in [22] and approxi-
mated by a Taylor expansion, the constraint (6.16) can be rewritten as:

ζ P−1
θ > R

θ̂N ,C
(6.18)

where Pθ is the known covariance matrix of the identified parameter vector
θ̂N and R

θ̂N ,C
is also a known matrix which is a function of θ̂N , the con-

troller C designed from G(z, θ̂N ) and the particular choice of performance mea-
sure. Since (6.18) is an LMI constraint linear in ζ, the worst case performance
can also be easily computed.

6.3.2 Robust stability analysis - controller validation for stabil-
ity

Let us now consider the controller validation for stability. Using similar tools3,
we can deduce, in the SISO case, a necessary and sufficient condition for the
stabilization of all plants in D by a given controller C (see J.02 for more de-
tails). In the MIMO case, only a sufficient condition for robust stability can be

2The conservatism is among other things due to the fact that the set of multipliers gives a
linear parametrization of the quadratic constraints satisfied by the graphs of all uncertainties
∆(θ), θ ∈ U . If this linear parametrization makes the robustness analysis problem tractable,
it does not include all possible quadratic constraints.

3The separation of graph theorem is basically a robust stability result that is extended for
robust performance analysis.
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deduced (see J.09 for more details).

Note that a controller validated for performance is also directly validated
for stability. Indeed, if the controller C does destabilizes some plants in D,
there is always one plant G(z, θ) for which 1 + G(ejω, θ)C(ejω) = 0 at one
frequency. Consequently, the worst case performance JWC(D, C, ω) (see (6.13))
defined in the H∞ framework will be infinite at that frequency and the worst
case performance JWC(D, C) (see (6.14)) defined in the H2 framework will also
be infinite.

6.4 Conclusions

Using the robustness tools presented in this chapter, we can validate a controller
C designed from an identified model both for stability and for performance. If
the controller is deemed validated, it can be subsequently applied to the true
system. However, if the uncertainty of the identified model is too large, the
controller may be well invalidated. In the next chapter, we will present tools to
design the identification experiment in such a way that the controller designed
from the model identified with this experiment is guaranteed to be validated.
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Chapter 7

Design of least costly

identification experiments for

control

7.1 Problem statement

If the uncertainty region D of the identified model G(z, θ̂N ) is too large (i.e.
if the covariance matrix Pθ defining the size of D is too large), a controller
designed with G(z, θ̂N ) may be invalidated and can therefore not be applied
to the true system since it may achieve unsatisfactory performance with the
true system G0. In this chapter, we will present a framework for the design
of optimal identification experiments to avoid such issues. In a nutshell, the
optimal experiment in our framework is the cheapest identification experiment
that nevertheless guarantees that the uncertainty of the identified model is small
enough for the design of a controller achieving satisfactory performance with G0.

As in the previous chapter, we will present the mathematical framework for
a SISO true system in a closed-loop setting and we will assume that the identi-
fication is performed in a full-order model structure M. We thus consider the
framework of Section 6.1. For the ease of discussion, we will also consider an
H∞ performance measure (see (6.12)). Extensions to the other cases (MIMO,
H2,...) will nevertheless be discussed in Section 7.4.

As we already mentioned in Section 6.1, when designing an identification
experiment in closed loop, the design variables are the duration N of the iden-
tification experiment and the excitation sequence r(t) (t = 1...N). In a first
stage, we will suppose that N has been chosen a-priori and the design variables
therefore reduce to the excitation signal r(t). To make the problem tractable,
we will in fact consider the power spectrum Φr(ω) of r(t) as design variable and,
once this spectrum has been determined, we will realize an excitation sequence
r(t) having that particular spectrum.

The major constraint for the to-be-designed identification experiment is that
the controller C that will be designed with the identified model achieves suffi-
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cient performance with all plants in the uncertainty D of this model (and thus
also with G0). As shown in Chapter 6, this robust performance constraint is
equivalent to the following constraint that must hold at each ω:

J(G(z, θ), C, ω) < γ ∀θ ∈ U (7.1)

with γ an user-chosen bound on the acceptable performance. It is important to
note that U (see (6.8)) here represents the ellipsoidal uncertainty that will be
derived after the to-be-designed experiment and C is the controller that will be
designed from the model identified with this experiment. In the sequel, it will be
supposed that we have a-priori fixed a control design method in such a way that
C can be considered as a known function1 C = C(θ̂N) of the to-be-identified
model G(z, θ̂N ). Note also that this robust performance constraint also ensures
robust stability over the uncertainty set D (see Section 6.3).

To formalize our optimal experiment design problem, we still need to define
what we mean by the cost Jr of an identification experiment. In a closed-loop
setting, this cost can be e.g. measured by the power Pr of the excitation signal
r(t). However, we can also consider an alternative definition which seems closer
to the actual cost of a closed-loop experiment. Suppose that the closed-loop pre-
sented in Figure 6.1 represents a production unit with a product y(t). In normal
operation the signals u(t) (control signal) and y(t) (the product) are given by:
y(t) = Sidv(t) and u(t) = −CidSidv(t) (v(t) = H0(z)e(t)). By applying an ex-
ternal signal r(t) to the loop during the identification, we introduce disturbances
yr(t) and ur(t) on top of the normal operation signals such as shown in (6.2)-
(6.3). Those disturbances induce a loss of production quality. Consequently, we
can measure the cost caused by the application of a signal with power spectrum
Φr(ω) using the following cost function:

Jr = βyPyr + βuPur

= βy

(
1

2π

∫ π

−π

Φyr(ω) dω

)

+ βu

(
1

2π

∫ π

−π

Φur(ω) dω

)

(7.2)

=
1

2π

∫ π

−π

(
βy |G0(e

jω)Sid(e
jω)|2 + βu|Sid(e

jω)|2
)
Φr(ω) dω (7.3)

where the scalars βu and βy can be freely chosen.

We are now able to formulate our optimal experiment design problem prob-
lem:

Least costly experiment design problem (fixed N). Determine the power
spectrum Φr(ω) of the excitation signal r(t) corresponding to the smallest cost Jr

while guaranteeing that the model G(z, θ̂N ) and its uncertainty U identified with
this excitation signal satisfies the accuracy constraint (7.1) at each ω.

1The control design procedure is chosen in such a way that the nominal performance
J(G(z, θ̂N ), C(θ̂N), ω) is (slightly) better than the acceptable performance level γ.
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7.2 Convex formulation

The optimization problem presented above can be formulated as follows:

min
Φr(ω)

Jr (7.4)

subject to the constraints that, at each ω,

J2(G(z, θ), C, ω) < γ2 ∀θ ∈ U (7.5)

Let us first note that the objective function Jr (see (7.3)) of this optimization
problem is a linear function of the decision variable Φr(ω). Moreover, we have
also seen in Section 6.3 that the constraint (7.5) can be transformed into an
equivalent constraint (6.17) that can be rewritten as:

∃ξ > 0 such that ξ A(γ2, C)− B(P−1
θ , θ̂N ) < 0 (7.6)

Since B is linear in P−1
θ , (7.6) is thus an LMI constraint linear in the inverse P−1

θ

of the covariance matrix (γ2 being here a given constant). If we further observe
that P−1

θ is affine in the design variable Φr(ω) (see (6.6)), we can thus conclude
that the constraint (7.5) can be replaced by an equivalent LMI constraint affine
in the decision variable Φr(ω). Consequently, the optimization problem boils
down to a convex LMI optimization problem.

Before being able to use this optimization problem to design the least costly
identification experiment, we have nevertheless to resolve a couple of issues re-
lated to this optimization problem. The first issue is that this optimization
problem has an infinite number of constraints since (7.5) must hold at each fre-
quency. Even though more elaborated solutions exist (see e.g. J.07), the easiest
and more efficient way to circumvent this issue is to grid the frequency range in
order to obtain a finite number of constraints. A second issue is the fact that the
constraint (7.6) depends on unknown variables: the to-be-identified identified
parameter vector θ̂N (via C = C(θ̂N ) and B) and the true parameter vector θ0
(via P−1

θ ; see (6.6)). The cost Jr (see (7.3)) is also function of θ0. This is the
well-known chicken-and-egg problem related to each optimal experiment design
problem: see e.g. [33]. To circumvent this issue, θ0 and θ̂N are replaced by an
initial estimate θinit of the parameter vector of the underlying system2. This
initial estimate can be obtained by performing, prior to the design of the optimal
experiment, a short identification experiment with e.g. white noise. For more
elaborated techniques to circumvent the chicken-and-egg problem, we refer the
reader to J.07 and [13, 41].

Remark 1. Until now, we have considered the duration N of the identification
experiment as fixed a-priori. The reason for this is the fact that N and Φr(ω)
appears as a product in the expression (6.6) of P−1

θ . However, if we want to
also consider N as a design variable, a good approach is to determine, with the

2The constraint (7.5) is also function of the unknown noise variance σ2
e . This variance has

also to be replaced by some estimate σ2
e,init.
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optimization problem (7.4)-(7.5), the optimal spectrum Φr(ω) for different val-
ues of the length N . Since, for increasing values of N , the optimal cost function
Jr will decrease, such approach allows one to find the optimal combination for
the duration of the identification and the induced cost Jr. It is also to be noted
that, if the controller Cid is sufficiently complex, (7.5) can be satisfied with no
excitation at all (i.e. Φr(ω) = 0 ∀ω) once N is chosen larger than a certain
value. This concept of costless identification is further developed in J.07 and
J.12 and has been been tested by Shardt and Huang on an experimental setup
in [48].

Remark 2. In order to solve the optimization problem (7.4)-(7.5), the spec-
trum Φr(ω) must be parametrized. This parametrization must be linear for the
optimization problem to remain convex and it must allow one to easily realize
an excitation sequence r(t) having that spectrum. Different parametrizations
having these features are available and lead to excitation sequences under the
form of filtered white noises or multisines i.e. the signals that are generally used
in system identification (see [32, 27] or J.07 for more details).

7.3 Shaping the spectrum

As already mentioned previously, an important property of the optimal identifi-
cation experiment framework presented above is the a-priori guarantee that the
uncertainty of the identified model will be small enough for the design of a satis-
factory robust controller. Another important property, though, is the objective
of designing experiments that are perturbing as little as possible the normal
operations of the system. Using the parametrizations discussed in Remark 2
above, this optimization of the identification cost is achieved by appropriately
shaping the power spectrum of the excitation signal over the frequencies, rather
than using a common white noise excitation. Shaping the spectrum can be quite
beneficial as shown in the following two figures extracted from the paper J.18.
In these figures, the perturbation yr induced by the excitation signal r on the
output of the system (see (6.2)) is represented for four different experiments on
the same closed loop. All these four experiments are the solution of a least costly
design (7.4)-(7.5) and thus leads to an uncertainty region which is just small
enough for the design of a robust controller. The two experiments in Figure 7.1
have both a duration N = 500, but, in the bottom plot, the spectrum Φr(ω) is
constrained to be flat (white noise) while, in the top plot, the spectrum has been
shaped in frequency by the optimization problem. In Figure 7.2, the top plot
pertains to a flexible spectrum Φr(ω) and N = 500 and the bottom plot per-
tains to N = 1000 and a flat spectrum. We observe that shaping the spectrum
allows to reduce the perturbation yr significantly (Figure 7.1) or to reduce the
identification duration by a factor two (Figure 7.2). Other illustrative examples
can be found in J.18 and in [2].
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Figure 7.1: Induced output perturbation yr(t) corresponding to a flexible spec-
trum (top) and to a flat spectrum (bottom) for N = 500
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Figure 7.2: Induced output perturbation yr(t) corresponding to a flexible spec-
trum and N = 500 (top) and to a flat spectrum and N = 1000 (bottom)
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7.4 Extensions

As in the previous chapter, we have supposed when presenting the least costly
framework that the identification experiment is performed in a full-order model
structure M. The least costly framework has nevertheless been also extended
to the case where the identification is performed in a reduced-order model struc-
ture (see C.28 for more details). Another assumption in the previous sections
is that the true system is SISO and that the performance is measured in the
H∞ framework. The framework can nevertheless be extended to the MIMO
case (see J.09) and to H2 performance measures (see J.13). As shown in Sec-
tion 6.3, the separation of graph theorem allows us in these cases to derive a
constraint which implies (7.1) and that can be used in an optimization problem.
As shown in J.09 and J.13, this constraint is unfortunately bilinear in P−1

θ and
the multipliers (these multipliers are also decision variables of the optimization
problem). Consequently, the optimization problem (7.4)-(7.5) has to be solved
in an iterative way (see J.09 and J.13 for more details).

The performance measures that are proposed in [22] and that are approx-
imated by a Taylor expansion can also be used in the least costly framework.
Indeed, the constraint (7.5) can in this case be replaced by the following LMI
constraint linear in P−1

θ (see Section 6.3):

γ2 P−1
θ > R

θ̂N ,C
(7.7)

As mentioned in Section 6.2, these measures are also appropriate for con-
trollers C that are nonlinear. However, if the controller Cid is also nonlinear,
the optimal excitation spectrum can no longer be determined because P−1

θ is no
longer an affine relation of Φr(ω). Indeed, if we inspect (6.6), we observe that
this affine relation relies on the LTI sensitivity function Sid of the loop [Cid G0].
Such an LTI sensitivity function does no longer exist if Cid is nonlinear (e.g. a
MPC controller).

One simple solution to the issue of a nonlinear Cid is of course the approxima-
tion consisting of linearizing this nonlinear controller. Another solution to this
problem is the so-called stealth excitation. The idea behind this concept is to
ensure that the excitation r(t) affects the true system in an open-loop fashion.
Our objective is thus to have the following relations:

y(t) = G0(z)r(t) + ye(t)

u(t) = r(t) + ue(t)

where ye(t) and ue(t) correspond to the output and input signals that would
be generated by the closed loop if there was no excitation r(t). Such relations
can be obtained by modifying the feedback term: instead of feeding back y(t)
to the controller, we feed back y(t)−G0(z)r(t). We ensure in this way that the
nonlinear controller Cid does not “see” r(t) via the feedback term. Because of
that, the inverse of the covariance matrix becomes affine in the spectrum Φr(ω)
and has the following expression:
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P−1
θ =

(
N

σ2e

1

2π

∫ π

−π

F̄r(e
jω)F̄r(e

jω)∗ Φr(ω) dω

)

+ Me

with F̄r(z) =
ΛG(z,θ0)

H0
and Me a matrix corresponding to the term ue and ye in

the data. The matrix Me can be evaluated via an experiment when r = 0 or
neglected for experiment design since Me ≥ 0.

The modified feedback term (i.e. y(t) − G0(z)r(t)) is a function of the
unknown true system G0. Consequently, to realize the stealth excitation, we
replace G0 by an initial estimate Ginit = G(z, θinit) in this modified feedback
term. We follow in this way a similar approach as in Section 7.2 for the least
costly experiment design problem. The stealth excitation procedure is illus-
trated in Figure 7.3. Note that ABB, our partner in the Autoprofit project, has
submitted a patent to protect this idea (see B.01).

nonlinear
controller

G0

Ginit

r

u y+

+

+
-

v
+

-

0

Figure 7.3: Stealth excitation r in the presence of a nonlinear controller Cid

Besides the stealth excitation, another solution specifically pertains to a
controller Cid which is a MPC controller [34]. A MPC controller is nonlinear
because it deals with input and output constraints. To obtain a tractable ex-
pression of P−1

θ when Cid is a MPC controller, we propose another excitation
setting. The classical setting (see Figure 6.1) consists of an excitation signal r
added at the output of the controller Cid. In the new setting, it is the MPC con-
troller Cid itself that produces both the control action and the excitation. For
this purpose, we use the fact that a MPC controller is in essence an optimiza-
tion algorithm subject to constraints. We indeed modify the MPC controller
algorithm by adding the additional constraint that (7.7) has to be satisfied after
the identification duration N . This approach remains a least costly approach
since the modified MPC controller will still minimize a cost function aiming at
reducing the variance of the input and the output of the system, and it will at
the same time guarantee that the input-output data are sufficiently informative
to obtain a model with sufficiently small uncertainty for control. From a techni-
cal point of view, integrating (7.7) as an extra constraint to the MPC algorithm
is quite a challenge (e.g. the design variable is here the actual input sequence
u(t) and no longer a spectrum). Preliminary results are however presented in
C.58.
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Both stealth excitation and this modified MPC controller setting require
further investigation. This will be one of the objectives of the PhD project of
Max Potters (see Section 3.2).

7.5 Conclusions

With the optimal experiment design framework presented in this chapter, we
are able to design cheap identification experiments for control. In theory, if the
optimal identification experiment is performed, the identified model G(z, θ̂N )
can be used to design the controller C and this controller is guaranteed to sta-
bilize and to achieve sufficient performance with all systems in the uncertainty
region D identified along with the model. It is nevertheless always a good idea
to perform on this controller the controller validation for stability and for per-
formance presented in Chapter 6. We have indeed used some approximations in
the optimal experiment design problem (e.g. the use of an initial estimate θinit
instead of θ0 and θ̂N ).

The least costly identification experiment framework is currently tested in
an industrial environment (i.e. at the sites of Boliden and Sasol) within the
Autoprofit projet.



Chapter 8

Closed-loop performance

diagnosis

8.1 Problem statement

In this chapter, we suppose that a model-based controller C(θcom) has been
designed from an identified model {G(z, θcom),H(z, θcom)} of the true system
{G0 H0} (using e.g. the techniques of Chapters 6 and 7). In the sequel, we will
call commissioning the period when the controller C(θcom) has been designed.
We will assume that the objective of this controller is to reject the disturbance
v(t) = H0(z)e(t) and that, at commissioning, the closed-loop performance was
satisfactory (variances of the input and output signals were reasonably small in
accordance with some pre-specified requirements).

This chapter considers the problem of the maintenance of the model-based
control system over time. It is indeed important to maintain over time the satis-
factory performance observed at commissioning. The performance of the closed-
loop system can indeed be modified by changes in the true system {G0 H0}.
Both the plant G0 and the characteristics of the disturbance v(t) can indeed
change over time.

The performance of the closed-loop system can easily be monitored by es-
timating the present input/output variances and verifying whether the perfor-
mance requirements are still satisfied (see [25] or D.01, D.02, D.03 for more
details). If a performance drop is observed, a performance diagnosis step is nec-
essary to determine whether the cause of this performance drop is1 a change in
disturbance characteristics (hypothesis H0) or a controller-relevant plant change
(hypothesis H1). The closed-loop performance diagnosis problem can thus be
considered as an hypothesis test [29]. As mentioned in Chapter 5, the distinc-
tion between H0 and H1 is necessary since these two causes will have different
remedies. In the case of H0, a controller retuning is often sufficient to restore
the initial performance. In the case of H1, a plant re-identification will have to
be performed to be able to retune the controller and restore the initial perfor-

1We assume that other causes such as sensor/actuator failures have been ruled out using
available algorithms/methods.

59
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mance. Since a plant re-identification is much more involved/expensive than a
simple retuning, it is beneficial to decide such re-identification only when H1 is
the most likely hypothesis.

The to-be-developed diagnosis step must be able to accurately distinguish
between a (closed-loop) performance drop due to a plant change or due to a
disturbance change. We will make no assumption on the possible plant or dis-
turbance changes that may occur. In this respect, our work is different from the
work presented e.g. in [37, 47]. Note finally that we are here not interested in
detecting any plant change, but only those plant changes leading to a decrease
of closed-loop performance. The diagnosis problem under consideration is thus
different from the one considered e.g. in [4, 5, 3, 26, 28].

Our diagnosis procedure can nevertheless be related to the work in [19, 51].
Such as in these two papers, the diagnosis step we have developed is based
on a cheap identification of the true system. By “cheap”, we mean an identifi-
cation whose economical costs are much smaller than the full re-identification
necessary for performance restoration. The advantage of using an identification
approach as the basis for the diagnosis step is that the data collected for this
diagnosis experiment can also be used for the (eventual) full re-identification
step and therefore reduce the cost of this subsequent step. Besides the iden-
tification of a model, another similarity with [19, 51] is the introduction of a
set Dadm(C(θcom)) allowing to distinguish H0 and H1. In our framework, the
set Dadm(C(θcom)) contains all plant transfer functions G resulting in a satis-
factory closed-loop performance with the controller C(θcom) under the original
disturbance level (or, more precisely, delivering satisfactory performance for the
set of disturbance spectra considered as realistic at commissioning). Combining
the identified model Ĝdet

N and the set Dadm(C(θcom)), we introduced the fol-

lowing decision rule: if the identified model Ĝdet
N is outside of Dadm(C(θcom)),

we conclude that a plant change is the root cause of the performance drop and
conversely we conclude that a change in the disturbance characteristics is the
cause of the performance drop when Ĝdet

N ∈ Dadm(C(θcom)).

Another important contribution of this chapter is to tackle the problem of
optimal experiment design for the diagnosis problem at stake. This optimal de-
sign is done in the least-costly context i.e. the cost of the diagnosis experiment
will be minimized while guaranteeing a certain pre-specified accuracy for the
diagnosis. It is indeed important to ensure an optimal trade-off between the
contradictory objectives of obtaining an accurate diagnosis, on the one hand,
and of obtaining a cheap diagnosis experiment, on the other hand (especially
with respect to the re-identification experiment). Moreover, due to the fact that
diagnosis and re-identification experiment are quite closely intertwined, the pro-
posed experiment design framework considers the design of both the diagnosis
experiment and a possible re-identification experiment (when H1 is true).

Such as in the previous chapters, we will present the mathematical frame-
work for a SISO true system (see (6.1)) and we will measure the performance
according to the H∞ framework. Note nevertheless that the proposed closed-
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loop performance diagnosis method can be readily extended to MIMO systems
and other performance measures as shown in D.04 (see Chapter 4).

8.2 Performance diagnosis

8.2.1 Hypothesis testing framework

The H∞ control framework is adopted to quantify the ability of the controller
C(θcom) in rejecting the disturbance v(t) = H0(z)e(t) that was present at com-
missioning. For this purpose, we can use the performance measure (6.12) with
T (G,C) defined as the matrix containing the weighted closed-loop transfer func-
tions, (see (6.11)). The weights in (6.11) can be selected such that the perfor-
mance measure is stated as a weighted function of C

1+GC
and 1

1+GC
. This enables

relating the disturbance v(t) to the inputs and outputs, respectively. More par-
ticularly, we will assume that these weights have been chosen in such a way that
a loop [C(θcom) G] that satisfies2 J(G,C(θcom), ω) < 1 ∀ω reject satisfactorily
the disturbance v(t) that was present at commissioning.

To shorten the notations, we define J(G,C) as the H∞ norm of T (G,C):

J(G,C) = sup
ω

J(G,C, ω) (8.1)

Consequently, we can say that a loop [C(θcom) G] satisfying J(G,C(θcom)) < 1
is a loop that is able to reject sufficiently the disturbances as they were at com-
missioning.

Next, the sets Dadm(C(θcom)) and VJ(C(θcom)) are defined in order to for-
mulate the closed-loop performance diagnosis method.

Definition 1. Dadm(C(θcom)) is defined as the set of all transfer functions G
that are stabilized by C(θcom) and lead to the nominal performance level
J(G,C(θcom)) < 1.

Definition 2. The set VJ(C(θcom)) contains the power spectra Φv of all dis-
turbances v(t) that are sufficiently rejected by all loops [C(θcom) G] satisfying
J(G,C(θcom)) < 1. A disturbance v(t) with spectrum Φv is considered to be
sufficiently rejected by a loop [C G] if the input and output signals have a rea-
sonably small variance in accordance with some pre-specified requirements.

Definitions 1 and 2 suggest that the closed-loop performance of a loop [C(θcom)G]
is satisfactory only when G ∈ Dadm(C(θcom)) and Φv ∈ VJ(C(θcom)). At com-
missioning, G0 ∈ Dadm(C(θcom)) and Φv ∈ VJ(C(θcom)) (the closed-loop per-
formance is indeed assumed to be satisfactory at commissioning). However,
the plant dynamics G0 and/or the disturbance spectrum Φv may change over
time, possibly leading to closed-loop performance deterioration. In the event of

2Here the performance threshold is chosen equal to one. It could also have been chosen
equal to γ as in the previous chapters.
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an observed performance drop (increased input/output variances), one of the
following scenarios holds:

1. G0 remains in Dadm(C(θcom)), while the disturbance spectrum no longer
lies in VJ(C(θcom)). This implies that the performance drop is due to
changes in disturbance characteristics.

2. G0 has moved outside Dadm(C(θcom)), suggesting that the performance
drop is due to changes in plant dynamics.

Hence, using the set Dadm(C(θcom)), the hypothesis test pertaining to the closed-
loop performance diagnosis problem is formulated as:

H0 : G0 ∈ Dadm(C(θcom))

(8.2)

H1 : G0 /∈ Dadm(C(θcom)).

Equation (8.2) pertains to the considered performance diagnosis test, as it indi-
cates that the observed performance is due to a change in disturbance spectrum
when hypothesis H0 is true and due to a control-relevant plant change when H1

is true.

Remark 1. When H0 is the correct hypothesis, G0 may not be the same as
the plant dynamics at commissioning. The hypothesis test (8.2) indicates that
the changes in G0 (if there are any) do not lead to a performance drop. When
H1 is the correct hypothesis, the disturbance spectrum may have also moved
outside VJ(C(θcom)). In this case, another hypothesis test can be performed
in a similar manner as above to distinguish between Φv ∈ VJ(C(θcom)) and
Φv 6∈ VJ(C(θcom)).

Remark 2. As mentioned in the introduction, this closed-loop performance
diagnosis method is inspired by [51, 19]. However, in [51], the objective is
performance monitoring (detection of a performance drop) and not performance
diagnosis (detection of the cause of the performance drop). The main differences
with [19] is in the definition of the performance measure and in the disturbance
description. In [19], the performance is indeed measured in terms of closed-loop
stability margins, while we use here a more general closed-loop performance
description using an H∞ control setting3. In addition, our framework exploits a
fully stochastic setting for disturbances, whereas deterministic disturbances are
considered in [19].

8.2.2 Decision rule

To discriminate between the two hypotheses stated in (8.2), we will use a model
of the unknown true plant G0 identified in a full-order model structure. For
this purpose, the closed-loop identification procedure of Section 6.1 can be fol-
lowed and applied to the loop [C(θcom) G0]. An excitation signal r(t) = rdet(t)

3Note also that our framework has also been extended to a large variety of other perfor-
mance measures in D.04.
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(t = 1...N) having a spectrum Φr,det is thus applied to this loop and data

{u(t), y(t) | t = 1, · · · , N}det are collected. Let us denote by θ̂detN the parameter
vector identified with these data using the criterion (6.4), and by P

θ̂det
N

its co-

variance matrix. Let us also introduce the notation I(θ0,Φr,det) to emphasize

the dependence of P−1

θ̂det
N

on θ0 and Φr,det (see (6.6)): P−1

θ̂det
N

∆
= I(θ0,Φr,det). Recall

also that θ̂detN ∼ N (θ0, Pθ̂det
N

) asymptotically.

Once a model Ĝdet
N = G(z, θ̂detN ) of the true plant is obtained, it can be

utilized to choose between the hypotheses H0 and H1 (see (8.2)). The following
decision rule is proposed to perform the hypothesis test

Ĝdet
N ∈ Dadm(C(θcom)) ⇒ choose H0

Ĝdet
N /∈ Dadm(C(θcom)) ⇒ choose H1. (8.3)

Note that verifying that Ĝdet
N ∈ Dadm(C(θcom)) and Ĝdet

N 6∈ Dadm(C(θcom)) can

be straightforwardly done by evaluating if J(Ĝdet
N , C(θcom)) < 1 and

J(Ĝdet
N , C(θcom)) ≥ 1, respectively.

The decision rule (8.3) may lead to erroneous decisions since Ĝdet
N is an esti-

mate of the true plant G0. The null hypothesis H0 may be chosen erroneously
when Ĝdet

N ∈ Dadm(C(θcom)) has been generated by G0 /∈ Dadm(C(θcom)).
This is in effect a wrong decision since the performance drop is not due to
variations in disturbance characteristics, but due to changes in plant dynam-
ics. Conversely, the choice of the alternative hypothesis H1 is erroneous when
G0 ∈ Dadm(C(θcom)).

In hypothesis testing, the accuracy of the decision rule is determined by two
probabilities: the probability PrH0

of deciding H0 when H0 is true and the
probability PrH1

of deciding H1 when H1 is true

PrH0

∆
= Pr{Ĝdet

N ∈ Dadm(C(θcom))|G0 ∈ Dadm(C(θcom))} (8.4)

PrH1

∆
= Pr{Ĝdet

N 6∈ Dadm(C(θcom))|G0 6∈ Dadm(C(θcom))}. (8.5)

The probability PrH1
is called detection rate, whereas the probability 1−PrH0

is called false alarm rate [29]. Clearly, both probabilities PrH0
and PrH1

should
be high for the hypothesis test to be accurate. The probabilities depend not
only on the (unknown) true plant dynamics G0 when the diagnosis experiment
is performed4, but also on the design of excitation signal used in the diagnosis
experiment. Indeed, a diagnosis experiment leading to a model Ĝdet

N very close
to G0 will increase both probabilities. In Section 8.3, the diagnosis experiment
will be designed optimally to guarantee pre-specified values for both proba-
bilities PrH0

and PrH1
. Next, the to-be-performed actions after closed-loop

performance diagnosis are discussed.

4In other words, PrH0
and PrH1

will be different for different plant changes.
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8.2.3 After performance diagnosis

When an observed performance drop is due to changes in disturbance charac-
teristics (H0 is the correct hypothesis), it can be decided to let the controller
intact (as disturbance changes are often temporary) or to restore the closed-
loop performance by retuning the controller using the knowledge of the new
disturbance characteristics Ĥdet

N = H(z, θ̂detN ) identified along with Ĝdet
N . On the

contrary when an observed performance drop is due to a control-relevant plant
change (H1 is chosen in (8.3)), the controller should be redesigned based on a
model of the new plant dynamics G0 to restore the closed-loop performance to
its nominal level. As the model {Ĝdet

N , Ĥdet
N } may not be sufficiently accurate

for redesigning the controller, the diagnosis step is typically proceeded with an-
other identification step when H1 is the true hypothesis. In this case, a new
excitation signal rid(t) is applied to the closed-loop system to collect the data
set5 {u(t), y(t) | t = 1, · · · , N}id.

Since the proposed performance diagnosis method relies on system iden-
tification, a link is established between the diagnosis step and the plant re-
identification step. This is done by identifying the model {Ĝid

N (z), Ĥ id
N (z)} not

only based on the data {u(t), y(t) | t = 1, · · · , N}id, but also using the data
{u(t), y(t) | t = 1, · · · , N}det obtained during diagnosis. This can be done by
using θ̂detN and its covariance P

θ̂det
N

in a regularization term. Hence, the parame-

ter vector of the re-identified plant model {Ĝid
N = G(z, θ̂idN ), Ĥ id

N = H(z, θ̂idN )} is
determined by

θ̂idN = argmin
θ

1

N

( N∑

t=1

ǫ2(t, θ) +
∥
∥
∥θ − θ̂detN

∥
∥
∥

2

P−1

θ̂det
N

)

(8.6)

where ǫ(t, θ) is computed using {u(t), y(t)}id. The covariance matrix of θ̂idN is
given by

P
θ̂id
N
=







I(θ0,Φr,id) + I(θ0,Φr,det)

︸ ︷︷ ︸

P−1

θ̂det
N








−1

(8.7)

with I(., .) as defined in Section 8.2.2. Using both data sets to identify θ̂idN will

enable us to increase the accuracy of θ̂idN with respect to the situation where
only {u(t), y(t) | t = 0, · · · , N − 1}id would be used. Note that P−1

θ̂id
N

is an affine

function of both Φr,id and Φr,det (the spectra of the excitation signals rid and
rdet).

Next, a unified experiment design framework is presented for designing di-
agnosis and re-identification experiments where requirements on the diagnosis
accuracy are considered along with the requirement on accuracy of the to-be-
re-identified model.

5For simplicity, it is assumed that the measurement sets {u(t), y(t)}det and {u(t), y(t)}id
have the same length N .
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8.3 Experiment Design Framework

The objective of experiment design is to design the spectra Φr,det and Φr,id
6 of

the excitation signals rdet(t) and rid(t) in such a way that the total economical
cost of performance diagnosis and (possible) plant re-identification is minimized
while guaranteeing the accuracy of performance diagnosis and, if H1 is true, the
accuracy of the to-be-re-identified model Ĝid

N (z). We will use the same defini-
tion for the cost of an experiment as in the previous chapter (see (7.3)) and we
will use the notation Jr(Φr(ω), θ0) for this cost to emphasize its dependence on
Φr(ω) and θ0.

The total economical cost of the performance diagnosis and plant re-identification
procedure following an observed performance drop depends on the outcome of
the hypothesis test (8.3). In the case where H0 is true, the cost will only be
equal to the cost of the diagnosis experiment (i.e. Jr(Φr,det, θ0)). In the case
where H1 is true, the cost will be equal to the sum of the costs of both diagnosis
and re-identification experiments (i.e. Jr(Φr,det, θ0) + Jr(Φr,id, θ0)). However
since the cause of an observed performance drop is not known a priori, the ex-
periment design should be performed considering that both hypotheses can be
true. In addition, the experiment cost in both cases of H0 and H1 depends on
the unknown true plant parametrized by θ0. In S.02 and C.53, we have ad-
dressed this problem using a so-called two scenario approach. The two scenario
approach will deliver an a-priori estimate θinit0,H0

of θ0 for the case where H0 is

true and an a-priori estimate θinit0,H1
of θ0 for the case where H1 is true7. These

two estimates can then be used to evaluate the costs of the experiments.

Another important consideration related to the existence of two hypotheses
is to determine which cost should be minimized in the optimal experiment de-
sign. In this work, the cost Jr(Φr,det, θ

init
0,H1

)+Jr(Φr,id, θ
init
0,H1

) (corresponding to

H1) is minimized, while constraining the cost Jr(Φr,det, θ
init
0,H0

) (corresponding

to H0) to be smaller than a given threshold β, (i.e., Jr(Φr,det, θ
init
0,H0

) < β). The
threshold β should be chosen such that it is (much) smaller than the cost of
plant re-identification. Next, the quality objectives for the two to-be-designed
experiments are described.

As mentioned in Section 8.2.2, one objective of the experiment design is to
guarantee that the probabilities PrH0

and PrH1
are higher than user-specified

values α0 and α1:

Pr{Ĝdet
N ∈ Dadm(C(θcom))|G0 ∈ Dadm(C(θcom))} ≥ α0 (8.8)

6The length of the experiments are supposed fixed a priori.
7The estimate θinit

0,H0
for H0 is obtained by assuming that G0 = G(θcom) and by identifying

a model of H0 under this assumption. Conversely, the estimate θinit
0,H1

for H1 is obtained
by assuming that H0 = H(θcom) and by identifying a model of G0 under this assumption.
Due to the fact that a part of the model structure is fixed a-priori, such identification can
be performed using routine closed-loop data. These data can e.g. be collected in the period
between the detection of the performance drop and the decision to perform the diagnosis.
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Pr{Ĝdet
N 6∈ Dadm(C(θcom))|G0 6∈ Dadm(C(θcom))} ≥ α1. (8.9)

Due to the dependence of the above constraints on the true plant, the a-priori
estimates θinit0,H0

and θinit0,H1
(determined using the two scenario approach) can be

used to rewrite (8.8)-(8.9) as follows:

Pr{ J(G(z, θ̂detN ), C(θcom)) < 1 | θ̂detN ∼ N (θ0
∆
= θinit0,H0

, P
θ̂det
N

) } ≥ α0 (8.10)

Pr{ J(G(z, θ̂detN ), C(θcom)) ≥ 1 | θ̂detN ∼ N (θ0
∆
= θinit0,H1

, P
θ̂det
N

) } ≥ α1 (8.11)

Recall now that we are designing the diagnosis experiment. Consequently, θ̂detN

is an unknown random variable that is distributed as shown in (8.10)-(8.11).
However, if we could build an uncertainty region Ū that is guaranteed to contain
θ̂detN at a probability α0, the constraint (8.10) could be replaced by a more
classical constraint: J(G(z, θ), C) < 1 ∀θ ∈ Ū . Such uncertainty Ū can be
deduced using the distribution of θ̂detN :

Ū(θinit0,H0
, P−1

θ̂det
N

, α0)
∆
= {θ | (θ − θinit0,H0

)T P−1

θ̂det
N

(θ − θinit0,H0
) < χα0

} (8.12)

with Pr(χ2(k) < χα0
) = α0. Note the similarity/duality between this set Ū and

the set U (see (6.8)) that can be constructed after an identification experiment.
The former is centered at the true parameter vector and contains the identified
one at a certain probability, while the latter is centered at the identified param-
eter vector and contains the true parameter vector at a certain probability level.
A similar approach can also be used to make (8.11) tractable. This leads to the
following two constraints that are sufficient conditions for (8.10)-(8.11):

J(G(z, θ), C(θcom)) < 1 ∀ θ ∈ Ū(θinit0,H0
,I0, α0) (8.13)

J(G(z, θ), C(θcom)) ≥ 1 ∀ θ ∈ Ū(θinit0,H1
,I1, α1) (8.14)

where P−1

θ̂det
N

is evaluated as I0 = I(θinit0,H0
,Φr,det) in (8.13) and as I1 = I(θinit0,H1

,Φr,det)

in (8.14).

As mentioned in Section 8.1, in this experiment design framework, we do not
want to restrict attention only to optimal diagnosis. Our objective is indeed to
present an unified framework for diagnosis and re-identification. Consequently,
in addition to the performance diagnosis constraints (8.13)-(8.14), an additional
constraint is needed to guarantee that, if H1 happens to be true, the uncertainty
of the to-be-re-identified model G(z, θ̂idN ) will be sufficiently small for the design

of a controller C(θ̂idN ) that can replace the failing C(θcom) in the loop with the
true system. Similarly as in Chapter 7, such a constraint can be expressed as
follows8:

8Note that the performance weights in the definition (6.11) of T could be adapted based
on H(z, θ̂detN ).



8.4. CONCLUSIONS 67

J(G(z, θ), C(θ̂idN )) < 1 ∀ θ ∈ U
∆
= {θ | (θ− θ̂idN )T Iid (θ− θ̂

id
N) < χαid

} (8.15)

with Iid = I(θinit0,H1
,Φr,det) + I(θinit0,H1

,Φr,id). Note that we here consider the el-
lipsoid U as defined in (6.8) and containing θ0 with an user-chosen probability
level αid. Note that the unknown θ̂idN must be replaced by an initial estimate of
the parameter vector we would identify if H1 is true. A good candidate for this
initial estimate is the parameter vector θinit0,H1

estimated for the case H1 with the
two-scenario approach.

We can now formulate our experiment design problem as an optimization
problem:

min
Φr,det,Φr,id

Jr(Φr,det, θ
init
0,H1

) + Jr(Φr,id, θ
init
0,H1

)

(8.16)

subject to Jr(Φr,det, θ
init
0,H0

) < β

and to (8.13), (8.14) and (8.15)

The objective function and the first constraint of this optimization problem
are linear in the decision variables Φr,det and Φr,id (see Chapter 7). The con-
straints (8.13) and (8.15) are equivalent from a technical point of view to the
constraint (7.1) that we tackled in Chapter 7. The constraint (8.14) can be
transformed (with some conservatism) as a constraint:

J(G(z, θ), C(θcom), ω∗) ≥ 1 ∀ θ ∈ U(θinit0,H1
,I1, α1) (8.17)

for some well-chosen frequency9 ω∗ and this constraint can also be transformed
into an LMI in Φr,det using a similar procedure as the one presented in Sec-
tion 6.3 for the constraint where J had to be smaller than one. Consequently,
the optimization problem (8.16) can be reformulated as a convex optimization
problem subject to LMI constraints.

8.4 Conclusions

In this chapter, we have presented an identification-based closed-loop perfor-
mance diagnosis framework that can distinguish between a performance drop
due to a change in disturbance characteristics (H0) and one due to a control-
relevant plant change (H1). In addition, we have presented an optimization
problem that allows to design cheap and accurate diagnosis experiments along
with cheap and accurate re-identification experiments in the case where H1 hap-
pens to be true.

9To find the optimal frequency ω∗, the optimization problem (8.16) (with (8.17) instead
of (8.14)) can be solved for different values of ω∗. The optimal frequency ω∗ is the one resulting
in the smallest objective function.
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As concluding remarks, let us discuss how the results of the experiment de-
sign problem (8.16) can be implemented in practice. The outcomes of (8.16)
are the optimal spectra Φr,det and Φr,id. A signal rdet with spectrum Φr,det can
thus be applied to the closed-loop system [C(θcom) G0] to perform the diagno-
sis experiment. Based on the collected data, a model Ĝdet

N of G0 is identified

and, subsequently, it is verified whether Ĝdet
N lies in Dadm(C(θcom)) (see decision

rule (8.3)).

If Ĝdet
N 6∈ Dadm(C(θcom)), a plant re-identification should be performed. An

excitation signal with spectrum Φr,id (determined together with Φr,det) can be
used for plant re-identification. Alternatively, the spectrum Φr,id can be re-

designed using θ̂detN as an estimate for the unknown θ̂idN in (8.15). Clearly, the

estimate θ̂detN provides a more accurate description of the true system with re-

spect to θinit0,H1
which was used in (8.16) to approximate θ̂idN .

The model-based maintenance of control systems developed in this chapter
is summarized in Figure 8.1. �����������	��
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Figure 8.1: The proposed model-based maintenance of control systems



Chapter 9

Iterative model improvement for

control

9.1 Problem statement

In this chapter, we consider the situation where we wish to improve the perfor-
mance of a controller C(M1) designed with an initial model M1 = G(z, θ̂1) of the
true system. The least costly framework is an option to achieve this objective.
As shown in Chapter 7, in this framework, a cheap identification experiment is
performed on the system to obtain an identified model that is accurate enough
for the design of a satisfactory controller i.e. a controller achieving a given
closed-loop performance. Subsequently, a controller is designed with the identi-
fied model and applied to the true system.

When using this framework, even though the excitation signal is designed
to be the least intrusive possible to guarantee the desired model accuracy, it
could happen that even this smallest possible perturbation is to large to remain
acceptable. Once could in this case increase the duration N of the identification
experiment (see Remark 1 in Section 7.2). However, the disadvantage would be
then to keep the less performing controller C(M1) for a longer period. An ele-
gant alternative to the least costly framework for these situations is to improve
the model and also the controller throughout the lifetime of the closed loop via
an excitation signal that may at all time be applied. The characteristics of this
excitation signal are determined to maximize the overall control performance
(see later) over the lifetime of the closed loop while guaranteeing at any time
a minimal control performance. In this framework, there is thus no longer a
clear separation between an identification phase and a control phase. Another
characteristic of this new framework is that the desired performance has not to
be specified a-priori by the user.

To achieve this objective, we will make the assumption that we a-priori
know how long the closed loop will be operated at the current operating condi-
tions. Given this assumption, we propose the following framework to improve
the model and the controller throughout this period1. We start by dividing this

1Note that, instead of choosing this period as the entire lifetime of the closed loop, we can
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period in n consecutive intervals. In each of these intervals, a specially tailored
test signal can be applied (the characteristics of this signal can be different in
each interval). After interval i, the informative data generated via ri allows to
reduce the uncertainty of the current model Mi = G(z, θ̂i). This yields a model
Mi+1 = G(z, θ̂i+1) which is more accurate than Mi. The model Mi+1 and its
(reduced) uncertainty are then used to update the control action C(Mi+1) for
the next learning interval i+ 1. This procedure is illustrated in Figure 9.1.

G0
++ y1

v

C(M1) ++ - +

r1

G0
++ y2

v

C(M2) ++ - +

r2

G0
++ yn

v

C(Mn) ++ - +

rn

0

0

0

Figure 9.1: The n learning intervals with successive model updates and con-
troller updates

It is important to stress the dual effect of the excitation signals ri (i = 1..n).
The application of ri during interval i decreases the performance of this interval
by inducing perturbations onto the normal operations. However, by decreasing
the uncertainty of the model Mi, the application of ri increases the performance
of the next intervals.

To formalize our optimal experiment design problem, we characterize the
closed-loop performance in each learning interval with a cost Ti. The cost Ti
of the interval i is made up of two contributions. The first contribution is the
excitation cost Jri corresponding to the perturbations onto the normal opera-
tions caused by the excitation signal ri. The second contribution is the modeling
error cost Vi corresponding to the performance loss caused by the uncertainty
of the present model Mi from which the current controller C(Mi) is designed.

As mentioned above, the power spectrum of the testing signals ri (i = 1...n)
have to be optimally designed in such a way that the overall performance over
the n intervals is maximized while guaranteeing some minimal control quality in
each learning interval. Maximizing the overall performance of the total period

also improve the model and the controller during a shorter period.
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can be achieved by minimizing the sum
∑n

i=1 Ti of the costs of the n intervals.
Moreover, enforcing a constraint on the minimal performance in each learning
interval can also be easily realized by putting a threshold on the cost Ti of each
of these intervals. It is to be noted that the objective function

∑n
i=1 Ti somehow

combines the objective function of the least costly framework via Jri and, via Vi,
the one of the more classical optimal experiment design frameworks presented
in e.g. [16]. Note also that the optimal design of the excitation signals ri makes
the proposed framework different from the iterative identification and control
schemes developed in identification for control in the beginning of the nineties
(see e.g. [44]). In those contributions, few attention was paid to the excitation
signal.

Using the approach presented above, we will be able to determine the exci-
tation signals ri (i = 1...n) for the n learning intervals before the start of the
first learning interval. However, as also shown in Chapter 7, optimal identifi-
cation experiment design requires information on the true system to design the
optimal test signal(s). Consequently, the designed signals will be based on the
information available at that moment (i.e. the model M1) and could therefore
be suboptimal. We consequently propose to only apply the test signal r1 in
the first interval and to redesign, before learning interval 2, the remaining test
signals ri (i = 2...n) using a similar optimization problem, but now based on the
more accurate information on the true system (i.e. model M2). This redesign
approach (which has a strong analogy with the receding horizon mechanism in
model predictive control [34]) is repeated before each interval.

The possibility of applying this redesign mechanism is certainly one of the
main advantages of the iterative procedure introduced in this chapter. Another
advantage is of course the possibility to improve the performance as fast as possi-
ble even if this improvement is still limited after the first interval. Note that the
choice of the duration of each learning interval is quite simple for plants which
have to perform repetitive control actions (e.g. batch processes in the chemical
industry and certain manipulators in robotics/mechatronics): the duration of
one of these repeated actions is the duration of one interval. For other processes
where this division is not so obvious, we have to make a trade-off between a too
small number n (a situation where the plant will be operated for a long time
with the controller C(M1) without any improvement) and a too large number
n (a situation where the control law will have to be adapted too many times).

In this sense, our methodology is different from (active) adaptive control.
Indeed, in our approach, the model of the plant and the control law are not
updated at each time sample like in adaptive control. This different approach
will allow us to solve the problem in a tractable way. In active adaptive control
[50, 40], the considered problem is indeed very close to the problem considered in
this chapter (the control input is optimized to be an optimal trade-off between
control and identification objectives). However, the recursive setting leads to a
stochastic dynamic programming problem that is never really tractable in prac-
tice [39]. As a consequence, the control input in adaptive control is generally
only optimized for control objectives and thus not for identification objectives



72 CHAPTER 9. ITERATIVE MODEL IMPROVEMENT FOR CONTROL

[1, 7], often yielding identifiability problems and suboptimal performance.

The results of this chapter will be presented for a SISO true system (6.1)
and for identification using a full-order model structure such as in the original
papers C.57 and S.01.

9.2 Iterative identification and control design

Let us first present the procedure for the iterative identification of the true sys-
tem (6.1). Suppose that the duration of each interval is equal to N and that
we are at interval i. Consequently, the available model of the true system is
Mi = G(z, θ̂i). Since it has been identified in a full-order model structure M
in the previous interval, the parameter vector θ̂i of this model is normally dis-
tributed around θ0 with a covariance matrix P

θ̂i
(see Section 6.1).

The excitation signal ri(t) (t = 1...N) having a spectrum Φri is applied
to the closed-loop system [C(Mi) G0] as shown in Figure 9.1 and the data
{u(t), y(t) | t = 1, · · · , N}i are collected. These data will be used to reduce
the uncertainty of the model Mi. For this purpose, like in Section 8.2.3, the
parameter vector θ̂i+1 will be determined with the following criterion:

θ̂i+1 = argmin
θ

1

N

( N∑

t=1

ǫ2(t, θ) +
∥
∥
∥θ − θ̂i

∥
∥
∥

2

P−1

θ̂i

)

(9.1)

where ǫ(t, θ) is computed using {u(t), y(t)}i. The covariance matrix of θ̂i+1 is
given by

P
θ̂i+1

=
(

I(θ0,Φri) + P−1

θ̂i

)−1
(9.2)

with I(., .) as defined in Section 8.2.2. We observe that the covariance matrix
decreases from interval to interval. The same can be said about the size of the
the uncertainty ellipsoid Ui+1 that can be built using the distribution of θ̂i+1

i.e. θ̂i+1 ∼ N (θ0, Pθ̂i+1
):

Ui+1 = {θ | (θ − θ̂i+1)
TP−1

θ̂i+1

(θ − θ̂i+1) < χα} (9.3)

This ellipsoid Ui+1 contains the unknown true parameter vector θ0 with proba-
bility α (with α such that Pr(χ2(k) < χα) = α).

The new model Mi+1 = G(z, θ̂i+1) can be used to redesign the controller.
We will suppose such as in the previous chapters that a control design method
has been fixed a-priori and that the controller is thus a direct function C(.)
of the model. The updated controller is thus C(Mi+1). Even though the
uncertainty of the model has been reduced, it is always a good idea to vali-
date the updated controller for stability and for performance over the plants
in Di+1 = {G(z, θ) | θ ∈ Ui+1} (see Chapter 6) before applying it to the true
system for the next interval.
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Remark. The recursive equation (9.2) is initialized with P
θ̂1

the covariance

matrix of the initial model M1 = G(z, θ̂1).

9.3 Cost Ti of interval i

Even though other performance measures (such as the ones used in the previous
chapters) are also possible, we will here define the performance in a relative
way2. The cost Ti of the interval i is indeed defined by comparing the actual
loop [C(Mi) G0] (i.e. the one in Figure 9.1) with the ideal loop [C(G0) G0] (i.e.
the loop that we would obtain if we would perfectly know the true system G0).
To make this comparison, it is important to have an expression for the output
of these two loops. The output yi of the actual loop is given by:

yi(t) =
H0

1 +C(Mi)G0
e(t)

︸ ︷︷ ︸

=ye,i

+
G0

1 + C(Mi)G0
ri

︸ ︷︷ ︸

=yr,i

(9.4)

The output y0 of the optimal loop is:

y0(t) =
H0

1 + C(G0)G0
e(t) (9.5)

The main differences between (9.4) and (9.5) are the presence of ri in (9.4) and
the controllers present in the two loops. In the ideal loop, the controller is in-
deed the controller designed from the true system G0 = G(z, θ0).

The cost Ti can now e.g. be defined as the power of the difference yi − y0
between these two outputs. Since ri is independent of e, the total cost Ti can
be split up into the sum of a modelling error cost Vi (i.e. the power of ye,i− y0)
and an excitation cost Jri (i.e. the power of yr,i):

Ti =

∥
∥
∥
∥

H(θ0)

1 +C(G(θ0))G(θ0)
−

H(θ0)

1 +C(Mi)G(θ0)

∥
∥
∥
∥

2

2

σ2e
︸ ︷︷ ︸

=Vi

+
1

2π

∫ π

−π

∣
∣
∣
∣

G0

1 + C(Mi)G0

∣
∣
∣
∣

2

Φri dω

︸ ︷︷ ︸

=Jri

(9.6)

Similarly as in (7.3) (with βu = 0), the excitation cost Jri is the power of the
perturbation induced by ri on the output of the system. This cost Jri is linear
in the to-be-designed spectrum Φri (such as also shown in Chapter 7). The
modeling error cost Vi is due to the uncertainty of the model Mi = G(z, θ̂i)
which makes that C(Mi) 6= C(G(θ0)). This cost Vi can be evaluated in the
following way. Given a scalar γi, we know that Vi < γi (at a probability α) if

∥
∥
∥
∥
∥

H(θ)

1 + C(G(θ))G(θ)
−

H(θ)

1 + C(G(θ̂i))G(θ)

∥
∥
∥
∥
∥

2

2

σ2e

︸ ︷︷ ︸

=Vi(θ,θ̂i)

< γi ∀θ ∈ Ui (9.7)

2such as has been done in C.57 and S.01.
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with Ui defined similarly as Ui+1 in (9.3).

Due to the relative definition of the performance, we can use the procedure
in [22] to approximate3 Vi(θ, θ̂i) using a second-order Taylor expansion of this
function around θ̂i. More particularly, computing numerically the Hessian H(θ̂i)
of V(θ, θ̂i) at θ̂i, (9.7) can be rewritten as:

(θ − θ̂i)
TH(θ̂i)(θ − θ̂i) < 2γi ∀θ ∈ Ui (9.8)

The latter constraint is equivalent to the following LMI constraint linear in P−1

θ̂i
:

P−1

θ̂i
>
χα

2γi
H(θ̂i) (9.9)

To sum up, we have that Vi < γi (at a probability α) if (9.9) holds. Mini-
mizing

∑n
i=1 Vi can be thus formulated as minimizing

∑n
i=1 γi under the con-

straint (9.9) at all i.

It is important to note that the smallest constant γi for which (9.9) holds
decreases after each interval since P−1

θ̂i
increases after each interval. In other

words, we see that, as expected, Vi decreases after each interval in our frame-
work.

Remark 1. Another possible definition for Ti is the power of yi. In this
case, (9.7) would be replaced by:

∥
∥
∥
∥
∥

H(θ)

1 + C(G(θ̂i))G(θ)

∥
∥
∥
∥
∥

2

2

σ2e < γi ∀θ ∈ Ui (9.10)

The results in J.13 could then be used to transform this constraint into a
tractable one.

Remark 2. The excitation cost Jri is also function of θ0. However, since this
cost is not due to the model uncertainty, we will for simplicity not tackle Jri

using the uncertainty Ui. We will instead replace θ0 in the expression of Jri by
an initial estimate as we have done in Chapter 7 (see also later). We can however
also robustify the experimental design problem by using Ui for the dependence
of Jri on θ0 (see S.01)

9.4 Optimal experiment design problem

Based on the result presented in the previous section, we can now formulate our
experiment design problem leading to the spectra Φri (i = 1...n) minimizing the
overall cost

∑n
i=1 Ti over the n intervals as:

arg min
Φri

, γi (i=1...n)

n∑

i=1

γi + Jri

3This approximation is in fact not absolutely necessary, but is done for the simplicity of
the presentation.
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P−1

θ̂i
>
χα

2γi
H(θ̂i) i = 1...n (9.11)

γi + Jri < Tmax,i i = 1...n

where P−1

θ̂i
is defined via the recursive equation (9.2) and Tmax,i is an user-

chosen threshold on the minimal control performance that is acceptable in each
interval. The decision variable γi does not appear linearly in the first constraint
of (9.11). However, the optimization problem (9.11) is equivalent to the follow-
ing optimization problem with the slack variables ti (i = 1...n):

arg min
Φri

, γi, ti (i=1...n)

n∑

i=1

γi + Jri

P−1

θ̂i
>
χα

2
ti H(θ̂i) i = 1...n (9.12)

γi + Jri < Tmax,i i = 1...n

(
ti 1
1 γi

)

> 0 i = 1...n

where the last constraint ensures that ti >
1
γi

at all i. The optimization prob-
lem (9.12) is now a convex optimization problem with LMI constraints. Indeed,
P−1

θ̂i
and Jri are both affine in the spectra Φri (i = 1...n); see (9.2) and (9.6).

The chicken-and-egg problem is also present in (9.12). The optimization
problem is indeed dependent on the unknown true parameter vector θ0 (via Jri

and P
θ̂i

), but also on the to-be-identified parameter vectors θ̂i (via H(θ̂i)). All

these unknowns can be replaced by the available estimate θ̂1 defining M1. The
receding horizon mechanism introduced in Section 9.1 can be used to refine the
optimal spectra after each interval.

If there is no upper bound Tmax,i on the cost of each interval (and in par-
ticular the first one), it can be proven that the solution of (9.12) puts all the
excitation in the first interval i.e Φri = 0 for i ≥ 2. However, this excitation
can be much too large in practice. Recall indeed that the cost Jr1 is added
to the cost V1 that is generally quite large since we want to improve C(M1).
Consequently, these upper bounds are often necessary in practice. In the pres-
ence of these upper bounds Tmax,i, the numerical illustration of S.01 shows that
our new iterative procedure achieves a significantly better overall performance
∑n

i=1 Ti than a procedure with a separate identification and control phase.

9.5 Conclusions

In this chapter, we have presented an alternative framework for optimal identi-
fication experiment design for control. This framework combines the objectives
of the classical and of the least costly frameworks and is based on an iterative
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scheme that updates the model and the controller during the lifetime of the
control loop. Such a scheme allows one to maximize a measure of the overall
performance while guaranteeing at all time a minimal level of performance.

In the paper C.54, a very similar iterative procedure has been applied in
a simulation environment to improve the cooling profile (feedforward control)
of a batch cooling crystallization process. For this purpose, the parameters of
a nonlinear model of this process are re-identified after each batch4 and the
cooling profile for the next batch is re-designed based on this improved model.
In C.54, there is however no need for an optimal design of the excitation signal
since the model improvement can be achieved in a satisfactory way using the
internal excitation/perturbation of the system. Moreover, optimal experiment
design for nonlinear systems is still an open research area.

In C.54, this identification-based technique is also compared to another
model improvement technique i.e. Iterative Learning Control (see also C.48).
It is to be noted that the iterative procedures presented in C.54 have been
tested relatively successfully on a real-life crystallization process during a recent
campaign at DSM.

4The batch plays here the role of the interval.



Chapter 10

Identification and feedforward

control of inkjet printheads

10.1 Problem statement

In this chapter, we summarize the results we have obtained in collaboration
with the printer manufacturer OCE within the Octopus projet (2008-2012).
Our objective in this project have been to improve the print quality of a DoD
(drop-on-demand) inkjet printhead using a system and control approach. An
inkjet printhead is generally made up of a large amount of channels filled with
ink (see Figure 10.1) and each of these channels can jet a drop on demand by
applying, at the desired moment, an actuation pulse on the piezo-actuator at
the top of the channel. In the sequel, the printhead under consideration is a
printhead developed by OCE Technologies and consisting of two arrays of 128
channels each.

Piezo unit
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Figure 10.1: Cross-sectional representation of an ink channel

Inkjet technology is a relatively ancient technology when it comes to print-
ing documents. However, this technology has recently emerged as a promising
manufacturing tool. It has been successfully applied in various fields, namely,
manufacturing of solar panels, PCBs and flat panel displays [36]. For these new
applications, there are tighter requirements for the to-be-achieved “printing”
performance and this performance should be achieved for jetting frequencies
ranging from 20 to 70 kHz. By jetting frequency or DoD frequency, we mean
the inverse of the time between two successive drops. An important perfor-
mance requirement in this respect is that the jetted drops all have the same

77
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speed irrespective of the DoD frequency. Unfortunately, the standard actuation
pulse ustd(t) [V ] for the printhead under consideration (see Figure 10.2) is not
able to achieve this objective.
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Figure 10.2: Standard actuation pulse ust(t) for the printhead under consider-
ation

To illustrate this, let us use ustd(t) to jet ten drops at a given DoD frequency
and measure the speed of each of these ten drops. Subsequently, let us repeat
this procedure at a certain number of other DoD frequencies. The speed of each
of the ten drops can in this way be plotted as a function of the DoD frequency.
This is done in Figure 10.3. Such figure is called the DoD curve. Since the
speed of all the drops should be equal, the DoD curve should optimally be com-
pletely flat. We nevertheless observe in Figure 10.3 that this objective is far from
met when the standard pulse is used as actuation pulse. The speed variation
between the fastest and the slowest drop over the DoD range is equal to 12 m/s.

Let us investigate why the DoD curve is not flat. The standard pulse ustd(t)
has been designed to jet perfect drops when the system is at rest. For this
purpose, this pulse creates, in the ink channel, a pressure wave represented
in Figure 10.4. The signal represented in this figure is the so-called corrected
PAINT signal, a sensor signal that is proportional to the derivative of the pres-
sure in the ink channel (see J.19 for more details). It is important to note that
the drop is jetted after 15 µs or so. However, as we can see in Figure 10.4,
the wave does not die out very fast after the drop has been jetted and remains
significant for another 45 µs or so.

These residual oscillations are the cause of the discrepancy between drop
speeds that have been observed in Figure 10.3. Indeed, these oscillations per-
turb the jetting process if another drop is jetted before the ink channel is at rest.
It is to be noted that undesired oscillations are also created in a given channel
if the neighbouring channels are actuated. This phenomenon is called cross-talk
and is due to the fact that the channels are all built on the same structure and
influence therefore each other1. The oscillations due to the cross-talk are less

1Note that the cross-talk is not visible in Figure 10.3 since this figure results from an
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Figure 10.3: DoD curve corresponding to the standard pulse ust

important than the residual oscillations, but they can generally not be neglected.

These two types of oscillations are the main factors that limit the perfor-
mance of a printhead. In this chapter, we will show how we have redesigned
the actuation pulse in order to compensate these oscillations and, in this way,
improve the drop speed consistency. Our approach for this pulse redesign is a
model-based approach. In our approach, an uncertain model is indeed deduced
using system identification techniques and the pulse redesign methodology is
inspired by the recent developments in robust feedforward control and robust
filtering (see e.g. [42]). In this way, we provide a more systematic procedure
than the experiment-based technique of [31, 30] and the learning-based tech-
nique of [52].

10.2 Modeling the inkjet printhead

Since, for this particular case, system identification has given the most complete
results, we will here present the system identification procedure that we have
used to deduce a model of the printhead. This model must relate the actuation
pulse and an internal variable that can be measured and where the oscillations
can be observed. This internal variable will be here the corrected PAINT signal

experiment where we have only actuated one channel.
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Figure 10.4: Measured PAINT signal when the standard actuation pulse ust(t)
is applied

discussed in the previous section.

To simplify the modeling process, we will make the following assumptions
based on the geometry of the printhead. The first assumption will be that the
dynamics between the pulse un applied at channel n and the sensor signal yn
in this channel is identical for each channel n. We will also assume that the
cross-talk is limited to the immediate neighbours and is identical on the left and
right side. We can therefore write yn as follows:

yn(t) = Gc,0 un−1(t) +Gd,0 un(t) +Gc,0 un+1(t) (10.1)

where Gd,0 represents the direct dynamics and Gc the cross-talk dynamics. Note
that the sensor signal will also be corrupted by additive noise, but we omit this
noise in the previous equation to keep the notations simple. With these assump-
tions, we only need to identify a model for Gd,0 and a model for Gc,0 to entirely
describe the printhead.

In order to identify these models, we apply an input signal un in open loop
to channel n. This input signal is made up of a series of standard pulses2 to
be as close as possible to the operating conditions. We measure both the out-
put yn of channel n to identify the direct dynamics Gd and the output yn+1

of channel n + 1 to identify the cross-talk Gc. Using the prediction error cri-
terion (6.4), a linear model Gd of Gd,0 and a linear model Gc of Gc,0, both
having an order of six, are identified using the data sets Zd = {un(t); yn(t)}
and Zc = {un(t); yn+1(t)}, respectively. The Bode diagram of both models are
represented in Figure 10.5. It is to be noted that the uncertainty D of both
models (see (6.9)) is negligeable due to the small amount of noise in the data.

2The chosen input signal is a periodic signal (whose spectrum is a series of Dirac pulses
at the harmonics of the DoD frequency) and can consequently be used in an identification
procedure [33].



10.3. MODEL-BASED DESIGN OF THE ACTUATION PROCEDURE 81

Figure 10.5: Bode diagram of Gd (blue solid) and Gc (red dashed)

A linear framework is nevertheless not entirely sufficient to accurately de-
scribe the relation between un and yn. Indeed, if we apply the input signal (a
series of standard pulses) at different DoD frequencies and we identify a linear
model for each of these DoD frequencies, we obtain different dynamics as can
be seen in Figure 10.6. This nonlinear phenomenon can be explained by the
refill mechanism of the channel and is not observed for Gc (see J.19 and J.20
for more details).

Combining the set of models Gd identified at different DoD frequencies, we
can build an uncertainty region DDoD that we will assume to contain all possible
dynamics for Gd. This uncertainty region is built as a parametric uncertainty
where the frequency and the damping factor of the first resonance peak of Gd

is constrained to lie in a polytope (see J.19 for more details). We neglect the
uncertainty of the second peak since this second peak is known to have much
less influence on the performance. Note that this uncertainty DDoD is not due
to the noise acting on the output of the system during the identification, but
due to the nonlinear characteristics of the plant.

10.3 Model-based design of the actuation procedure

Using the model developed in the previous section, we will design an actuation
procedure whose objective is to compensate the oscillations. When designing
this actuation procedure, we must face a couple of limitations of the printhead
hardware:

• The same pulse shape must be used for each channel. However, the pulses
can be delayed in the even channels to deal with the cross talk
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Figure 10.6: Models Gd identified with data generated at different DOD fre-
quencies.

• The pulse shape is furthermore constrained to be trapezoidal (see Fig-
ure 10.7). We will therefore parametrize the actuation pulse with a pa-
rameter vector ζ = [trR twR

tfR VR tdQ trQ twQ
tfQ VQ]

T corresponding to
the characteristics of this trapezoidal pulse (see Figure 10.7)

Another limitation is that the pulse shape has to be unique, i.e. it cannot
depend on the DoD frequency. Consequently, we will have to determine a pulse
delivering good performance at all DoD frequencies, i.e. delivering good perfor-
mance with all possible dynamics Gd in the uncertainty region DDoD.

Given the above limitations, our actuation design procedure reduces to de-
termining in an optimal way the delay ta between even and odd channels and
the parameter vector ζ.

trR

twR

tfR

VR
trQ

twQ

tfQ
tdQ

VQ

u(t, ζ)

t

Figure 10.7: Parametrization of the pulse shape
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An important ingredient for this purpose is to determine the optimal output
we would like to achieve by tuning ta and ζ. From the discussion in Section 10.1,
an optimal output would be an output that has precisely the shape that allows
to jet a drop with the desired velocity without any additional and undesired os-
cillation. To determine this desired output yref (t), we recall that the standard
pulse ustd is able to jet a perfect drop when the system is at rest. The output
y(t) corresponding to the standard pulse is given in red dashed in Figure 10.8
(see also Figure 10.4). Part A of the response y(t) allows the drop to be jetted at
the desired drop velocity. This happens at approximately 15µs. Consequently,
yref (t) should be the same as y(t) in Part A. Part B of the response y(t) rep-
resents the residual oscillations. Consequently, yref (t) is brought to zero in this
part.
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Figure 10.8: Sensor output y when the standard pulse is applied (red dashed)
and desired output yref (t) (blue solid)

Now that the desired output yref(t) has been determined, we have to com-
pare it with the actual output of a channel. This actual output depends on
whether the two neighbouring channels are actuated or not. For example, sup-
pose that n is odd and that channels n, n − 1 and n+ 1 are actuated with the
pulse u(t, ζ), the output yn is then given by:

yn(t) = Gd(z) u(t, ζ) + 2 Gc(z) u(t− ta, ζ) (10.2)

with Gd the model corresponding to the chosen DoD frequency. On the other
hand, if the channels n + 1 and n− 1 are not actuated, the output yn is given
by:

yn(t) = Gd(z) u(t, ζ) (10.3)
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It is clear that yn should be as close as possible to yref in all these situations3.

We can now propose the following optimization problem to determine opti-
mal values for ζ and ta:

arg min
ζ, ta

max
Gd∈DDoD

Jsiso(ζ) + λ Jwc(ζ, ta)

with Jsiso(ζ) =
K∑

t=1

(yref(t)−Gd(z)u(t, ζ))
2 (10.4)

Jwc(ζ, ta) =

K∑

t=1

(yref(t)−Gd(z)u(t, ζ)− 2Gc(z)u(t− ta, θ))
2

where λ is an user-chosen weighting factor and K corresponds to 100 µs. The
optimization problem (10.4) is a robust feedforward control problem. In com-
parison with robust feedback control problems, these problems are simpler and
the robust control input can be directly determined by minimizing the worst
case performance (i.e. Jsiso(ζ) + λ Jwc(ζ, ta) in our case) over the plants in
the uncertainty region DDoD (see e.g. [43]). However, due to the particular
parametrization of the pulse, this optimization problem remains in our case a
nonlinear optimization problem. Such nonlinear optimization problem can be
solved offline using typical Matlab functions such as fmincon.

Remark 1. The uncertainty DDoD can been gridded to solve the optimization
problem in an easy way. This is easily done since the uncertainty is a parametric
uncertainty with only two uncertain parameters (see Section 10.2). As opposed
to this simple approach, the papers C.42 and C.45 present methods to deal with
the uncertainty as a compact set.

Remark 2. Since (10.2) and (10.3) pertain to odd channels, the optimization
problem (10.4) focuses on these particular channels. In J.20, the optimization
problem considers in fact both odd and even channels.

The solution of the optimization problem is ta,opt = 7.93 µs and the pulse
shape u(t, ζopt) given in Figure 10.9. In this figure, u(t, ζopt) is compared with
the standard pulse. The main difference between the optimal and the standard
pulses is that the optimal pulse is made of two parts: one part to jet the drop
and a second part (between 10 and 20 µs) to compensate/damp the oscillations.

10.4 Experimental results

Let us compare the performance of the optimal pulse u(t, ζopt) with the one of
the standard pulse using experiments on a real setup. A first evaluation can be

3Another situation is when channels n and n + 1 are actuated. However, the optimiza-
tion problem presented in (10.4) delivers better results when only the extreme cases (10.2)
and (10.3) are considered.
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Figure 10.9: u(t, ζopt) (blue solid) compared with ust(t) (red dashed)

obtained by comparing the DoD curve obtained with the two pulses. The DoD
curve obtained with the standard pulse is given in Figure 10.3 while the DoD
curve obtained with the optimal pulse u(t, ζopt) is given in Figure 10.10. It is
obvious the DoD curve is much flatter with the optimal pulse. The maximal
speed difference is reduced from 12 m/s with the standard pulse to 2.5 m/s
with the optimal pulse.

The DoD curve is obtained by actuating one single channel. In order to vali-
date the complete actuation framework, we will print the bitmap represented in
Figure 10.11. We see that this bitmap requires to actuate nine successive chan-
nels. The printed image when using u(t, ζopt) and applying the optimal delay
ta,opt between odd and even channels is given in Figure 10.12 and the printed
image when using ust(t) and ta = 0 is given in Figure 10.13. By comparing
these two figures, it is evident that the proposed actuation procedure is very
effective to improve the printing quality.

10.5 Conclusions

In this chapter, we have presented a model-based approach to improve the per-
formance of a DoD inkjet printhead by damping undesired oscillations in the ink
channel. The model of the printhead is developed using system identification
techniques and assumptions based on the printhead geometry has allowed us to
simplify the system identification procedure. We have observed that the direct
ink channel behavior depends on the DoD frequency. Consequently, we consider
a robust feedforward control problem to design an actuation framework damp-
ing the undesired oscillations. Experimental results have demonstrated that,
with respect to the performance obtained with the standard pulse, a consider-
able improvement in the drop speed consistency is achieved with the proposed
framework.
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Figure 10.10: DoD curve corresponding to the optimal pulse u(t, ζopt)
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Figure 10.12: Printed image with u(t, ζopt) and ta,opt

Figure 10.13: Printed image with ust and ta = 0
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Chapter 11

Informative data and network

identification

11.1 Introduction

In this chapter, we present two series of results that both pertain to the funda-
mentals of system identification. The first series of results consider the question
of the minimal characteristics an excitation signal should have to lead to a con-
sistent estimate of the true system. The second series of results consider the
identification of systems in a complex network.

11.2 How to get a sufficiently rich excitation signal?

Consider the identification framework presented in Section 6.1 which considers
the identification (in a full-order model structure) of a true system (6.1) oper-
ated in closed loop with a controller Cid. The excitation signal applied at the
output of the controller is denoted r. Even though this framework is a closed-
loop identification framework, open-loop identification is equivalent to the case
where Cid = 0 and where, thus, r ≡ u.

In Chapter 7, the excitation signal of the identification experiment is deter-
mined among other things to guarantee some constraint on the model accuracy.
This model accuracy constraint is expressed as a function of the inverse P−1

θ of

the covariance matrix of the identified parameter vector θ̂N . In this respect, a
minimal constraint that must be satisfied by P−1

θ is that it is strictly positive-
definite: P−1

θ > 0. Consequently, since the excitation signal determines P−1
θ

(see e.g. (6.6)), the parametrization of the excitation signal1 must be chosen
in such a way that P−1

θ > 0. Different parametrizations can be used in prac-
tice (see Remark 2 in Section 7.2) and these parametrizations allow to generate
the excitation signals that are generally used in system identification. For the
most current parametrization where the excitation signal is a filtered version

1As shown in Chapter 7, it is the spectrum Φr(ω) of the excitation signal and not the
excitation signal itself that is parametrized. However, this does not change the discussion in
this chapter.
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of a white noise, P−1
θ is guaranteed to be strictly positive-definite [33]. How-

ever, when we choose the excitation signal as a multisine (i.e. the sum of a
certain number of sinusoids at different frequencies), we must ensure that this
number of sinusoids is sufficiently large to obtain a strictly positive-definite P−1

θ .

The paper J.12 tackles this question by a careful analysis of the pseudore-
gression vector ψ(t, θ0) defining the covariance matrix (see Section 6.1). This
analysis is performed for both open-loop identification and closed-loop identi-
fication. The results for closed-loop identification case are particularly inter-
esting. Indeed, as already mentioned in Remark 1 in Section 7.2, a strictly
positive-definite P−1

θ can be obtained with no excitation at all (i.e. r = 0) if the
controller Cid is sufficiently complex. The particular conditions on the degree
of the controller to enable such costless identification are presented in J.12. If
the controller is not sufficiently complex, the closed-loop system will have to be
excited by an external signal r to obtain P−1

θ > 0. If we choose a multisine as
excitation signal, the minimal number of sinusoids to obtain P−1

θ > 0 is propor-
tional to the difference between the degree that is required to enable costless
identification and the actual degree of Cid.

An important question at this stage is to know whether the conditions ob-
tained in J.12 also implies that the identified parameter vector θ̂N is a consistent
estimate of the true parameter vector θ0. The consistency of θ̂N is indeed a very
important requirement for a good identification. This consistency is obtained
if the data set used for the identification is informative. An informative data
set is a data set for which we have: ǫ(t, θ) = e(t) =⇒ θ = θ0. In [15] (but
also in J.07 for the particular case of costless identification), the conditions to
obtain an informative data set are presented for both open-loop and closed-loop
identification and it can be observed that these conditions are equivalent to the
ones obtained in J.12.

The paper J.17 completes this work by establishing the precise relations ex-
isting between the notions of an informative data set, a strictly positive-definite
P−1
θ and the fact that θ0 is the unique global minimum of the asymptotic identi-

fication criterion V̄ (θ) = Ēǫ2(t, θ). We can in fact say that the papers J.12, J.17
and [15] extend the already existing theory on these issues (see e.g. [49, 33]).
This is especially true for the closed-loop identification case.

Remark. These results have also been used to determine conditions on both
the input signal and the scheduling variable for the identification of consistent
estimates of LPV-ARX systems in open loop (see the paper C.46).

11.3 Identification of a particular system in a complex

network

Until now, we have considered the case where the true system (6.1) is identi-
fied in an open-loop or a closed-loop setting. The open-loop and closed-loop
settings are nevertheless only two of the possible ways in which a true system



11.3. IDENTIFICATION OF A PARTICULAR SYSTEM IN A COMPLEX NETWORK91

can be operated. Indeed, an individual system (e.g. G21
0 ) can also be operated

in a setting such as the one in Figure 11.1 (called network in the sequel). The
setting in this figure is obviously much more complex than the simple closed
loop presented in Figure 6.1. Examples of such networks can be found in e.g.
power grids and biological systems. Such network configurations will become
more frequent in engineering systems that nowadays become increasingly com-
plex and interconnected.

We will make some assumptions about the networks we will consider in this
section. The first assumption is that we a-priori know the interconnection struc-
ture of the network. However, we do not assume to know the particular value of
the transfer functions Gij

0 that are present in the network. In this situation, our
particular objective is to obtain via system identification a consistent estimate
of one of these transfer functions, say G21

0 in Figure 11.1. As such, our objective
is different from the earlier works on network identification attempting at iden-
tifying both the structure and the entire dynamics of the network (see e.g. [35]).
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0 G32

0

w3G63
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G56
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G54
0
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G46
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Figure 11.1: An example of a network

The input-output relation of the plant G21
0 in Figure 11.1 can be formulated

as follows:

w2(t) = G21
0 (z) w1(t) +G23

0 (z) w3(t) + v2(t) (11.1)

with v2 defined similarly as v(t) in (6.1) i.e. v2(t) = H2
0 (z)e2(t). If w2, w1

and w3 can all be exactly measured, a consistent model for G21
0 (but also for

G23
0 (z) and H2

0 (z)) can be found using the prediction-error criterion (6.4) with
the following prediction error:

ǫ(t, θ) =
(
H21(z, θ)

)−1 (
w2(t)−G21(z, θ) w1(t) +G23(z, θ) w3(t)

)
(11.2)

The conditions for obtaining these consistent estimates are very similar to those
for the case where (11.1) would be operated in a simple closed loop. The model
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structure must indeed be full-order and the data set must be informative2. The
paper J.21 summarizes these conditions and, in addition to the classical direct
identification technique (see above), this paper considers also other identifica-
tion techniques such as the two-stage method.

The problem becomes even more interesting whenever some of the signals
cannot be measured or are e.g. very expensive to measure. In this case, one
could ask what are the signals that have absolutely to be measured in order to
obtain a consistent estimate of G21

0 (z). By signals, we here do not only mean the
signals present in (11.1), but also the other signals w4, w5, w6 of the networks.
These other signals could indeed be easier to measure than the ones in (11.1).
This question is addressed using insights of graph theory in the paper C.59.

2Such as for closed-loop identification, there is also an additional constraint on the presence
of at least one pure delay in every loop that passes through w2.



Chapter 12

Other research projects

Hereunder follows a list of other research projects with a description.

• Monitoring of industrial processes using large-scale first-principles
models. Since large-scale physical models of industrial plants are gener-
ally too complex to be used for the monitoring of industrial plants (state
estimation), techniques have been developed to simplify those physical
models while keeping the monitoring accuracy. The results of this project
in collaboration with the research institute TNO-TPD are presented in the
papers J.11, C.17, C.18 and C.23 as well as in the PhD thesis of Robert
Bos (see Section 3.2) where the developed techniques have been applied
to a large-scale physical model of the dryer section of a paper production
machine.

• Identification of irrigation channels. In this project, we have used
experimental data collected on an irrigation channel in Arizona to identify
a dynamical model of this channel and in particular its resonating char-
acteristics. This project is in collaboration with the Water Management
Department of the TU Delft and the US Arid-Land Agricultural Research
Center, Phoenix, Arizona. See the papers J.14 and C.52.

• Optimal training sequences for telecommunication channels. Train-
ing sequences are used to determine a model of a telecommunication
channel that is required to reconstruct the emitted signal at the receiver
end (deconvolution/equalization). These training sequences are here op-
timized to obtain the best reconstruction properties. This project is in
collaboration with the Automatic Control and Telecommunication De-
partments of the KTH Stockholm. See the papers J.13 and J.22.

• Automatic autorotation of a rotorcraft Unmanned Aerial Vehicle
(UAV). In this ongoing project in collaboration with the Dutch Aerospace
Laboratory (NLR), our objective is to guarantee the safe landing of an
UAV (drone) having lost its engine power. For this purpose, we have
addressed the problem of optimal trajectory planning in the paper C.47
and we are for the moment using robust and LPV control techniques to
follow these optimal trajectories. A first step towards this last objective
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has been to devise methods to approximate complex nonlinear models
(such as the UAV model) by simpler LPV models without loosing too
much accuracy: see C.60.



Chapter 13

Conclusions

In the previous chapters, I have presented in a concise manner my research
activities in the last fifteen years. The main objective of this research has
been to optimize the path starting at the collection of an informative data
set on a real-life system and ending with a satisfactory control system. The
followed approach has been to determine identification experiments that are
specially optimized for the specific control objective and that are as cheap as
possible. Within the Autoprofit project, this philosophy has been extended
to comprise the whole maintenance of industrial control systems: performance
monitoring, performance diagnosis and controller update via re-identification
(see Figure 8.1). By doing this, our objective was to increase the autonomy of
these industrial control systems. In the future, my main research objective will
be to develop further this line of reasoning building on the experience of the
Autoprofit project. The aim will therefore be to develop control systems that
become increasingly autonomous.

Developing autonomous control systems is an important challenge for a large
number of technological and industrial sectors. We indeed observe, on the one
hand, an increasing demand for higher product quality, higher performance and
higher efficiency. On the other hand, we also observe that control systems are
becoming increasingly complex and interconnected. Due to this complexity and
to these interconnections, control systems have to operate under circumstances
that will more and more differ from the ones for which the control system has
been designed at commissioning. A modern control system must therefore be
able to monitor its performance, to detect the origin of any observed perfor-
mance drop and to restore the desired level of performance in an autonomous
way. All these actions must be performed using dedicated experiments that are
optimized for their specific objectives.

Since optimal experiment design (for diagnosis or for re-identification) is
central in our philosophy, the realization of this long-term objective will require
that this paradigm becomes a fully mature theory. Several important challenges
are indeed still ahead of us:

Optimal experiment design for network systems. A first challenge is
to develop a comprehensive theory for designing optimal identification experi-
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ments for systems embedded in a complex network. Indeed, as mentioned in the
previous paragraph, control systems are becoming increasingly complex and in-
terconnected. As we have seen in Chapter 11, we are just starting to understand
how to identify models in a consistent way in such networks. An optimal exper-
iment design framework for such networks is thus a complete new research area
with interesting questions that are specific to this problem such as the optimal
location in the network where the excitation has to be applied, the number of
signals that have to be measured, etc.

Optimal experiment design for nonlinear systems. A second challenge
is to make steps towards optimal experiment design for nonlinear systems, a
topic which has remained almost unexplored despite its practical importance.
The use of the nonlinear behaviour of engineering systems will indeed become
increasingly important to fully optimize their performance. If identifying the
linearized dynamics of a system already entails an important cost (especially in
the process industry), the identification of the full nonlinear behaviour could be
even more expensive. The design of cheap experiments for the identification of
this nonlinear behaviour is therefore important. Different cases/situations can
be considered.

• The first situation supposes that a nonlinear structure for the to-be-
identified system is available and the objective of the identification is to
determine the unknown (physical) parameters in this structure. Designing
an optimal experiment in this case can be formulated as determining an
excitation signal for the identification which perturbs as little as possible
the system while guaranteeing a satisfactory accuracy for the estimated
parameters (e.g. an accuracy allowing the design of a controller achiev-
ing satisfactory performance). Some preliminary work has been achieved
towards this end in the PhD project of Marco Forgione (see Section 3.2).

• A second situation is when such a non linear structure is not available
a-priori. In this case, a black-box nonlinear identification (such as LPV
identification) has to be performed. Developing non-intrusive experiments
for the identification of accurate LPV models is an important challenge.
It involves the issues of obtaining informative data for such identification
experiments, but also the issue of determining what is the optimal number
of basis models that have to be considered in the LPV structure for an
optimal trade-off between accuracy and excitation cost. Early results on
these issues are available in C.37 and C.46.

Optimal experiment design with short data sets. Another challenge is
to develop a comprehensive theory for the optimal design of short identifica-
tion experiments. Indeed, cheap experiments are often short experiments while
many optimal experiment design results are based on the assumption that the
number of data is large; assumption which allows one to use asymptotic the-
ory to evaluate the model uncertainty, but which could lead to errors when the
number of data is small.
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Optimal experiment design considering both variance and bias errors.
Almost all optimal experiment design results are based on the assumption that
the identification is performed in a full-order model structure. Consequently,
the model uncertainty is entirely determined by the variance error due to the
stochastic noise corrupting the data. It would be very interesting to continue
the work started in C.28 where an optimal experiment design framework is de-
vised for the identification of a system in a reduced-order model structure. In
this case, the optimal excitation must make a trade-off between the variance
error and the bias error.

My ambition is thus to continue a strong fundamental line of research, but
also to look for opportunities in the world of applications to valorize this funda-
mental research. Developing autonomous control systems is an important topic
in a large variety of applications going from the process industry, the aerospace
industry to manufacturers of mechatronic systems. I want therefore to further
develop the collaboration with our industrial partners in the European Project
(process industry) and with the NLR (aerospace) to finance this research. My
ambition is also to pursue the collaboration on inkjet printers with OCE. OCE
is indeed interested by our results on performance diagnosis via system identi-
fication (see Chapter 8).
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